
Get Your Directories Right: From Hierarchy
Visualization to Hierarchy Manipulation

Rainer Lutz∗, Daniel Rausch∗, Fabian Beck‡, and Stephan Diehl∗
∗Department of Computer Science, University of Trier, Germany

‡VISUS, University of Stuttgart, Germany
Email: {lutzr, s4daraus, diehl}@uni-trier.de, fabian.beck@visus.uni-stuttgart.de

Abstract—Visual comparison of hierarchies such as directory
structures is often considered a passive analysis task. Thus,
insights gained from the visualization need to be recorded and
applied afterwards. In contrast in this paper, we propose and
explore an active visual analytics approach focusing on the manip-
ulation of directory structures in the context of comparison. Two
directories including subdirectories and files are presented side by
side while links between the two representations connect matching
files. Embedded into an elaborate interaction concept, drag-and-
drop operations allow the users for interactively modifying the
directories. We explored different application scenarios of the
approach in a qualitative user study.

I. INTRODUCTION

Probably the most common form of manipulating a hi-
erarchical structure—applied daily by millions of computer
users—is moving files and directories in a file explorer. In
Microsoft Windows, for example, the user navigates to a direc-
tory either by using the directory tree on the left or by clicking
through a list of directories in the main panel, to finally select
a number of files and/or directories that should be moved.
Moving can be done either by drag and drop—provided that
the target directory is visible somewhere on screen—or by
copy and paste. User interfaces of other operating systems
look slightly different, but the process is similar. However,
when handling larger directory trees and in particular when
comparing or merging different directories, these directory rep-
resentations show some limitations: First, only a local subset of
the directory and file structure is shown—overview is lacking.
Second, comparing two directories is not directly supported;
the users have to manually arrange two windows side by side.
Third, since only a subset of the directory structure is depicted
on screen, editing by drag-and-drop operations is often not
possible; copy-and-paste operations need to be applied instead.

The goal of the approach presented in this paper is to
overcome those limitations of file browsers enabling the com-
parison and merging of multiple directories. While we do
not intend to develop a better general-purpose file browser,
we introduce a special-purpose approach focusing on the
application scenario of comparing directory structures. We
show similarities and differences of two hierarchical directory
trees in a scalable visualization. In contrast to existing visual
hierarchy comparison techniques, our approach also allows
for manipulating the hierarchies. The interaction concept
implementing those manipulations uses elaborate drag-and-
drop operations for ordering, moving, copying, and merging
hierarchy nodes. The approach supports the users in getting
their directories right.

II. RELATED WORK

Our approach combines an existing visual hierarchy com-
parison technique with a novel interaction concept based on
drag-and-drop operations. Hence, approaches that either com-
pare or manipulate hierarchical structures are related. Since
hierarchies can be considered as special forms of graphs,
interactive graph comparison is also relevant in this context.

Visual Hierarchy Comparison: For comparing two hier-
archies, Graham and Kennedy [1] identified in their survey
on visualizing multiple hierarchies the following paradigms:
edge drawing, where two hierarchies are juxtaposed and con-
nected by links, coloring, where connections are visualized
using colors, animation, where one hierarchy is smoothly
transformed into another, matrix representation, where links
between hierarchies are encoded as an adjacency matrix, and
agglomeration, where two hierarchies are merged into one
representation. We chose an edge drawing approach because
it is easy to understand, it explicitly encodes the connections
of the two hierarchies, and it is flexible as it works for small
changes between the hierarchies as well as for larger ones.
While a number of examples for an approach like this can be
found in literature [2], [3], [4], [5], our approach is visually
similar to the one by Holten and van Wijk [2]: we also use
two vertical icicle plots for depicting the two hierarchies in
a visually scalable way. In contrast to them, however, we do
not apply edge bundling because we try to avoid obfuscating
detail information (in particular, the exact source and target
of the connections) and keep the approach simple to interpret
(edge bundling might confuse unexperienced users).

Hierarchy Manipulation: Unlike the visual comparison of
hierarchies, the interactive editing of hierarchies has not yet
gained much scientific attention. Often, only navigation and
adapting the visualization are discussed as interactive features.
An example is the interactive comparison of hierarchies on a
touch table discussed by Isenberg and Carpendale [6]. A few
approaches, however, also cover the manipulation of the under-
lying hierarchical data. For instance, Beck et al. [7] introduce
a tool for interactively transforming the hierarchical structure
of software projects. Also for InterRing [8], drag-and-drop
hierarchy manipulation operations are described for a single
hierarchy. Craig and Kennedy [3] focus on editing relationships
between two hierarchical classifications. However, we are not
aware of any approach that allows to concurrently edit the
hierarchies themselves in the context of hierarchy comparison,
for instance, in order to merge the two hierarchies.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

http://dx.doi.org/10.1109/VLHCC.2014.6883017 VL/HCC 2014

Fig. 1. Comparison of two music collections; favorites directories are selected, directory Adele is hovered in the left hierarchy.

Interactive Graph Comparison: Different approaches
have been proposed for interactively comparing graphs. As
well as for comparing hierarchies, most works, however, only
focus on interactively displaying similarities and differences,
for instance, by overlaying two graphs [9] or by animated
transitions [10]. Indeed enabling edit operations, Dadgari and
Stuerzlinger [11] suggest a layer-based approach that allows
the users to produce a merged result. To this end, nodes
from one of the graphs may be accepted or rejected as well
as general graph-based modifications can be made. Recently,
Koop et al. [12] presented an approach that is able to compare
a set of graphs and compute a so called summary graph.
Therefore, similar nodes are merged virtually such that users
can inspected a combination of all graphs while it is still
possible to interactively separate them from each other. Al-
though being applicable in theory, none of these graph-based
approaches seem to be very suitable for merging hierarchies:
the visualization does not scale to hundreds of nodes and
interactions focus on finding equivalent nodes, not on editing
containment relations between the nodes.

III. INTERACTIVE HIERARCHY MANIPULATION

Our approach applies a visual hierarchy comparison tech-
nique to file systems and extends it for interactively manipu-
lating two directory trees. In particular, the interaction concept
supports the following operations:

• to select and compare files and directories from the two
directory trees,

• to reorder the contents of a directory,
• to move or copy files and subdirectories from one direc-

tory to another,
• to merge the contents of directories, and
• to insert, delete, and rename files and directories.

These operations are realized by simple mouse gestures,
mostly based on drag and drop. Since the approach works
with a semantic zooming technique and does not require any
scrolling, source and target of the drag-and-drop operations are

always visible. The combination of visual hierarchy compari-
son and interactive manipulation supports usage scenarios such
as merging or splitting two directory trees and subdividing or
restructuring a single one. Although our approach is special-
ized for the comparison of directories, most of the proposed
concepts can be generalized for arbitrary hierarchies.

Our implementation of the approach shown in Fig-
ure 1 is named Directory Comparison and Manipulation
Tool (DCMT); we plan to make the tool publicly available
at http://www.st.uni-trier.de/dcmt/. Similar to
textual diff tools, which are typically not used for editing a
single file, DCMT was not developed as an alternative for
common file browsers. Instead, it is intended to complement
them as soon as users want to compare parts of their file
system. To this end, DCMT allows to open two directory trees.
An interactive visualization acts as a sandbox environment
where changes can be made without being directly applied to
the file system. In this sensitive setting, the sandbox prevents
accidental changes and improves the performance of the tool
(e.g., costly copy operations do not need to be executed
immediately). Instead, changes are only realized at the end
of the manipulation process on copies of the files.

A directory structure forms a tree, which is also denoted as
a hierarchy in the context of visualization. The main directory
is the root node of the tree, subdirectories are the inner nodes,
and files form the leaf nodes—we use these pairs of terms
interchangeable throughout the paper. For the comparison of
directories, it is important to identify equivalent files in two
directory structures. While many definitions of equivalence can
be applied, we implemented three modes: equivalence based
on file names, the size of the files and both, file names and
sizes. Please note that a file can have multiple complements
in the other hierarchy.

A. Visual Hierarchy Comparison

As shown in Figure 1, our approach displays two hierar-
chies that are facing each other with their leaf nodes pointing to
the center of the visualization. Both hierarchies are represented

as icicle plots, this is, all nodes are drawn as light gray
boxes and a complete hierarchy fills a certain rectangular
area. The space in between the icicle plots is used to connect
equivalent leaf nodes with lines (referred to as comparison
edges) such that users are able to recall which files occur in
both hierarchies. Figure 1 depicts a small music collection that
was loaded into our tool in order to compare both the directory
structure and the contained files.

The visualization efficiently uses the available screen space
and shows both hierarchies independently from each other.
Displaying them vertically on a landscape format screen allows
a horizontal labeling of leaf nodes. The comparison edges
enable users to compare the leaf nodes directly. However,
the more similarities between both hierarchies exist, the more
comparison edges have to be drawn to connect the equivalent
leaf nodes. This may lead to a large number of edge crossings
which makes it hard to follow certain lines. Considering
this, our tool reduces the number of edge crossings using a
barycenter approach as proposed by Holten and van Wijk [2].

B. Interaction Concept

Our main contribution is not the visualization itself, but
rather the features that allow users to manipulate, combine, or
split directory trees interactively. In particular, we developed
an interaction concept that is based on interactions in common
file browsers: it does not overwhelm users with new interaction
techniques, but reuses familiar concepts such as drag and drop
and extends them towards the new scenario of comparing
directory trees. At any time files can be opened with their
standard application by using a double click.

1) Selecting and Comparing Nodes: The selection of nodes
provides details on demand as well as it is a first step towards
manipulating the hierarchies. Similar to file browsers, we allow
users to select or deselect a single node with a left click and
multiple entities by holding the Ctrl key while clicking. Thus,
the users are free to select any combination of nodes. When
a parent directory of an already selected node is clicked, the
directory selection replaces the selection of its child nodes,
and vice versa. With increasing size of the directory trees, in
particular leaf nodes become too small to be clickable. Hence,
we need zooming. But we do not want to apply global zooming
because sources and targets of comparison edges should be on
screen at any time, as well as sources and targets for drag-
and-drop operations. Instead, we use local semantic zooming:
hovering over a node and using the mouse wheel, its height
(together with the heights of its descendants) is increased
or decreased; surrounding elements are scaled accordingly
without being displaced from screen. By clicking with the
mouse wheel, users reset the node to the initial height. Labels
and icons are shown if enough space is available.

Fostering the comparison of directory trees, users may
select nodes in each hierarchy independently form each other.
As depicted in Figure 1, selected nodes in the left hierarchy are
colored blue, while those in the right one have a green color.
Moreover, the edges that originate from a selected leaf node are
highlighted either blue or green depending on which entities
were marked, or cyan if both nodes were selected. In Figure 1,
the cyan edges quickly reveal that the two selections share
four files. The two panels on the right side of the visualization

provide further details on the selected nodes, the upper panel
with a blue bar for the left hierarchy, the lower panel with a
green bar for the right one. When a single leaf node is selected,
its path, file size, timestamps, and a preview image or icon are
displayed. If multiple nodes are selected like in Figure 1, the
number and sizes of marked directories and files is shown as
well as an aggregated list of the files by file type.

The selection of nodes helps us further improve the com-
parison of the two directory trees. Until now, comparing leaf
nodes may only be done by following the edges in between the
hierarchies. However, inner nodes cannot be compared directly
by using these lines. Hence, we also encoded similarities in
the hierarchies themselves (referred to as similarity shading).
In particular, we shade each node of one hierarchy according
to its similarity for the selected nodes of the other hierarchy:
the higher the similarity, the darker the color. To this end, for
each node of the hierarchy, we compute the percentage of its
leaf nodes also selected in the other hierarchy. Hence, if a
node contains a set of leaf nodes A and a set of leaf nodes
B is selected in the other hierarchy, then |A∩B|/|A| is the
similarity value encoded in the node. For instance, in Figure 1
the inner node favorites is selected in the right hierarchy, and
as a consequence also all of its children. Hence, on the left
side all nodes that are equivalent or contain an equivalent node
are shaded in gray. For example, the inner node Adele shares
eight out of twelve files with the selected favorites directory on
the right side, which can be seen by a dark gray shading. By
hovering over a node its exact similarity value is shown in the
top bar (here: 66.67%). Since single nodes are either included
in the selection or not, leaf nodes are either dark (similarity
value 1) or bright (similarity value 0), but nothing in between.

2) Hierarchy Manipulation: As a natural and direct way
of interacting with visual elements, drag-and-drop operations
form the basis of manipulating the hierarchies. To avoid a steep
learning curve, we designed these interactions in accordance
with common file browsers and in conformance with the users’
expectations. Pressing the left mouse button on a node, holding
the button, moving the mouse to a different location, and
releasing the button forms a drag-and-drop manipulation of
the clicked node. If the node is part of a larger selection, the
operation refers to all selected nodes. During dragging, we
display visual cues in form of red markers as well as icons
attached to the mouse pointer indicating what happens if the
mouse is released at the current position. Depending on the
position, we map the interaction to one of the following six
operations, which are illustrated in Figure 2.

Reorder: Maybe the least invasive hierarchy manipu-
lation operation is reordering the nodes belonging to a

directory: a node is dropped between two nodes within its
original directory. This works for single directories or files as
well as for several ones belonging to the same directory. While
a different order does not make a difference for the file system,
it can help grouping similar elements and better see differences
between the two hierarchies.

Move: If the mouse is released between two nodes of a
directory that is different from the source directory, the

user performs a move operation of the selected nodes to this
directory. Like for reordering, also the exact position in the
directory is considered. Selected nodes can be directories and

0

1

2

3

0

1

2

3

Reorder
0

1

3
4
5

2

0
3
4

5
2

1

Move

0

1

2

3

0
1

2

3

Append

0

1

2

3 4
5

4

0
1

2

5

Merge

a
b

c +
0

1

2

3

a

b

c

30

1

2

3

Copy

0

1

2

3

0

1

2

3

Cancel

Fig. 2. Drag-and-drop operations for hierarchy manipulation (top) and the resulting changes to the hierarchies (bottom). Red cues mark the drop target.

files from the same or different source directories; their relative
order after the move is the same as it was before.

Append: Dropping the selected nodes at the inner end
of an inner node (i.e., the side closer to the center of the

visualization) means appending the selection to this directory.
An append operation is equivalent to a move operation to the
top position of a directory and, hence, has the same cursor
icon. It is specifically necessary for dropping elements into
empty directories (cf. Figure 2).

Merge: A merge operation is executed when directories
are dragged to the center of another directory—the

selected directories are resolved and integrated into the target
directory. If files are selected as well, these are just appended
to the target directory.

+
Copy: When moving nodes from one hierarchy to the
other, the above move, append, and merge operations

are possible. In contrast, files and directories are not removed
from their original location as it is done for operations within
the same hierarchy, but copies of them are inserted into the
other hierarchy.

Cancel: Any drag-and-drop operation may be canceled
by releasing the mouse button when the cursor is posi-

tioned in the area between the two icicle plots.

Like in the file system, node names within a directory
need to be unique. Hence, it is not possible to move or
copy nodes to a directory containing already nodes with the
same name—the operation is canceled showing a warning.
In addition to these drag-and-drop operations, a few other
manipulation operations that cannot be easily mapped to mouse
movements are available through a context menu: users may
rename or remove nodes, create empty directories, and sort
nodes automatically. All operations can be undone (and redone,
respectively) for the two hierarchies independently by using the
buttons above each hierarchy (cf. Fig. 1).

C. Example

To illustrate the use of DCMT, we describe how a hypothet-
ical user of the tool, let us call him Benny, applies the tool to
organize his digital music files. He has two small, but partly
overlapping music collections—a local library containing all
albums on his computer and the songs he likes to have on his
smartphone. However, both collections contain songs that are
denoted as favorites which Benny would like to organize. In
particular, his goal is to compare and restructure the collections
with the intention to sort his favorite songs by artist. To this
end, he opens both datasets with our tool as depicted in Fig. 1.

As a first step, he inspects the visualized data, decides
to keep the left collection, and sort the files on the right

side. Also, he identifies and selects three directories named
favorites—two in the left and a single one in the right hierarchy
(cf. Fig. 1). By selecting these directories the visualization
shows different information. For instance, the similarity shad-
ing on the right side as well as the blue and cyan comparison
edges tell Benny which files in the right hierarchy match
the selected blue favorites of the left one. There, he quickly
identifies an outlier: The second blue favorites directory of
the left hierarchy contains three files. Two of them (Re-
Hash, Starshine) are connected to equivalent files in the green
favorites folder of the right directory structure. The match of
the file Clint Eastwood is not located in the green favorites
folder but rather in a directory called other stuff. Moreover, as
the favorites directory of the right hierarchy is also selected, he
can directly see which files are matched with the second blue
favorites folder on the left side by inspecting its similarity
shading and the cyan comparison edges. Thus, while four
songs are already included in the green favorites directory,
Benny moves the fifth one (Clint Eastwood) from other stuff
to favorites (cf. Fig. 3, 1).

Vice versa, the similarity shading of the left hierarchy
as well as the green and cyan comparison edges provide an
overview of which songs are already included in the green
favorites directory on the right side. As the songs in the left
hierarchy are ordered by artist, Benny is able to structure the
green favorites directory. To this end, he adds two additional
subdirectories and names them Gorillaz and Adele. Then, he
moves all songs to the newly created folders according to
their position in the left hierarchy. Therefore, he may select
the particular artist directory in the left hierarchy such that
equivalent songs are shaded gray on the right side and thus
can be easily selected and moved (cf. Fig.3, 2). This done,
he sorts the green favorites directory alphabetically.

Next, he identifies a single outlier in the upper blue fa-
vorites directory on the left side. The song Chasing Pavements
is not shaded and, moreover, it has no connection to the right
side which indicates that it is currently neither a part of the
favorites directory nor of the right hierarchy at all. Hence, he
copies that song from the left side to the according subfolder of
the green favorites directory (cf. Fig. 3, 3). Now that the right
hierarchy contains all favorite songs, the favorites directories
on the left side may be merged with their parents in order to
create a well-organized music collection. (cf. Fig. 3, 4).

IV. EVALUATION

Our study was designed as a qualitative, exploratory as-
sessment with a specific focus on testing realistic use cases.
We investigated in which way the participants use our tool to
compare and reorganize two hierarchies. Thereby, we assessed

+

1 2

3

4

Fig. 3. Process of restructuring two music collections.

the usability of the tool, identified problems, and potential
opportunities for improvement. Further goals of the study were
to find interesting usage scenarios and strategies as well as to
contrast our approach to common files browsers.

A. Experimental Design

The study consists of two parts: first, the participants
were asked to optimize the directory structure of a software
system, which is contrasted to a directory structure as proposed
by a clustering algorithm; second, the users were free to
choose a data set and task that they thought are suitable for
our tool. In both parts, participants could freely explore the
visualized data using all features of our tool; we imposed
neither time constraints nor usage strategies. We captured the
screen activities along with the participant’s voice such that
we were able to explore particular phenomena later on. Two
graduate students and two academic researchers took part in
our study. On average a single participant spent nearly two
hours for the entire session—details are shown in Fig. 4.

At the beginning of each session, we briefly explained
the user interface of our tool, provided a short video tutorial
that introduces the features of DCMT, and answered further
questions from our participants. Then, the two main parts
followed, giving the participants the instructions below:

Part 1: Try to optimize the package structure of the given
software project.

We used the JFtp project as a data set, which is a sim-
ple FTP client written in Java consisting of 78 classes and
interfaces. To the left side of DCMT, we loaded the package
structure of the project (the classes and interfaces organized
in directories as done by the original developers), and to
the right side a directory structure automatically created by
clustering the classes and interfaces of the system (cf. Fig. 5;
the clustering is based on structural dependencies as described
in previous work [13]). All participants were free to reorganize
the package structure in order to produce a result that they
found to be an optimized solution. Since the initial package
structure of JFtp was quite coarse-grained, all participants were
able to further improve it. However, there does not exist an

optimal solution for the problem. After Part 1, the participants
were asked to propose a dataset that they wanted to investigate
and reorganize with DCMT. The task description read as
follows:

Part 2: Please propose a dataset and a task that you think
you can use our tool for in this experiment. Please only
consider your own data and a manageable task.

In order to find the reasonable dataset, a longer preparation
step was required where the participants browsed their data and
discussed several possible tasks with us. The chosen datasets
were much larger than the JFtp example and contained up to
200 directories and 4500 files. Some participants preferred to
have different source and target hierarchies, for instance, an
empty directory or an already ordered music collection on one
side and the elements to be sorted on the opposite side. Other
participants opened the same dataset twice in order to compare
the elements within the same hierarchy and detect duplicates.

After the participants finished Part 2 with DCMT, we asked
them to demonstrate how they would solve the same problem
with the file explorer of Windows 7. Finally, all participants
answered a post-study questionnaire where they assessed the
usability of DCMT, reported interesting discoveries in the
datasets, and compared our prototype to the Windows Explorer.

B. Results

Analyzing the results, we investigated the screen captures
along with the audio recordings and transcribed important
activities and statements to text files. This allowed us to
identify interaction strategies, to compare our tool with a
common file explorer, and to collect ideas for enhancement.

1) Interaction Strategies: Inspired by the categorization for
comparing and merging graph-based models that we identified
in previous work [14], we grouped the interaction strategies
of the participants into four top level categories: overview,
navigation, comparison, and manipulation. In particular, we
followed a lightweight approach using parts of Grounded The-
ory methodology [15] including open coding. As the personal
datasets were much larger than the JFtp example, overview
(especially zooming) and navigation strategies played a more

Fig. 4. Time spent by participants P1-P4 for the
different parts of our experiment.

Select a
directory
to examine.

1

Find outliers
in the opposite
hierarchy and
select them.

2

Locate and
examine the
duplicates in the
initial hierarchy.

3

Fig. 5. Two step comparison strategy applied by all participants during our evaluation.

important role in Part 2. Next, we present the four top level
categories along with typical examples of interaction strategies
from both parts of the experiment.

Overview comprises strategies to prepare the view on the
dataset for a subsequent analysis, e.g., increasing the size
of two directories that shall be compared. Part 1: After a
first glance, all participants found that neither hierarchy was
already optimized, i.e., package restructuring was always a
combination of both hierarchies. At the beginning of their
analysis, the participants roughly inspected and compared both
package structures in order to get an overview of the dataset
and to decide which hierarchy was supposed hold the merged
result at the end. Part 2: Due to a larger dataset, the height
of the examined directories was often increased such that
their content was completely visible. Also, some participants
manually reordered the directories inside a branch to reduce
edge crossings and facilitate a comparison of the hierarchies.

Navigation describes how the participants browsed through
the data, in particular, where they started investigating the
directory structure and how they proceeded. Part 1: The
visualized data was browsed in different ways: For instance,
smaller packages were inspected first as these seemed to be
easier to handle. Some participants started at the top of the
visualization and processed the complete set of leaf nodes as
if it was a simple list of files. Others traversed the directory
structure from the root to the leaves. Part 2: In contrast to
the JFtp project which was mostly unknown, the participants
did not process the their own dataset in a strict way (e.g.
package by package), but rather resorted to their background
knowledge or chose parts of the data they felt more familiar
with. For instance, some participants started to sort their music
collection with well-known artists or directories that seemed
to be already sorted to some extent.

Comparison includes essential strategies to analyze the
data in order to find similar directories as well as equal
or duplicated files. Part 1: All four participants applied the
following two step comparison strategy: First, they selected
the directory on one side such that equal files and similar
folders are shaded in the opposite hierarchy. Second, they
identified and selected outliers based on the similarity shad-
ings and inspected if and where these outliers occur in the

initial hierarchy by following the comparison edges. Figure 5
shows an example for the JFtp project. Occasionally, when
the hierarchical information did not seem to be sufficient
in order to optimize the package structure, the participants
resorted to semantic information. For instance, they browsed
the filenames and looked for similar prefixes or substrings
to decide whether these files belong to a certain package or
if a new one is needed. Also, they opened particular files
to inspect the source code; they searched for similar words,
observed the fields of the class, or its inheritance relation. If
not contradictory, hierarchical and semantic information often
complemented each other. Part 2: Our video analysis revealed
that comparison edges as well as similarity shadings were
mainly used for two reasons: to identify duplicates and to keep
track of changes during the merging phase. If the duplicates
found were not created on purpose, they were merged in a
subsequent step. Since the participants organized their data
by copying elements from a messed up to a well structured
hierarchy, new comparison edges were created. This allowed
the participants to keep track of which directories and files
have been successfully integrated into the sorted hierarchy.
Moreover, the participants temporarily copied a particular
folder to the opposite side in order to compare two directories
from the same hierarchy.

Manipulation covers such interactions that were intended
to modify the hierarchies including move, copy, and merge
operations. The information that was gathered through the
comparison strategies discussed above allowed the participants
to manipulate the hierarchies. Part 1: The participants tried
to change the hierarchies such that one of them finally con-
tained the optimized result. While some packages were simply
adopted or transferred from the opposite hierarchy, others
were merged in order to preserve hierarchical information
from both sides. Occasionally, the participants also reorganized
the package structure based on semantic information or even
their own preferences. Part 2: Here, the participants did more
radical changes. They copied folders and files between the
hierarchies, created new directories to introduce an additional
categorization, or even flattened parts of the hierarchy if these
seemed to be too fine-grained. Irrelevant directories could be
identified via the list of file types displayed in the summary
panels and elements that have been duplicated on purpose were

kept. Also, copies of successfully integrated directories were
often deleted from the messed up hierarchy in order to leave
more space for the remaining data.

In general, the participants usually pursued the following
strategy: After getting an overview of the complete dataset,
they started inspecting particular directories or files. During
that process they compared the hierarchical information of
both sides by using comparison edges and similarity shading.
Based on that information they decided whether the compared
directories from one hierarchy shall be kept or reconstructed
or whether a combination of both sides seemed to be more
suitable. If they did not feel confident to make such a decision,
they also inspected additional information like the filename,
metadata, or even the content of files. Finally, they applied
their observations to one of the hierarchies by using DCMT to
move, copy, and merge elements between both sides. Where
required, they added or deleted directories or files.

2) DCMT and File Explorers: In order to assess how
well typical file explorers, in this case the file explorer of
Windows 7, are suited for the task of comparing and merging
directory structures, we observed the participants working with
a file browser. Additionally, in the post-study questionnaire, we
asked them to describe further experiences when applying such
a task. On that basis, we report the following findings.

Although not all of the participants work with the Windows
Explorer regularly, they seemed to be more familiar with the
different views and the controls of such a file browser. In order
to compare and merge two directory structures we allowed the
participants to use two different explorer windows such that
they were able to move and copy files between two opened
directories. In contrast to DCMT, drag-and-drop gestures were
less frequently applied and often replaced by copy, cut, and
paste activities triggered by keyboard shortcuts. Since not all
directories and subdirectories are always visible, the directory
tree had to be expanded, folders had to be opened and
scrolled. For large and flat directory structures, the participants
seemed to prefer scrolling file lists over zooming directories as
implemented in DCMT. In particular, one participant found it
easier to inspect several files when all of them occupy the same
screen space instead of allowing individual zooming levels.

According to the participants, DCMT clearly outperforms
the Windows Explorer for the task of comparing directory
structures. For instance, they stated that they got a better
overview over the complete dataset, in particular, equivalent
files could be directly identified through features like com-
parison edges and similarity shading. Although the Windows
Explorer allows to find similar elements by using the search
function, this requires several different steps to see addi-
tional information and assess whether two files are equivalent.
Moreover, with DCMT there is no need to browse directory
structures from the root to the leaves as the complete hierarchy
is displayed. For the same reason, one participant found it
much easier to identify folders that are empty or contain
irrelevant data. Also, when copying data with a file explorer,
it is directly applied to the hard drive and requires the user to
wait a certain time until the process is finished. Using DCMT
all modifications to the directory structure are virtual, i.e.,
elements are not moved or copied on the file system which
allows users to experiment with the data without manipulating
the original sources.

Furthermore, the merging approach implemented in
DCMT, which enables users to combine only the contents of
two directories, was appreciated by all participants and should,
in their opinion, also be included into the Windows Explorer.
However, the version of DCMT the participants used during
our experiment did not allow to interactively handle name
conflicts when moving or copying directories or files to another
location like it may be done in the Windows Explorer. Thus,
we recently added such a feature to our tool.

3) Ideas for Enhancement and Application: Most partici-
pants asked for additional, data-specific similarity metrics that
may be used to identify not only equivalent but also similar
files. While one participant would have liked to find songs that
share the same music genre, another wanted to explore and
compare different types of similarity. Moreover, we observed
that when the participants marked a directory in one hierarchy,
inspected the similarity shadings on the opposite side, and
decided to move or copy all of the shaded files to another
folder, they had to select them one by one. Hence, a feature
like “Select all shaded files” could speed up this process.
Furthermore, some participants would have preferred to use
a scrolling mechanism instead of zooming.

Also high-level ideas have been proposed on how to use
DCMT for organizing data on a file system, for instance,
restoring data from a backup after a crash with partial loss
of data. While DCMT clearly shows the overlap, using the
merging function of a common file browser would be difficult
as an overview of both directory trees is missing. Another
application is to use DCMT to organize photo collections.
Typically, most photos are moved from the memory card
of a camera to the computer or an external hard drive in
order to archive them. Users want to divide the collection
into meaningful categories by merging photos from different
sources. Three out of four participants decided to use DCMT
to organize their music collections. Although similar to photo
collections, for music files the contained metadata seems to
be more relevant for finding a decent directory structure. This
is why one participant asked for a clustering algorithm that
categorizes unsorted files by artist, music genre, or the like.

C. Validity and Limitations

We conducted a qualitative study with only four partici-
pants, which allowed us, on the one hand, to study a realistic
scenario as part of a complex experiment, but on the other
hand, limits the validity of the findings: first, we are not able
to draw any quantifiable conclusions from the experiment;
second, individual differences of the participants could have
considerably influenced our findings; third, the interpretation of
the observed behavior could be biased by the authors. Hence,
the results of the study should be considered as preliminary
evidence only. Nevertheless, the explorative character of the
evaluation allowed us to investigate a broad spectrum of issues,
from simple questions of usability to complex usage scenarios.

V. APPLICATION MODES AND TASKS

Based on the results of the qualitative evaluation and our
experience using DCMT ourselves, we were able to identify
different ways data can be loaded and processed in the context
of interactive hierarchy comparison and manipulation: different

TABLE I. COMIBINATIONS OF IDENTIFIED APPLICATION MODES AND
MANIPULATION TASKS.

Merge Split Filtered Copy
X :Y X ∪Y X \X ′ and Y ∪X ′ X|C1

⊆ X or Y|C2
⊆ Y

X :X X ′∪X ′′ X \X ′ and X ′ X|C ⊆ X
X :ε X ′∪X ′′ X \X ′ and X ′ X|C ⊆ X

directory structures X and Y can be contrasted (X :Y Mode),
copies of the same directory structure X may be explored
(X :X Mode), or one side is left empty such that users are
able to create a hierarchy from scratch (X :ε Mode). While
the X :Y Mode can be considered as the standard mode where
a hierarchy comparison is directly applicable, the other two
modes do not show any meaningful comparison information
at startup. Here, different hierarchies are only created through
hierarchy manipulation, whereas the comparison information
reflects the progress. In general, we identified three high-level
manipulation tasks users may follow in combination with the
three modes (Table I specifies all combinations using a pseudo
set notation):

Merge: Different directory (sub)trees can be merged into
a single directory. Thereby, the structure of one of the original
trees can be preserved or a new structure might be required. In
X :Y Mode, usually the different directories X and Y are merged
(X ∪Y), or at least subdirectories of X and subdirectories of
Y . In X :X Mode and X :ε Mode, the merged directories X ′ and
X ′′ can only be subdirectories of X (X ′ ∪X ′′); the advantage
using DCMT for this task is that X can stay untouched on one
side of the diagram while merging is performed on the other
side—comparison information documents the current status,
in particular, whether already all original files from the two
directories are contained in the merged version.

Split: Moving a part of the hierarchy structure to another
hierarchy means splitting the first. For simplification we as-
sume that we move directory X ′ being a subdirectory of X .
In X :Y Mode, this means that we somewhere merge X ′ into
Y (Y ∪X ′), and subtract X ′ from X (X \X ′). In contrast, the
merging step is not necessary for the two other modes: X ′
becomes the only content of the second hierarchy. In X :X
Mode, the effort for reaching that state is larger than in X :ε
because the X \X ′ must be deleted from the second hierarchy.

Filtered Copy: When sharing data with others, filtered
copies may be used to prepare a dataset or even restrict it to
particular directories and files. A common strategy is to start
in X :ε Mode opening the data on one side and copying only
relevant directories and files to the other hierarchy. This is, the
target hierarchy shall only contain data that fulfills a certain
constraint C. In contrast to this additive approach, X :X Mode
allows a subtractive approach where one of the hierarchy is
reduced until the constraint C is fulfilled. The other hierarchy
serves as backup and helps to recall made changes. In X :Y
Mode two (partly overlapping) hierarchies may be prepared at
the same time based on different constraints.

VI. CONCLUSION

We proposed a new hierarchy manipulation approach for
comparing and editing two hierarchies. We specialized the
technique and implemented it for manipulating directory trees.
Context-sensitive drag-and-drop operations form the core of

the interaction concept—nodes can be reordered, moved,
copied, or merged. In an explorative study, we observed four
users work with the tool in a realistic setting. In general, our
participants were able to solve complex tasks by comparing
and manipulating directory trees. We identified typical usage
strategies and compared these to the strategies applied using
a common file explorer. While the participants needed getting
used to some uncommon features of our approach such as
the zooming concept, the support for comparing directory
structures was appreciated and less interactions were necessary
for many kinds of operations. Finally, we derived general
application modes and manipulation tasks that abstract specific
usage scenarios observed in the study.

REFERENCES

[1] M. Graham and J. Kennedy, “A Survey of Multiple Tree Visualisation,”
Information Visualization, vol. 9, no. 4, pp. 235–252, 2009.

[2] D. Holten and J. J. van Wijk, “Visual Comparison of Hierarchically
Organized Data,” Computer Graphics Forum, vol. 27, no. 3, pp. 759–
766, 2008.

[3] P. Craig and J. Kennedy, “Concept Relationship Editor: A visual
interface to support the assertion of synonymy relationships between
taxonomic classifications,” in Visualization and Data Analysis, San Jose,
CA, USA, vol. 6809, no. 1. SPIE Press, 2008, p. 12.

[4] I. Cruz, W. Sunna, N. Makar, and S. Bathala, “A visual tool for
ontology alignment to enable geospatial interoperability,” Journal of
Visual Languages & Computing, vol. 18, no. 3, pp. 230–254, 2007.

[5] W. N. W. Zainon and P. Calder, “Visualising phylogenetic trees,”
in AUIC ’06: Proceedings of the 7th Australasian User Interface
Conference. Australian Computer Society, Inc., 2006, pp. 145–152.

[6] P. Isenberg and S. Carpendale, “Interactive tree comparison for co-
located collaborative information visualization,” Visualization and Com-
puter Graphics, IEEE Transactions on, vol. 13, no. 6, pp. 1232–1239,
2007.

[7] M. Beck, J. Trümper, and J. Döllner, “A visual analysis and design tool
for planning software reengineerings,” in VISSOFT ’11: Proceedings
of the 6th IEEE International Workshop on Visualizing Software for
Understanding and Analysis. IEEE, 2011, pp. 1–8.

[8] J. Yang, M. O. Ward, E. A. Rundensteiner, and A. Patro, “InterRing: a
visual interface for navigating and manipulating hierarchies,” Informa-
tion Visualization, vol. 2, no. 1, pp. 16–30, 2003.

[9] M. Hascoët and P. Dragicevic, “Visual comparison of document col-
lections using multi-layered graphs,” Laboratoire d’Informatique de
Robotique et de Microélectronique de Montpellier (LIRMM), AVIZ
(INRIA Saclay - Ile de France), Tech. Rep., Jun. 2011.

[10] L. Zaman, A. Kalra, and W. Stuerzlinger, “DARLS: differencing and
merging diagrams using dual view, animation, re-layout, layers and a
storyboard,” in Proceedings of the 2011 annual conference extended
abstracts on Human factors in computing systems, ser. CHI EA ’11.
ACM, 2011, pp. 1657–1662.

[11] D. Dadgari and W. Stuerzlinger, “Novel user interfaces for diagram
versioning and differencing,” in Proceedings of British HCI 2010, Sep.
2010.

[12] D. Koop, J. Freire, and C. T. Silva., “Visual summaries for graph
collections,” in Proceedings of Pacific Visualization Symposium. IEEE,
2012.

[13] F. Beck and S. Diehl, “Evaluating the impact of software evolution on
software clustering,” in WCRE ’10: Proceedings of the 17th Working
Conference on Reverse Engineering. IEEE Computer Society, 2010,
pp. 99–108.

[14] R. Lutz, D. Würfel, and S. Diehl, “How humans merge UML-models,”
in Proceedings of the International Symposium on Empirical Software
Engineering and Measurement. IEEE Computer Society, 2011, pp.
177–186.

[15] A. L. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Sage Publications,
2008.

