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Abstract

Graphs are a mathematical method to model relations
between objects. The most common metaphor to visualize
graphs is the node-link technique, which typically suffers
from visual clutter caused by many edge crossings. Much
research has been done on the development of sophisticated
algorithms aimed at enhancing the layout with respect to
edge crossings and a series of other aesthetic criteria. In
this paper we propose a novel visual metaphor, called Time-
SpiderTrees, which is based on a radial layout. In our tech-
nique, relations are visually indicated by orientation in-
stead of connectedness to circumvent the problem of edge
crossings. The strength of this novel visualization technique
lies in the visual encoding of time-series relational data in a
single view without animation, which helps to preserve the
mental map and hence to reduce cognitive efforts.

1 Introduction

Node-link diagrams are the most common approach to
visually encoding relational information. They follow the
very intuitive metaphor of visual objects that are connected
by lines. Mainly because nodes or edges overlap, it be-
comes challenging to create readable layouts of larger or
denser graphs. The graph drawing community addresses
this problem by formulating aesthetic criteria to find read-
able graph layouts. Certainly, the most prominent criterion
is the number of edge crossings—minimizing these cross-
ings promises a good layout. Other criteria are, for instance,
reducing the number of edge bends or lengths of edges.
Much research has been done on developing sophisticated
layout algorithms that generate aesthetic layouts trading off
these criteria [3].

Many real world applications deal with dynamic
graphs—graphs that are changing over time. Usually, in
node-link diagrams this evolution of relational data is rep-
resented by animation. The major problem of animated vi-
sualizations, however, is the user’s effort to preserve his ab-

stract mental image of the graph, called the mental map,
from step to step of the animation. Specialized dynamic
graph layout algorithms [17, 6, 9] try to tackle the prob-
lem and reduce this cognitive effort. But they still cannot
support fast comparisons of arbitrary points in time, follow
abrupt changes, or capture trends over long periods.

Representing time on an axis, and not as an animation,
leads to a single static integrated view providing a consid-
erably enhanced overview. So far, only few works have
followed this approach: TimeArcTrees [11] implements a
straightforward adaptation of node-link diagrams to the in-
tegrated approach of representing dynamic graphs. It effec-
tively increases the overview, but at the cost of an increased
edge crossing problem. In contrast, TimeRadarTrees [5]
builds upon a matrix representation of a graph in a radial
layout. Here, the less intuitive metaphor and the multiple
representation of objects impairs the readability.

Having in mind the effective visualization of dynamic
graphs, in this paper we develop a new metaphor for
graph visualizations starting from the node-link paradigm.
We circumvent both the problem of edge crossings and
the problem of multiple representations without neglecting
overview. Our novel technique was inspired by using ori-
entation instead of connectedness to express the relation of
two objects. This leads to visualizations that often look like
spiderwebs, hence the name TimeSpiderTrees.

The rest of this paper is structured as follows. Sec-
tion 2 introduces our novel visualization technique Time-
SpiderTrees. We document the general usefulness of the
approach by visualizing real world datasets from different
domains (Section 3). A systematic qualitative compari-
son to directly related visualizations in Section 4 reveals its
main characteristics and completes the assessment. Finally,
Section 5 discusses further related work and Section 6 con-
cludes the paper.

2 The TimeSpiderTrees Visualization

In this work we are looking at relational data that is
changing over time. Each relation may have a certain
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Figure 1. TimeSpiderTrees Step by Step

strength, which, of course, could also depend on time.
An optional hierarchical structure of the considered objects
(i.e., an additional tree data structure on the nodes) helps to
reasonably group the objects. In the terminology of graph
theory, such a dataset forms a weighted dynamic compound
graph.

The hierarchy might be already given by a semantic hier-
archical organization of the objects (e.g., cities may be hier-
archical organized into regions, authors into working groups
and institutions, etc.). If there is no hierarchy given, it can
be easily created by applying a hierarchical graph clustering
algorithm.

In the following we will describe TimeSpiderTrees step
by step, starting at a conventional node-link diagram and
transforming it into a TimeSpiderTrees visualization. Each
step is illustrated in Figure 1 for a small sample graph.

Step I: Node-Link The starting point of the transforma-
tion process is a conventional node-link directed graph that
consists of five nodes. The graph contains a cycle including
nodes B, C, and E. Moreover, node A has a self-edge.

Step II: Half-Link Becker et al. [2] introduced a new vi-
sual representation of edges: Links do not have to connect
the starting node with the target node by a complete line—a
half or partly drawn line is enough. The human eye is still
able to approximately follow these half-links. We avoid vi-
sual clutter that is caused by edge crossings at the cost of
making following edges more difficult.

The approach is working, at least to some extent: In this
small example, we are still able to easily follow edges, for
example, detecting the cycle for nodes B, C, and E. Nev-
ertheless, the approach often causes ambiguous situations:
For instance, an additional node F as depicted in Figure 1 II
might be connected to node C, to node E, or even to both.
Larger graphs would intensify this problem.

Since partly drawn circular self-links look strange, we
think that using the fill color of the respective node to rep-
resent self-edges instead is more readable.

Step III: Radial Placing the nodes on a circle and spacing
them evenly is often a good starting point to lay out general
node-link diagrams. It is especially well suited when us-
ing half-links because links cannot overlap nodes, and thus,
the target node can be unambiguously identified by the ori-
entation of the link. If we guarantee that each link does
not exceed an imaginary area that exclusively belongs to its
source node like a Voronoi region, we can even avoid all
edge crossings—Figure 1 III shows the modified version of
our running example. We can check the resolved ambigu-
ity: The link starting at node F points to node C, but not to
node E.

Step IV: Dynamic It is questionable—however not to-
tally unrealistic—whether the approach as presented so far
has general advantages over conventional node-link dia-
grams for static graphs. But we argue that the major
strength of the idea lies in the representation of dynamic
graphs—relational data that changes over time.

As already discussed, animating node-link diagrams pro-
vides unsatisfying results with respect to effectively ana-
lyzing heavy changes and trends, mainly caused by a high
cognitive effort and a lack of overview. In contrast, the pro-
posed metaphor of half-links does not require animation. It
already leaves a blank area at the circle center which can be
recursively filled with subsequent graphs (Figure 1 IV).

Step V: Hierarchical The difference between a graph
and a compound graph is an additional hierarchy on the
nodes. The main advantage of adding such a hierarchy is,
on the one hand, that the hierarchy induces a meaningful or-
der on the circularly laid out nodes and, on the other hand,
that it allows the observer to easily focus on certain parts of
the graph by interactively collapsing parts of the hierarchy.
It thus promises to improve the readability as well as the



Figure 2. A Dynamic Co-Author Graph (focused on author PW ).

scalability of the visualization. If no hierarchy is available,
a hierarchical clustering algorithm is able to generate one
automatically.

To represent the hierarchical information, we prefer a ra-
dial layered icicle plot [20, 21] that encloses the radial dia-
gram. It neither disturbs the graph representation nor con-
sumes much space. Finally, Figure 1 V sketches the repre-
sentation that we call TimeSpiderTrees.

Interaction We implemented a prototype of the TimeSpi-
derTrees approach. Our first experiences using this proto-
type revealed a deficiency of the approach: It is often hard to
determine to which target an edge is pointing. To overcome
this problem, we introduce some interaction techniques.

In our prototype implementation, focusing on a node in
a particular graph, the associated outgoing edges will be
completely drawn: A full link again connects the nodes.
Colored border lines of the target nodes support the visual
perception of these links. This crucial feature is activated
just by moving the mouse over a node. Moreover, we also
allow a node to be highlighted in all graphs. Outgoing links
will be drawn completely in every graph like concurrently
focusing the node over the time axis (Figure 2). This im-

proves the observation of changes in time with respect to
the selected node.

These two focusing techniques address the outgoing
edges of a node. But the incoming edges are often inter-
esting as well. Pressing the Ctrl button on the keyboard
switches the focusing mode from outgoing to incoming
edges: Edges that target at the focused node will be com-
pleted now.

3 Applications

In the following sections we show the usefulness of our
TimeSpiderTrees visualization technique by applying it to
example datasets from two different real world applications.
In these applications TimeSpiderTrees enabled us to detect,
for instance, trends and periodic events, outliers—with re-
spect to nodes, edges, or even entire graphs—and dense
clusters.

3.1 Bibliometrics: Co-Author Graphs

Bibliometrics explore and benchmark fields of research.
In the application at hand, we look at co-author graphs,



Figure 3. International Soccer Results of South America and Central Europe (1992 to 2005)

which could provide information on, for example, relations
between authors, working groups, author roles, or publica-
tion quantities. A co-author graph consists of author nodes,
which are related by joint publications. We aggregate the
publications of a year to one graph and relate two authors
A and B with extent n if they published n joint works in
the respective year. We use colors to encode these edge
weights.

In particular, our example presents a real world co-author
graph of a single author extracted from DBLP, a biblio-
graphic database on major computer science journals and
proceedings. We use abbreviated author names to simplify
the example. Figure 2 shows the co-author graph for PW in
the years 2004 (inner circle) until 2008 (outer circle). The
hierarchy subdivides the authors into working groups and,
for the working group of PW, further into roles.

PW published together with six other members of his
working group and eight researchers from five different
other working groups. While he frequently collaborated
with the members of his own group in different combi-
nations, the collaboration with six of the eight other re-
searchers is limited to a single publication—a contribution
to a seminar proceedings in 2006. With exception of this
publication, the other working groups do not further pub-
lish together. The connection between the group of PW and
the group of TZ and AZ seems to be a bit stronger because
they cooperated twice and with fewer participants.

The visualization also hints at the different roles of the
authors. The total numbers of publications, modeled as the
strengths of the self-edges and thus encoded by the node
colors, suggest that RK, MG, TZ, AZ, and SD play leading



roles and might be the heads of the working groups. In
contrast, DN and LK each just published once.

3.2 Sports Visualization: Soccer Results

As the second application, we chose soccer results, an
example from the area of sports visualization. Figure 3 vi-
sualizes the goals scored in international matches from 1992
to 2005 restricted to South America and Central Europe:
Each graph represents the results of a year, and within each
graph, each relation from a national team A to a national
team B sums up all goals scored by A against B in the re-
spective year. Accordingly, the relation only exists if the
two teams played against each other in this year. The visu-
alization provides an overview of 21 teams over 14 years,
which amounts to 1300 individual relations.

Perhaps most obvious is the significantly different den-
sity of the two clusters of the graph, the South Ameri-
can teams and the European teams. The South American
sub-graph—with exception of the small states of Suriname
and French Guiana—is very dense while the European sub-
graph is relatively sparse. The small number of states in
South America in relation to the large number of states in
Europe explains why the same South American teams have
to play against each other more frequently.

We are able to detect temporal patterns like the peri-
odic density gap in the South American sub-graph every
four years—the years of the World Cup where few intra-
continental matches take place.

High numbers of goals, indicated by dark colors, high-
light good teams: In South America, Brazil and Argentina
are the leading teams while in Central Europe Germany and
the Czech Republic perform well. Analyzing trends with re-
spect to these high scores, for instance, Austria seems to be
quite successful in the nineties and declines since the year
2000. A glance at the official world ranking confirms this
descent.

Searching for anomalies, for example, we find the high-
est sum of goals in a relation from Germany to Liechten-
stein (a friendly game in 1996, which Germany won 9:1).
Another outlier is Venezuela, which never played against a
Central European team in the time period shown. Interac-
tively focusing this node over all graphs validates this ob-
servation.

4 Aesthetic Dimensions Analysis

Beck et al. [1] propose a set of aesthetic dimensions
for dynamic graph visualizations. The aesthetic dimen-
sions provide a framework to systematically compare the
readability of TimeSpiderTrees to related visualizations in a
qualitative assessment. This evaluation, however, depends
on the subjective ratings of the authors.

Apart from animated node-link diagrams, the number of
different approaches to visualizing dynamic graphs is small.
The following list gives a brief overview of dynamic graph
visualization approaches. Figure 4 shows the co-author
dataset from Figure 2 in each of three visualizations. These
techniques provide a reference to examine the strengths and
weaknesses of the presented TimeSpiderTrees visualization
approach.

Animated Node-Link (ANL) An animated dynamic
graph visualization based on a node-link representation
(Figure 4 (top), [17, 6, 9]).

Animated node-link diagrams are the straightforward so-
lution to represent dynamic graphs. State-of-the-art visual-
izations do not only optimize the layout of a single graph,
but consider the whole sequence of graphs. For Figure 4
(top) we used a foresighted algorithm [6] based on a force-
directed layout.

TimeRadarTrees (TRT) An integrated dynamic graph
visualization based on a combined matrix-list representa-
tion (Figure 4 (left), [5]).

TimeRadarTrees uses a radial layout where nodes are
represented by circle sectors of the inner circle. The rep-
resentation depicts each graph from the sequence of graphs
as a ring of the inner circle. Incoming edges are colored
sectors in the inner circle. Outgoing edges are colored sec-
tors in the outer circles in the same context as the associated
incoming edge.

TimeArcTrees (TAT) An integrated dynamic graph vi-
sualization based on a node-link representation (Figure 4
(right), [11]).

TimeArcTrees draws a sequence of node-link diagrams
from left to right such that each node is placed in a particular
row.

The following paragraphs discuss TimeSpiderTrees
(TST) in the terminology of the proposed aesthetic dimen-
sions. Abbreviations in brackets reference the particular di-
mension in the original framework [1]: General Aesthetic
Criteria (GAC), Dynamic Aesthetic Criteria (DAC), and
Scalability Criteria (SC). Figure 5 lists all aesthetic dimen-
sions and summarizes the results in a parallel coordinates
plot.

4.1 Static Aspects

Neither the visual representations of edges nor of nodes
overlap each other in TimeSpiderTrees. In contrast,
overlapping edges (edge crossings) produce visual clut-
ter (GAC1) in usual node-link representations. Following
edges in TimeSpiderTrees is difficult: The target node could
be mistaken for another (spatial alias: GAC2) because the



Figure 4. Co-Author Graph of PW (compare to Figure 2) as an Animated Node-Link Diagram (top),
TimeRadarTrees (left), and TimeArcTrees (right).

edge representation just shows the direction but does not di-
rectly connect the nodes. Interaction techniques, however,
alleviate the problem. TimeRadarTrees shows similar char-
acteristics for these two criteria, visual clutter and spatial
aliases, but additionally needs multiple visual representa-
tions of edges (GAC3). In TimeSpiderTrees as well as in
every node-link approach, only one visual element repre-
sents each edge. Moreover, TimeSpiderTrees uses the avail-
able screen space very efficiently like TimeRadarTrees—it
is compact (GAC4).

4.2 Dynamic Aspects

The user is only able to follow changes in an animated
graph representation when his abstract mental representa-
tion (mental map) of the graph is preserved (DAC1). In
visualizations that show the whole time span in a single in-
tegrated image like TimeSpiderTrees, TimeRadarTrees, and
TimeArcTrees, a mental map is implicitly preserved by the
static node layout. Also the cognitive load comparing sub-
sequent graphs (DAC2) is lower in these integrated visu-
alizations because the user does not have to remember in-
formation about longer time spans. Furthermore, the risk
of mistaking one element for the other in different graphs
(temporal alias: DAC3) is lower. While these negative ef-
fects for animated graphs are most significant for heavily

changing graphs (as you can observe in Figure 4 (top)), they
are much less grave for slowly evolving graphs.

4.3 Scalability

Similar to TimeRadarTrees, in TimeSpiderTrees the
scalability in number of nodes (SC1) is limited by the circle
circumference. Even less space for each node is available
in TimeArcTrees while animated node-link diagrams pro-
vide a much better scalability in number of nodes. Never-
theless, the density of the graph (scalability in number of
edges: SC2) is no problem for TimeSpiderTrees (compare
to Figure 3) because similar to a graph adjacency matrix,
space is reserved for each potential edge, regardless if it ex-
ists or not.

Although, in theory, animated node-link diagrams are
able to show an unlimited number of graphs, when tak-
ing readability into account, the scalability in number of
graphs (SC3) is better for an integrated visualization like
TimeSpiderTrees. It is almost impossible to compare non-
subsequent graphs in an animation. In contrast, an inte-
grated representation allows arbitrary graphs to be com-
pared without having to memorize much information.

All the visualizations considered have to struggle with
scalability problems. While the number of nodes is most



Figure 5. Analysis Summary

crucial for TimeSpiderTrees, animated node-links have
problems with dense graphs and overview in time.

4.4 Hierarchy

An additional hierarchy that groups the nodes of the dy-
namic graph helps to semantically arrange the graphs. In
TimeSpiderTrees the hierarchy induces a linear ordering of
the nodes: Grouped nodes are placed next to each other. We
can easily check if these neighboring nodes show similar
characteristics in the dynamic graph. Moreover, the hierar-
chy provides a natural backbone to explore the graphs on
different levels of detail. Interactively expanding and col-
lapsing the hierarchy largely improves the scalability as the
number of nodes increases.

In TimeSpiderTrees, changes in the hierarchy are sim-
ulated by copying the nodes to their new positions. Thus,
TimeSpiderTrees can only cope with small changes in the
hierarchy. An animation is more flexible: nested boxes
usually represent the hierarchical structure (e.g., [4, 18]).
Changing parts of the hierarchies can be treated like chang-
ing parts of the graphs.

4.5 Summary

In contrast to animated node-link diagrams, we con-
sider TimeSpiderTrees appropriate for analyzing signifi-
cantly changing dynamic graphs, providing an overview on
the whole dataset, exploring dense dynamic graphs, and
identifying temporal patterns and trends in dynamic graphs.
Consequently, we rate TimeSpiderTrees to be less suitable
for analyzing slowly evolving dynamic graphs, visualizing
significant changes in the hierarchy, and exploring single
graphs of the sequence in detail.

5 Related Work

In addition to related work with respect to dynamic
graphs, we look at some of the work related to visual clutter
in graphs and the visualization of compound graphs. For
details on other radial visualization techniques, especially
ring-based ones, we refer to a recent survey by Draper et
al. [7].

5.1 Visual Clutter in Graphs

Graphs are widely used to model relations among ob-
jects. A widespread visual metaphor is the representation
of this relational data as node-link diagrams. To reduce vi-
sual clutter that is caused by many edge crossings, many so-
phisticated graph-drawing algorithms have been developed
with respect to a set of aesthetic criteria. Some of those
criteria cannot be fulfilled simultaneously because of trade-
offs. For example, it is not possible in general to reduce the
number of edge crossings and to reduce the length of edges.

Drawing half-links—the approach that we use to re-
duce the visual clutter—was already proposed by Becker et
al. [2] and implemented in their SeeNet tool. Among other
techniques like focusing, filtering, and highlighting, they
use this approach to effectively visualize time-dependent
geospatial relational data in an animated node-link diagram.
The fixed node positions given by their geographical posi-
tions, on the one hand, circumvent the problem of finding
a good node layout, but on the other hand, lead to largely
ambiguous half-link representations of edges.

Another means for reducing visual clutter in node-link
diagrams was introduced by Holten and van Wijk [12, 13].
The authors developed a force-directed edge bundling ap-
proach for graphs. Recently, Jianu et al. [14] alleviate edge
crossings by coloring crossing edges in colors which are as
different as possible. For radial graph layouts, Gansner and
Koren [10] present different techniques to reduce the num-
ber of edge crossings. Their algorithm based on edge-length
minimization could be also integrated into TimeSpiderTrees
if we did not apply a hierarchy.

To totally circumvent the edge crossing problem, ma-
trix representations of graphs might be a solution. Keller
et al. [15] point out that matrices have many benefits over
traditional node-link diagrams when visualizing very dense
graphs and that visual clutter is reduced to a minimum.
Nevertheless, a matrix-based representation is problematic
when it comes to visualizing sequences of graphs in a single
view.

5.2 Compound Graph Visualization

Georg Sander [19] developed a method to automatically
lay out compound graphs. In this approach the hierarchy



is expressed by nested boxes and the relations by links
that point between these boxes. Fekete et al. [8] intro-
duced a similar approach and overlaid curved graph links
on treemaps. The ArcTrees [16] technique uses a one-
dimensional treemap and represents links as arcs that are
drawn above the treemap view and differ in height with re-
spect to their inter-hierarchical relation. But also the hier-
archical edge bundling approach by Holten [12], discussed
previously, visualizes compound graphs. The approach is
very helpful to explore the overall structure of the com-
pound graph. Following a single edge from the start to the
target node, however, is difficult. Interactive features are
absolutely necessary to solve path-related tasks.

6 Conclusion

We presented TimeSpiderTrees, a novel visual metaphor
for dynamic weighted compound graphs. The visualiza-
tion is based on a radial node-link approach, but indicates
edges by directed, partly drawn lines instead of complete
links between the nodes. This totally avoids edge cross-
ings, handles dense graphs efficiently, and allows the en-
tire sequence of graphs to be drawn in a single integrated
diagram—interaction techniques allow particular edges to
be followed. Our case study shows that TimeSpiderTrees is
a suitable visualization for analyzing dynamic graphs. Fur-
thermore, the aesthetic dimension analysis especially pro-
poses to use TimeSpiderTrees to analyze heavily changing
graphs, dense graphs, as well as temporal trends and pat-
terns.
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