.H =
t Science of
%% Computer
Programming
ELSEVIER Science of Computer Programming 38 (2000) 125-142 —_—

www.elsevier.nl/locate/scico

A generative methodology for the design of abstract
machines

Stephan Diehl *
FB-14 Informatik, Universitdt des Saarlandes, Postfach 151150, 66041 Saarbriicken, Germany

Received 6 September 1999

Abstract

In this paper we demonstrate how to use a semantics-directed generator to systematically design
abstract machines. The main novelty of the generator is that it generates compilers and abstract
machines. The generator is fully automated and its core transformations are proved correct. In
this paper we propose a design methodology based on our generator and as an example we
design a functional abstract machine which turns out to be very similar to the categorial abstract
machine. (© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Abstract machines; Natural semantics; Compiler generation

1. Introduction

Abstract machines provide intermediate target languages for compilation. First, the
compiler generates code for the abstract machine. Then, this code can be interpreted
or further compiled into real-machine code. Abstract machines as an intermediate stage
increase portability and maintainability of compilers. The instructions of an abstract
machine are tailored to specific operations required to implement operations of a source
language. For almost all kinds of languages, there exist abstract machines, e.g. for
imperative [32], functional [4,5,17,21], logic [2,35], functional/logic [30], constraint
[16], concurrent constraint [26] or object oriented [3,34] languages.

Abstract machines are usually designed in an ad hoc manner often based on expe-
rience with other abstract machines. But also some systematic approaches have been
investigated. One of those is based on partial evaluation of example programs [9,20,31].
Another approach is to use pass separation transformations [18]. Hannan [15] introduced
a pass separation transformation, which splits a set of term rewriting rules representing
an abstract interpreter into two sets of term rewriting rules: the first set represents a

* Tel.: +49-681-302-3915.
E-mail address: diehl@cs.uni-sb.de (S. Diehl).

0167-6423/00/$ - see front matter (© 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-6423(99)00047-7

126 S. Diehl| Science of Computer Programming 38 (2000) 125-142

compiler into an abstract machine language, while the second set represents an abstract
machine. We combined this transformation with other transformations, including ex-
tensions of those suggested by McKeever [25] and daSilva [13] and implemented all
transformations in Prolog. As a result we get a system which given a natural semantics
specification of a source language generates specifications of a compiler and an ab-
stract machine for that source language. The generated specifications are term rewriting
systems and our system is able to interprete these rules or translate them into SML
or C.

For the formal definition of our meta-language and the transformations see [12], for
the correctness proofs see [10].

Given a semantics specification of a source language, current semantics-directed
compiler generators produce compilers from the source language into a fixed target
language.

semantics program input

! ! !

generator — compiler — code — output

Rather than just generating compilers which translate source programs into a fixed
target language, our system generates both a compiler and an abstract machine. The
generated compiler translates source programs into code for the abstract machine.

semantics program
1 !
generator compiler —— abstract machine code

l input
1

abstract machine — output

In the next section we will present a methodology which uses the above generator
in an iterative design process for abstract machines. Then we will demonstrate the
methodology by means of an example: We will design an abstract machine for a
simple functional language.

2. A generative methodology

Several authors [9,20,31] suggested a methodology based on partial evaluation, which
consists of the following steps:

(1) Define an interpreter.

(2) Change the interpreter by making the heap representation and the unifications
explicit.

(3) Partially evaluate the interpreter with respect to some example inputs.

S. Diehl| Science of Computer Programming 38 (2000) 125-142 127

(4) Look for patterns in the intermediate code and define corresponding machine in-
structions.

(5) Fold the result of the partial evaluation using the machine instructions.

(6) If the resulting code contains predicates or Prolog constructs, which are not ma-
chine instructions, or the machine instructions are not deterministic or not suitable
for conventional computer architectures, then repeat the design loop (steps 2—6).

The problem with this approach is, that it does not guarantee that the designed com-
piler and abstract machine are complete. By complete, we mean that the generated
compiler is able to translate every correct program into abstract machine code. The
incompleteness is due to the fact that the design is based only on example programs.

In comparison our generator guarantees completeness, as it transforms semantics
specifications and not example programs. In practice, the design of an abstract machine
is a typical design process as we know it from software engineering: First, a prototype
is constructed. Then, it is modified based on experience gained with the prototype. The
modifications are done in the implementation of the abstract machine and the compiler
has to be adapted. With the help of our generator, this process can be facilitated
by lifting the modifications into the semantics specifications. This is advantageous, as
correctness proofs of the modifications can be done on the semantics level. Thus our
new methodology consists of the following steps:

(1) Define the semantics of the source language.

(2) Generate a compiler and abstract machine.

(3) Look for inefficiencies in the intermediate code and the definitions of the abstract
machine instructions.

(4) Modify the semantics, then repeat the design loop (steps 2—4).

Modifications include that implementation details of data types are made explicit, e.g.
the heap representation, or that data with different binding times are separated, this is
also known as binding-time improvement.

3. Semantics notation: 2BIG

Natural semantics has been used by programming language researchers to specify
many aspects of programming languages [7,8,16,19,27,28,33]. In this article we use
natural semantics to specify the dynamic semantics of programming languages. But
first we introduce our language to write natural semantics specifications: 2BIG

The language combines the structural approach of natural semantics [19] and the
separation of general and implementation details by the use of a separately given
interpretation for function symbols.

We refer to the specification of the interpretation for function symbols as the second
level and the inference rules as the first level. All transformations performed by the
generator are syntactical transformations on the inference rules, the interpretations of

128 S. Diehl| Science of Computer Programming 38 (2000) 125-142

functions remain unchanged. All compile-time computations have to be in the first level,
run-time aspects can be hidden in the second level. Only the names and signatures of
the function symbols are made available to the first level.

In 2BIG the dynamic semantics of a programming language is defined by a set of
inference rules, e.g., the semantics of an assignment instruction which binds a name
X to a value V is specified below:

. member(X — Y),S) VD>S—N
 assign(X, V> S — replace(X,S,N)’

We will use the notational convention that meta-variables c,c’,c;, e, e’,e;, ... denote
terms. ! Judgements are transitions of the form c[> ey — ey, e.g. assign(X,V)>S —
replace(X,S,N), or side conditions of the form p(¢#,...,%,) or not p(t,...,t,), e.g.,
member((X — Y),S). In a rule the judgements above the line are called preconditions
and the judgement below the line is called the conclusion. Furthermore, we adopt the
notation for list constructors from Prolog, e.g., [1,2,3]=[1|[2|[3|[]1]]-

Functions (e.g., replace and the characteristic function of member) are defined sep-
arately, e.g., as Prolog predicates. We refer to their definitions as the second level of
the specification.

In a transition ¢ > e — ¢’ the meta-variables ¢, e and ¢’ denote terms, thus they are not
different entities. But to emphasize, that ¢,e and ¢’ play different roles in a transition,
we call the term on the left of > the instruction, the terms on the right of > and —
are called states and we will refer to the outermost constructor of an instruction as an
instruction symbol. This convention is motivated by the way transitions are used in
semantics specifications. Usually a transition of the form ¢[>e; — e, is interpreted as
“the execution of the instructions ¢ in state e; yields state e,”. By instructions we mean
the constructs of the language being defined and by state we mean run-time information
like bindings, environments or stores. Some authors refer to instruction-state pairs as
configurations.

As a deviation from most works in natural semantics we use c¢[> e instead of etc.
As the rules usually define different cases for ¢, not for e, we feel that our notation is
more readable.

The semantics of 2BIG is based on inductive systems [1] and relational inductive
systems [13,14]. The relevant definitions are given in [12]. After transformation of side
conditions into transitions? the 2BIG rules are simply relational inductive rules with
ordered premises where we regard — as a ternary constructor symbol.

2BIG rules can also be given a procedural reading as in logic programming [23].
Informally, to prove that a transition c¢[>e; — e, (goal) follows from the inference

1'We use uppercase letters for variables of the specification language and lowercase letters for meta-
variables. The term variable is also often used for the concept of binding values to names in programming
languages, e.g. in the above 2BIG rule the specification language variable X gets bound to names of variables
of the source language.

2We regard side conditions as syntactic sugar, which can be transformed into transitions containing the
characteristic functions of the predicates.

S. Diehl| Science of Computer Programming 38 (2000) 125-142 129

rules, we unify it with the conclusion of a rule. If it unifies then the preconditions of
that rule become our new goals. If the rule has no preconditions, then the goal trivially
follows from that rule. This procedural reading underlies the Prolog implementation of
2BIG.

4. A generator for compilers and abstract machines

Our generator applies a sequence of established techniques to a natural semantics
specification in order to split it into a compiler and an abstract machine. We believe
that our framework, by virtue of being compositional, can be extended over time to
include even more powerful analysis and transformation methods. Actually, the trans-
formations are mostly source to source and after every transformation we have an
executable specification again. Of these transformations pass separation is the most
important one. Let p be a program and x and y the static and dynamic input to this
program, then partial evaluation of p with respect to x yields a residual program p,,
such that p.(y)= p(x, y). In contrast, pass separation transforms the program p into
two programs p; and p, such that p,(pi(x), y)= p(x, y). Note that here p; produces
some intermediate data, which are input to p,. When it comes to the generation of
compiler/executor pairs, pass separation provides an immediate solution, we pass sep-
arate the interpreter interp into an executor exec and a compiler comp, such that:
interp(prog, data) = exec(comp(prog), data). Despite this potential for compiler gener-
ation there is only little work on pass separation [11,15,18].

Our generator first transforms the 2BIG rules into a term rewriting system:

For this, it first removes side conditions by converting them into transitions, thus
there are now only transitions as preconditions. Then it factorizes rules which have
a common initial sequence of preconditions. Factorization replaces these rules with
a single rule which has the common initial sequence as its preconditions and for
each original rule a rule is generated with its remaining preconditions. Next, the
generator adds a stack to the state in the transitions and stores temporary variables,
i.e. variables which are not used in an intermediate transition. Variables which do
not occur in the conclusion of a rule are eliminated. The last step before the ac-
tual transformation into a term rewriting system is called sequentialization. It con-
verts all preconditions of a rule such that the result state of one transition is the
start state of the next. These rules can now be easily turned into rewrite rules.
Rules of the form (¢;>ey—e] -+ c¢,>e,—e))/cD>e—e€ are converted into
((¢; p),e) = {(c1;...5¢n5 p)ser) where p is a new variable name.

Now the resulting term rewriting system is in a form, such that pass separation can
be applied which yields two-term rewriting systems: one representing a compiler and
one representing the abstract machine. These term rewriting systems are then further
optimized to reduce the number and complexity of the abstract machine instructions,
e.g. the number of arguments.

130 S. Diehl| Science of Computer Programming 38 (2000) 125-142

Informally, the relation of the generated compiler and abstract machine and the
original 2BIG specification is as follows: If the transition p[>e— e’ for a program
p with start state e can be proven using the original 2BIG rules, then (p,[[],€) can
be rewritten using the abstract machine rules into (no p,[[],e~’]> where p, € and ¢
are the compiled versions of the terms p, e and e’.®> Note, that also the states are
compiled as we allow that source language constructs can occur in a state, e.g. the
state might contain an environment mapping names to function abstraction as in the
case of Mini-ML .

In the rest of the paper we will use the generator as a black box. Similar to other
generation tools in compiler design like lex or yacc, it is based on a formal theory
[12]. When we use these tools, we do not have to know much about their inner
workings, but we have to understand their specification languages.

5. Designing an abstract machine for Mini-ML

We apply our system to a specification of Mini-ML. The generated compiler and
abstract machine are similar to those presented in [15], i.e., the categorial abstract ma-
chine (CAM). The CAM has been the basis of very efficient implementations of ML
[22,24]. Based on the specification of Mini-ML in [7,19] we will present a 2BIG spec-
ification of Mini-ML and the compiler and abstract machine generated by our system.
A closer look at the abstract machine instructions reveals that variable lookup is still
inefficient. We introduce an abstract syntax and a conversion of Mini-ML programs into
the abstract syntax. In the abstract syntax variable names are replaced by access paths
which are just a different encoding for deBruijn numerals. For this abstract syntax we
give a 2BIG specification. It turns out that the generated abstract machine is close to
an existing abstract machine, the CAM.

5.1. Mini-ML

In [7,19] the authors present natural semantics specifications of Mini-ML, the CAM
and the translation of Mini-ML programs to CAM code. Mini-ML consists of the purely
applicative part of ML, more precisely a simple typed A-calculus with constants, pairs,
conditionals and recursive function definitions. The syntax of Mini-ML is given in
Fig. 1, its semantics will be defined in the next section by 2BIG rules.

Example 1. The following example program counts from 10 down to 0:

letrec y = Ax.if equal(var(x),num(0)) then var(x)
else (var(y) (var(x) —num(1)))
in (var(y) num(10)) end

3 A similar inverse implication states that for every abstract machine execution of a compiled program
there is a transition provable with the 2BIG rules.

S. Diehl| Science of Computer Programming 38 (2000) 125-142 131

T variable symbol
n number
b boolean value: true, false
E = bool(b) | num(n) boolean value, number
| equal(E, E) equality test
| E+E|E-E sum, difference
| var(z) variable use
| if E then FE else E end conditional
| (E,E) pair
| fst(E) first value of pair
| snd(F) second value of pair
| Az.E abstraction
| (EE) function application
| letz=Fin F end function definition
|

letrec z = F in F end recursive function definition

Fig. 1. Syntax of Mini-ML.

And this is a Mini-ML function computing Fibonacci numbers:

letrec fib= /x.if equal(var(x),num(0)) then num(0)
else if equal(var(x),num(1)) then num(1)
else (var(fib) (var(x) — num(l)))
~+(var(fib) (var(x) — num(2)))
end
end
in (var(fib) num(10)) end

5.2. Transforming a 2BIG specification of Mini-ML

5.2.1. Cyclic bindings

The static semantics of our meta-language requires that the preconditions of a rule
are well-ordered as defined in [12]. Well-orderedness does not allow for cyclic de-
pendencies of variables and thus allows us to use terms and not graphs or ratio-
nal trees as the underlying model of 2BIG rules. From a practical point of view it
facilitates to generate term rewriting systems as specifications of abstract machines.
To implement cyclic dependencies as for E* in (P, > [[X —E*]|[E]—E* P, D>
[[X — E*)|[E1— E")/(letrec X =P, in P; end > E — E") we lift the handling of cyclic
bindings of variables in the meta-language into the specification, i.e., we specify the

132 S. Diehl| Science of Computer Programming 38 (2000) 125-142

indirection and dereferencing of variables by 2BIG rules. As a result the state in the
2BIG rules contains a new component, namely a list of redirections. Redirections asso-
ciate indices (addresses) with values. Everytime a value is an index, we have to look
up its value in the redirections. This process is also called dereferencing. Instead of
the above rule for letrec we thus write a 2BIG using redirections:

newind > R — N

P, I> [[red(N, ind(N))|R], replace(X,ind(N), E)] — [R', E*]

P\ I> [replace red(N,E*,R"), replace(X,val(E*),E)] — [R",E’]
letrec X =P, in P; end>[R,E]— [R",E']

Note, that here in the transition for P, the environment E* only occurs once on
the right-hand side. Thus, P, is executed in an environment where the redirection N
is bound to ind(N), whereas P; is executed in an environment where N is bound to
val(E™).

5.2.2. Basic operations
In the 2BIG rules the following functions are used:

e lookup(E,X) yields the value associated with the identifier bound to X in the map-
ping E.

o replace(X,V,E) yields a new mapping, which differs from E only in that the asso-

ciation of the identifier X is replaced by an association of the identifier X to the

value V.

minus_op(V1,V>) yields V| — V5 if both values are numbers.

plus_op(V1,V3) yields V| + V; if both values are numbers.

equal_op(V1,V>) yields true if both values are equal, false otherwise.

lookup_red(R,N) yields the value associated with index N in the redirections R.

replace_red(N, V,R) replaces the value associated with index N in the redirections

R by the value V.

e new_index(R) yields a new index, which is not yet contained in R.

5.3. First shot

The 2BIG specification in Table 1 is based on the natural semantics specification of
Mini-ML in [7,19]. To convert their natural semantics rules into 2BIG rules we had to
remove the cyclic dependencies and enforce the static semantics of 2BIG.

We use constructors like xbool, xnum and clo to build intermediate data structures
and distinguish them from constructors of the source language like bool or num. The
constructor val indicates that a value has not to be dereferenced, whereas ind is an
index and has to be dereferenced to get a value.

S. Diehl| Science of Computer Programming 38 (2000) 125-142 133

Table 1
First shot: natural semantics of Mini-ML

Primitive types: num(N) > [R, E] — [R, xnum(N)]
Vi D> [RE]— [R,xnum(N)] V5 > [R',E]— [R", xnum(M)]
Vi + Vo D> [R,E]l— [R", xnum(plus_op(N, M))]
Vi D> [R,E]— [R,xnum(N)] V) > [R',E]— [R",xnum(M)]
Vi — Vo D [R,E]— [R”, xnum(minus_op(N, M))]

bool(B) D> [R, E] — [R, xbool(B)]
N> [R,E]—[R,N'] MDD [R,E]—I[R",M']
equal(N, M) D> [R,E] — [R", xbool(equal -op(N',M"))]

Vi D> [R,E]—[R, Vl’] Vo, D> [R',E]— [R", Vz’]
(V1,V2) D> [R,E]— [R", xpair(V/, Vz')]
V > [R,E]— [R,xpair(4,B)] VD [R,E]— [R,xpair(4,B)]
fst(V) > [R, E] — [R', 4] snd(V) > [R,E] — [R', B]

Pairs:

lkup > [X, E] — ind(N) lkup > [X, E]— val(V)
var(X) > [R, E] — [R, lookup_red(R,N)] var(X) > [R,E]— [R, V]

Variable lookup:

Ikup > [X, E] — lookup(E,X)

B> [R,E]— [R',xbool(true)] Vi I> [R,E]—[R",V]]

Conditional:
if B then V| else V5 end > [R,E]— [R",V]]
B> [R,E]— [R',xbool(false)] V5 I> [R/,E]—[R", V]
if B then V| else V5 end > [R,E]—[R",V]]
Functions:

JX.V > [R,E] — [R, clo(E, xlambda(X, V'))]
Vi D> [R,E]— [R,clo(E’, xlambda(X, C))] v, D> [RLE]—[R",V;]
run > [C,R" replace(X,val(V3),E’)] — [R*, V]
("1) > [R,E]— [R*, V]
C>[RE]—[R,V]
run > [C,R,E] — [R', V]
Vi D> [RE]—[R,V|] Vo B[R, replace(X,val(V]), E)] — [R", V]
let X =V, in V> end > [R,E] — [R", V]

newind > R — N
V1 B> [[red(, ind(N))|R], replace(X,ind(N), E)] — [R', V{]

V3 B> [replace_red(N, V{,R"), replace(X,val(V]), E)] — [R", V;]
letrec X =V in 7, end D> [R,E]— [R", V]

Recursive functions:

newind > R — new_index(R)

5.3.1. Generated compiler and abstract machine for Mini-ML

Next, we apply our generator to the 2BIG specification in Table 1. It transforms
the rules as described in Section 4 and finally produces the term rewriting rules for
a compiler as shown in Table 2 and for an abstract machine as shown in Tables 3
and 4.

134 S. Diehl| Science of Computer Programming 38 (2000) 125-142

Table 2
First shot: generated compiler

bool(B) = bool(B)

equal(4, B) = equal; 4; conv_0; B; conv_1
num(N) = num(N)

A+ B = equal; 4; conv_2; B; conv_3
A—B = equal; 4; conv_2; B; conv_5

(4,B) = equal; 4; conv_0; B; conv_9
fst(V) = fst; V; conv_10

snd(V) = fst; V; conv_11

var(X) = var(X)

if B then V| else 7, end = equal; B; conv_7; factor_1(7,, V1)
AXV = lambda(X, V')

" ") = equal; V/;; conv_12; V/5; conv_13; run

let X =V, in V, end = equal; V7;conv_15(X); V>
letrec X = ¥} in V; end = letrec; newind; conv_16(X); V;; conv_17;

Table 3
AM,: variable lookup

(var(X); C D,[R,E]]) = (Ikup; conv_6; factor_0; C, [[[R]|D],[X,E]])
(Ikup; C, [X EN) = (C, [D lookup(X, E)])

(conv_6; c [[[R1|D1, S]) = (C, [D.[[RL, ST

(factor_0; C, [D,[[R],ind(N)]]) = (C, [D,[R, lookup_red(R,N)]])

(factor_0; C, [D,[[R],val(V)]]) = (C, [D,[R,V1])

Table 4
AM: recursive functions

(letrec; C, [, [R, E1]) = (C, [[[R,E]|D].R])
(newind; C, [D,R]) = (C, [D,new_index(R)])
(€ORV_16(X); C, [[[R, E1|D],NT) =
(C, I[N, X, E1|D], [[red(N, ind(N))|R], replace(X, ind(N), EY]])
(v 17 C, [[[N, X, E]|DL[R, V1)) =
(C, [D,[replace_red(N,V,R),replace(X,val(V), E)]])

The names of the instructions introduced by our system are test_..., conv_

.,factor_... fact_... and comb_... . These names describe the task of an instruction
not as specific as those instruction names we know from existing abstract machines.
After a closer inspection of what our generated instructions do, we could give them
more suggestive names like push, pop, branch, etc. For example the instruction equal
occurs quite often in the compiler rules. The name of the instruction was chosen, when
the rule for the source language construct equal was generated. The instruction actually
is only a push operation and does not do any comparison, so this is a case where the
generated name is actually misleading. All later other occurrences of equal in other

S. Diehl/ Science of Computer Programming 38 (2000) 125-142 135

compiler rules are due to the fact that similar instructions have been generated for these
rules, but because they had the same effects, they have been identified with equal.

Actually, Tables 3 and 4 contain only some of the generated abstract machine rules,
as we only need these to illustrate and discuss some inefficiencies in the machine.

In the CAM the variable access is done by statically compiled access paths. In the
above abstract machine rules variable access is still a search process hidden in the basic
operation lookup. The instruction factor_0 tests the cases that the variable is bound to
a redirection or directly to a value.

Again the search process is hidden in a basic operation, namely the operations
replace(X,ind(N),E) and replace(X,val(V),E). The association found for the vari-
able X is then replaced by an association of X to the new value. In the CAM the
environment is implemented as a stack and the new value is just put on top of the
stack.

5.4. Second shot

As pointed out the structure of environments and as a result the variable lookup in
the above abstract machine is still inefficient. Our transformations do not automatically
change this structure, thus the 2BIG specification has to be modified. We introduce an
abstract syntax with deBruijn numerals and a conversion of Mini-ML programs into
the abstract syntax. Then we give a new 2BIG specification for Mini-ML programs in
abstract syntax. When we replace variable names by deBruijn numerals the environment
can be replaced by a stack. The value associated with the variable represented by the
numeral $0 is the top most element of the stack, for the numeral $n the value is the
(n — 1)th element of the stack. Access paths are a unary representation of numerals,
i.e., the numeral $0 is represented by car, the numeral $n by cdr(cdr(. ..ch(car))).

|

n times

5.4.1. Abstract syntax

Since we use now deBruijn numerals in A,let and letrec abstractions, there are no
more variable names in Mini-ML programs and we have to change the syntax (see
Fig. 2).

V = car | cdr(V) variable access path
E =
Vv variable use

|

| AE abstraction

| let Ein Eend function definition
|

letrec F in E end recursive function definition

Fig. 2. Abstract syntax of Mini-ML.

136 S. Diehl| Science of Computer Programming 38 (2000) 125-142

Example 2. Using the new abstract syntax the example program which counts from
10 down to 0 becomes
letrec A.if equal(car,num(0)) then car
else (cdr(car) (car — num(1)))
in (car num(10)) end

And the Mini-ML function for Fibonacci numbers is now written as:

letrec 1.if equal(car,num(0)) then num(0)
else if equal(car,num(1)) then num(1)
else (cdr(car) (car — num(1)))
+(cdr(car) (car — num(2)))
end
end
in (car num(10)) end

5.4.2. Conversion into abstract syntax

var(X) D> E — access_path(X, E))
Here access_path(X,E) is a basic operation which yields the access path for the nu-
meral $(n — 1) if X is the nth variable in E. Or in other words access_path(X,E) =

cdr(cdr(...cdr(car))).
———

n—1 times

VD> [X|E]— V'
XV D E—=ALV!
V]DE—>V1/ VzD[X|E]—>V2/
let X =7 in V; end > E —let V] in V] end
> [X|E]— V] Va D> [X|E]— V!
letrec X = 7} in V; end > E — letrec V| in V, end

(2)

In all other cases the arguments are just translated in the current environment, e.g.

VI>E—V] Vha>E—V) 3)
(V. V2) B> E— (V. 13)

2BIG Specification of Mini-ML
Variable lookup: Instead of rules for var(X), we have now rules for access paths:

car > [R, [ind(M)|E]] — [R, lookup_red(R, M)]
car > [R,[val(V)|E]] — [R, V] 4)
AD [R,E1—[R, V]
cdr(4) > [R,[H|E]]— [R, V]

S. Diehl/ Science of Computer Programming 38 (2000) 125-142 137

Functions: The name of the variable bound by the A abstraction is no longer stored
in the closure,

1.C > [R,E] — [R, clo(E, xlambda(C))])

Instead of replacing the value bound to the variable bound by the A abstraction of the
closure, we now pass the new value on top of the environment, which is now a stack
and no longer a mapping of variable names to values:

Vi > [R,E]— [R',clo(E’, xlambda(C))] Vy > [R,E]—[R",V;]
run D> [C,R”, [val(V)|E']] — [R*, V] (6)
("1) B [R,E]— [R*, V]

Again, instead of binding the value V| to a variable it is passed on top of the stack,

V> [RE|—[R.V]] Vo> [R,[val(V))|E]] = [R", V}]
let /, in ¥, end [> [R,E] — [R", V]]

(7)

Recursive functions: And again, the value of V| is now passed on top of the stack,
newind > R — M V1 D> [[red(M,ind(M))|R], md(M)\E — [R, V]
Vy D> [replace_red(M, V{,R"), [val(V])|E]] — [R” V3] (8)
letrec V; in 7V, end > [R,E]—[R",V}]

5.4.3. Generated compiler and abstract machine for Mini-ML

After modifying the 2BIG specification of Mini-ML as described above we apply the
generator again and get the compiler rules in Table 5 and the abstract machine rules
in Tables 6-8.

Access paths are now translated into sequences of instructions, thus the path cdr(cdr
(car)) becomes cdr;cdr;car. Of course, there are no more abstract machine instructions,
which take variable names as their arguments, e.g., X in lambda(X, C).

Table 5
Second shot: generated compiler

car = car

cdr(4) = cdr; 4

yxe = lambda(C)

N ") = equal; V}; conv_11; /;; conv_12; run

let V; in 7, end = equal; 7;;conv_14; V/;
letrec 7} in 7, end = letrec; newind; conv_15; V| ; conv_16;

Table 6
AM,: variable lookup

[D, [R, lookup_red(R, M)]])
[D.[R,V]])
[D,[R,ETN)

(car; C, [D, [R, [ind(M)|ET]]) = (C,
(car; C, [D,[R,[val(V)|ETN]) = (C,
(edr; C, [DR[VIET) = (C,

138 S. Diehl| Science of Computer Programming 38 (2000) 125-142

Table 7
AM,: functions

(lambda(V); C, [D,[R,E]]) = (C, [D,[R,clo(E, xlambda(}))]])
(equal; C, [D,[R,E]]) = (C, [[[E]|D].[R,E]])
(conv_11; C, [[[£]|D), [R, clo(£’, xlambda(T))]]) =

(C, [I[E", T1ID, [R, ET])
(conv_12; C, [[[E, T]|D),[R, V1) = (C, [D,[T,R,[val(¥)|E]])
(rum; C, [D,[T,R,E1) = (T;conv-13; C, [[[T]|D],[R,E]I)
(
(

conv_13; C, [[[7|D). [R.E])) = (C, [D.[R.E])
nv_14; C, [[[E]|D]. [R. V1]) = (C. [D[R.[val(¥)|E]T])

Table 8
AMy: recursive functions

(letrec; C, [D,[R,E]]) = (C, [[[R,E]|D].R])
(conv_15; C, [[[R,E]|D],M])=

(C, [[[M, E]|D], [[red(M, ind(M))|R], [ind(M)|E]]])
(conv_16; C, [[[M,E]|DL[R,V]]) =

(C, [D,[replace_red(M,V,R),[val(V)|E]]])
(newind; C, [D,R]) = (C, [D,new_index(R)])

In Tables 6-8 we give the definitions generated for the instructions appearing in the
above compiler rules.

5.5. Comparison to CAM

Before we can compare our generated abstract machine to the CAM, we have to
introduce the CAM in more detail. We restrict the presentation to how variable lookup,
A-abstraction, function application and recursive function definitions are translated to
CAM code and discuss the relevant instructions of the CAM. We will use the specifi-
cations in [7],% where both the CAM and the translation to CAM code are given by
natural semantics rules. To avoid having to introduce another notation, we will write
these rules in 2BIG notation, although they do not satisfy the static semantics of 2BIG.

5.5.1. Translation of Mini-ML to CAM code

In our generated compiler, we have two stages. First the Mini-ML program is con-
verted into the abstract syntax with access paths. This stage was described by inference
rules. Then the actually generated compiler is described by TRS rules and translates a
program in abstract syntax into an abstract machine program. These two stages have
been intertwined in the inference rules below which specify a translation of Mini-ML
programs into CAM code.

4 Despeyroux’s specification slightly differs from [19] and [5]. In the latter the CAM is specified by TRS
rules and an ML program is given, which translates Mini-ML programs to CAM code.

S. Diehl| Science of Computer Programming 38 (2000) 125-142 139

In these translation rules the state is an environment, in fact a list of variable names
and such lists are constructed as pairs (e,v), where v is a value and e an environment
again:

access(X)>E—C
var(X)D>E—C

Here access(X') computes given the environment £ the access path for the variable X
as a sequence of car and cdr instructions:

VD>E—C
AXV D> E —cur(C)

The variable name is ignored and the expression V is translated into CAM code and
used as an argument to the CAM instruction cur:

NDCE—-C VP>E—-G
(" V,)> E — push; Cy; swap; C,; cons; app

Here V; and V, are translated first and the resulting code is combined into a sequence
of instructions:
NB>(EX)—C ND>(EX)—G
letrec X =V, in V, end > E — push; quote(R’); cons; push; C;; swap; rplac; C,

Note, that R’ is an anonymous variable and, as we will see now when we present the
CAM instructions, R’ is used by rplac to create a cyclic binding.

5.5.2. Instructions of the CAM
The CAM instructions are defined in natural semantics below. In these rules the state
is a stack of environments:

car > [(4, B)|S] — [4]S] cdr > [(4,B)|S]— [B|S] push > [4]S]— [A|[4]|S]]

CD>[(E,A)|S]— S
swap > [4|[B|S]] — [B|[4]S]] cons>[4|[B|S]] — [(4,B)|S] appP>[(clo(C,E),4)|S]— S

V=R
cur(C)D> [E|S]1— [clo(C,E)|S] quote(R)>[4]S]— [R|S] rplac> [(R, V)|[R'|S]] — [(R,R")|S]

The equality of ¥ =R’ means that every occurrence of ¥ in R’ is replaced by R'.

5.5.3. Comparison

The following observation will ease the comparison of the rules for the CAM in-
structions and those for our generated abstract machine instructions. For the CAM the
state is a stack of environments, in our generated abstract machine the state has the
form [D,[R,E]], where R are redirections and D corresponds to the rest of the stack

140 S. Diehl| Science of Computer Programming 38 (2000) 125-142

Table 9
Comparison to CAM

Generated instruction CAM instruction
car car

cdr cdr

lambda(V) cur(C)

equal push?

conv_11 swap

conv_12 cons?

Tun app

conv_14 cons?

letrec push?

newind; conv_15 quote(R’); cons; push
conv_16 swap; rplac

2There is not always a one-to-one correspondence of CAM instructions and
generated instructions. For example, equal pushes only the environment on top
of the stack, whereas letrec pushes both the environment and the redirections
on top of the stack.

in the CAM and E to the top most element of the stack.® Since they have similar
effects we get the correspondence of CAM instructions and instructions of the generated
abstract machine in Table 9.

As an example, look at the definitions of lambda and cur:

(Tambda(7); C, [D,[R,E]) = (C, [D, [R, clo(E, xlambda())]])

cur(V) > [E[S]— [clo(V,E)|S]

Both instructions get the program code V' for an expression as an argument and find
the environment £ on the stack. Then they create a closure on the stack and store the
program code V' and the environment £ in that closure.

The major deviation of the generated instructions from the CAM instructions is the
additional handling of redirections. In the above cited specifications of the CAM these
are hidden in the meta-language, but when it comes to implementing the CAM in a
language like C one has to deal with this problem.

6. Designing other abstract machines
So far, we did experiments with three different languages: SIMP, Mini-ML and action

notation. The constructs of these languages include recursive functions and procedures,
higher-order functions, local and global variables, assignments, conditionals and loops.

3 A minor notational observation is, that in the generated abstract machine we use [A|¢] to construct
environments instead of (¢, /).

S. Diehl| Science of Computer Programming 38 (2000) 125-142 141

Mini-4 [29] is an imperative language with procedures and functions. It allows both
call-by-value and call-by-reference parameter passing. Furthermore functions can be
passed as parameters. In one of our experiments a benchmark program in the language
Mini-A was first translated into an action term using an action semantics specification
of Mini-A. This action term was then executed by interpreting the 2BIG rules for
action semantics or by the generated abstract machine for action semantics in C. The
abstract machine and the compiler were generated from 100 2BIG rules defining the
semantics of 39 action notation constructs including the control, functional, declarative
and imperative facet. We did not deal with the communicative facet, nondeterminsm
or the interleaving of actions.

7. Conclusions

We presented a new design methodology for abstract machines. In this methodology
our semantics-directed generator plays a central role. The generator fully automatically
generates compilers and abstract machines from semantics specifications of a source
language. The generator cannot invent new implementation tricks, so many implemen-
tation details of the generated abstract machine depend on the details which have been
explicit in the semantics specification. By inspecting the generated abstract machine
the developer detects which details should be made more explicit and then changes the
semantics accordingly. As an example of this iterative process we show the design of
an abstract machine for Mini-ML which turns out to be very similar to the categorial
abstract machine.

References

[1] P. Aczel, An introduction to inductive definitions, in: J. Barwise (Ed.), Handbook of Mathematical
Logic, North-Holland, Amsterdam, 1977.

[2] H. Ait-Kaci, Warren’s Abstract Machine — A Tutorial Reconstruction, MIT Press, Cambridge, MA,
1991.

[3] C. Boschen, C. Fecht, A.V. Hense, R. Wilhelm, An abstract machine for an object-oriented language
with top-level classes, Technical Report FB14-No. A 02/94, Computer Science Department, University
Saarbriicken, 1994.

[4] L. Cardelli, Compiling a functional language, in: Internat. Symp. on LISP and Functional Programming,
1984.

[5] G. Cousineau, P.-L. Curien, M. Mauny, The categorial abstract machine, in: Proc. FPCA’85, Lecture
Notes in Computer Science, Vol. 201, Springer, Berlin, 1985.

[6] L. Damas, R. Milner, Principal type-schemes for functional languages, in: Proc. ACM Symp. on
Principles of Programming Languages, 1982.

[7]1 J. Despeyroux, Proof of translation in natural semantics, in: Proc. Ist Symp. on Logic in Computer
Science, LICS’86, Lecture Notes in Computer Science, Vol. 213, Springer, Berlin, 1986.

[8] T. Despeyroux, Executable specification of static semantics, in: Semantics of Data Types, Lecture Notes
in Computer Science, Vol. 173, Springer, Berlin, 1984.

[9] S. Diehl, Prolog and typed feature structures: a compiler for parallel computers, Master’s Thesis,
Worcester Polytechnic Institute, Worcester, Massachusetts, 1993.

[10] S. Diehl, Semantics-directed generation of compilers and abstract machines, Ph.D. Thesis, University
Saarbriicken, Germany, 1996. http://www.cs.uni-sb.de/ diehl/phd.html.

142 S. Diehl| Science of Computer Programming 38 (2000) 125-142

[11] S. Diehl, Transformations of evolving algebras, in: Proc. 8th Internat. Conf. on Logic and Computer
Science LIRA’97, Novi Sad, Yugoslavia, 1997, pp. 43-50.

[12] S. Diehl, Natural semantics-directed generation of compilers and abstract machines, Formal Aspects of
Comput. (1999), to appear.

[13] F.Q.B. da Silva, Towards a formal framework for evaluation of operational semantics, Technical Report
ECS-LFCS-90-126, Edinburgh University, 1990.

[14] F.Q.B. da Silva, Correctness proofs of compilers and debuggers: an approach based on structural
operational semantics, Ph.D. Thesis, University of Edinburgh, 1992.

[15] J. Hannan, Operational semantics-directed compilers and machine architectures ACM TOPLAS 16 (4)
1994.

[16] J. Jaffar, P.J. Stuckey, S. Michaylov, R.H.C. Yap, An abstract machine for CLP(R), in: PLDI’92, San
Francisco, Sigplan Notices, 1992.

[17] T. Johnson, Efficient compilation of lazy evaluation. in: CC’84. Sigplan Notices 19 (6) (1984).

[18] U. Jorring, W.L. Scherlis, Compilers and staging transformations, in: Proc. Thirteenth ACM Symp. on
Principles of Programming Languages, St. Petersburg, Florida, ACM, New York, 1986, pp. 86-96.

[19] G. Kahn, Natural semantics, in: Proc. 4th Annual Symp. on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Science, Vol. 247, Springer, Berlin, 1987, pp. 22-39.

[20] P. Kursawe, How to invent a Prolog machine, in: Proc. 3rd Internat. Conf. on Logic Programming,
Lecture Notes in Computer Science, Vol. 225, Springer, Berlin, 1986, pp. 134-148.

[21] PJ. Landin, The mechanical evaluation of expressions, Comput. J. 6 (4) (1964).

[22] X. Leroy, The caml light system, release 0.6 — documentation and user’s manual, Technical Report,
INRIA, France, 1993.

[23] J.W. Lloyd, Foundations of Logic Programming, 2nd extended ed., Springer, Berlin, 1987.

[24] M. Mauny, A. Suarez, Implementing functional languages in the categorial abstract machine, in: Internat.
Conf. on LISP and Functional Programming, 1986.

[25] S. McKeever, A framework for generating compilers from natural semantics specifications, in: P.D.
Mosses (Ed.), Proc. Ist Workshop on Action Semantics, BRICS-NS-94-1. University of Aarhus,
Denmark, 1994.

[26] M. Mehl, R. Scheidhauer, C. Schulte, An abstract machine for OZ, in: M. Hermenegildo, S.D. Swierstra
(Eds.), Proc. 7th Internat. Symp., PLILP’95, Lecture Notes in Computer Science, Vol. 982, Springer,
Berlin, 1995.

[27] R. Milner, M. Tofte, R. Harper, The Definition of Standard ML, MIT Press, Cambridge, MA, 1990.

[28] H. Moura, Action notation transformations, Ph.D. Thesis, University of Glasgow, 1993.

[29] H. Moura, D.A. Watt, Action transformations in the ACTRESS compiler generator, in: CC’94, Lecture
Notes in Computer Science, Vol. 768, Springer, Berlin, 1994.

[30] A. Miick, Camel: An extension of the categorial abstract machine to compile functional logic programs,
in: PLILP’92, Lecture Notes in Computer Science, Vol. 631, Springer, Berlin, 1992.

[31] U. Nilsson, Towards a methodology for the design of abstract machines. J. Logic Programming 16 (1,2)
(1993) 163-189.

[32] St. Pemberton, M. Daniels, Pascal Implementation, The P4 Compiler, Ellis Horwood, Chichester, 1982.

[33] D.A. Schmidt, Natural-semantics-based abstract interpretation (preliminary version), in: SAS’95, 1995.

[34] Sun Microsystems, Documentation of the Java Developers Kit-version 1.0 Beta, 1995, available at
http://java.sun.com/JDK-beta/index.html.

[35] D.H.D. Warren, Implementing Prolog — compiling predicate logic programs, D.A.I Research Report No.
40, Edinburgh, 1977.

