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Abstract

In this paper we present a ¤exible extension to support constraints in VRML97, the stan-
dard for interactive 3D graphics on the internet. After a short introduction to the dynamic
concepts of VRML97, we discuss the design rationale of our extension and explain its im-
plementation. In particular we look at how the extension is integrated into the initialization
process and the rendering loop of a VRML browser, the software which loads and displays
VRML scenes. So far, we implemented solvers for one-way equational and £nite domain
constraints, but our architecture allows to easily add other constraint solvers.

Keywords: computer graphics, world-wide-web, one-way equational constraints,
£nite-domain constraints



1 Introduction

VRML has become the standard for providing
3D content on the internet. VRML was de-
signed to be declarative, but the way program
code is added does destroy this declarativity.
Constraints can remedy this situation and in-
crease the potential for visual authoring and
visual programming. Our extension allows to
separate constraints and solvers, thus allowing
constraints to become part of the VRML £le.
The architecture described in this paper makes
it possible to add other kinds of constraints, e.g.
non-linear constraints, by taking care of the in-
tegration into the interactive, real-time graphics
framework of VRML. Thus, to constraint pro-
grammers it opens up a wide area of emerging
applications on the internet including 3D mod-
eling, simulation and gaming as well as 3D e-
commerce.

This paper focusses on the implementa-
tion aspects of the extension and in particular
on the challenging task of properly integrat-
ing constraint solving into the event process-
ing and rendering loop. As we use established
constraint solving methods these are only de-
scribed to the extend to which it is required to
illustrate the integration. Ideally, the discussion
should motivate and enable others to apply their
constraint solvers to virtual worlds on the inter-
net.

1.1 Constraints in Computer
Graphics

Constraints have been used for user-interfaces
since the Sketchpad system [13] in 1963. Con-
straints enforce hidden relations between ob-
jects as they are common in layouts or anima-
tions. For example several kinds of 2D anima-
tions can be expressed as constraints in Amulet
[10], and there exists a constraint-based sys-

tem to visually construct 3D animations [9]. In
fact many animation techniques in the litera-
ture, e.g., inverse kinematics, morphing, ¤ock-
ing, particle systems, are speci£ed by sets of
constraints, then one or more variables are ma-
nipulated over time. The animation is pro-
duced as the constraint solver tries to satisfy the
constraints by computing the properties of the
graphic objects. Constraints are also a powerful
tool for modeling [8, 15] and visual program-
ming [2]. In distributed systems they provide
a concise way to encode communication and
synchronization [1].

1.2 Extending the VRML97 stan-
dard

VRML has evolved from a description lan-
guage of a static scene graph (VRML 1.0 in
1995) to a modeling language for 3D worlds in-
cluding behavior, animations, and user interac-
tion (VRML 2.0 in 1996,[3]). A revised speci£-
cation of VRML 2.0 has become an of£cial ISO
Standard called VRML97 [14]. From a pro-
gramming language designer’s point of view
VRML lacks many features which have proven
useful for specifying algorithms. As VRML
was primarily designed with the intention to
specify 3D objects and their behavior, we have
to be careful when we try to transfer program-
ming language concepts to VRML.

Previously we have designed a language
called VRML++ [5, 6], which extends VRML
by classes, inheritance and an improved type
system and introduces the concept of dynamic
routing. The current paper addresses the design
and implementation issues of extending VRML
by constraints. Constraints make VRML more
expressive. They ease speci£cation of anima-
tions and of layout and interaction in user-
interfaces.

Applications implemented with our exten-



Figure 1: Some applications implemented with VRML and constraints



Figure 2: Flocking

sion include navigation, collision-detection,
con£guration and animation (see Figure 1) and
have been described in a previous paper [7],
which targets a computer graphics audience.
As an example of these applications Figure 2
shows an event-based implementation of ¤ock-
ing [11]. Below the de£nition of the constraints
using the extension we introduce in this paper
is given. Every bird in a ¤ock of n birds gets
a constraint encoding its dependency on itself
and the remaining n − 1 birds:

DEF constr Constraint {
startEval TRUE
inames [ "b1", "b2", "b3" ]
inodes [ USE bird1,

USE bird2 ,
USE bird3 ]

constraints [
"b1.translation=
Follow(b1.translation,

b2.translation,
b3.translation)"

"b2.translation=
Follow(b2.translation,

b1.translation,
b3.translation)"

"b3.translation=
Follow(b3.translation,

b1.translation,
b2.translation)"

] }

2 Dynamic Features of
VRML: Routes and Scripts

As we want to extend VRML, we £rst have to
look at what is there in VRML.

The part of the software which creates an
image from a description of a scene, its objects
and light sources and the viewer is called the
renderer. In most 3D graphics systems the de-
scription is represented as a graph, called the
scene graph. The renderer traverses this graph
and accumulates the information contained in
the nodes along each path. This information
includes transformations, colors and geometric
data. As the scene graph is usually a directed
acyclic graph and not just a tree, a node can be
reached on different paths, i.e. it has to be eval-
uated in different contexts.

For computer animations the render loops:

1. Change the scene graph or values in the
scene graph.

2. Render the scene.

In classical 3D systems the scene graph was
built as part of the program code, that is, it
was integrated into the system. Using VRML a
scene graph can be speci£ed independently of
a speci£c implementation of a graphics system.
The constructs of VRML are called nodes, be-
cause they specify a scene graph. A node con-
tains £elds, which correspond to the edges of
the graph. A node is de£ned by its node type
and values for its £elds. These values can be
nodes again. There are default values of each
£eld and each £eld may only take values of a
certain type. The syntax to de£ne a node is as
follows:

Type {field1 value1 . . . f ieldn valuen }

For example Box { size 1 2 1 }
de£nes a node of type Box and its £eld size



has the value 1 2 1, i.e. a box with 1m, height
2 m and depth 1m is de£ned.

Actually, there are three kinds of £elds:
field, eventIn and eventOut. Pure
£elds are used to store data, while an eventIn
receives data and an eventOut sends data along
a route. A route connects an eventOut to an
eventIn. If an eventOut is connected to an
eventIn, then the value of the eventIn changes,
whenever the value of the eventOut changes.
An ef£cient implementation of routes is de-
scribed in [16].

In VRML there are some special nodes
which produce eventOuts, these include
TouchSensor nodes which produce an
event, when the user clicks at an object and
TimeSensor nodes, which periodically
produce eventOuts.

For example, a node of type TimeSensor
periodically produces an eventOut named
fraction_changed.

DEF CLOCK TimeSensor { ... }

This eventOut can be sent to other
nodes, e.g., an interpolator node of type
PositionInterpolator.

DEF PI
PositionInterpolator { ... }

Depending on the value received as
eventIn set_fraction this node com-
putes a position in 3D space as eventOut
value_changed. This eventOut can be sent
as a set_translation eventIn to a node
of type Transform. What eventOut is sent
to which eventIn is de£ned with the ROUTE
primitive. It statically wires routes between
nodes. Note, that the names CLOCK, PI and
CYL have been bound to instances using DEF
above. At run-time the scene graph can be
changed by sending values along the routes.

ROUTE CLOCK.fraction_changed
TO PI.set_fraction

ROUTE PI.value_changed
TO CYL.set_translation

In our example, the objects de£ned as children
of the Transform node change their position
in the course of time. What we just described
is the basic mechanism to program animations
in VRML.

In VRML97 it is also possible to add
programs in languages like JavaScript,
VRMLScript or Java to the 3D objects in a
£le. Such program code is attached to nodes
of type Script. Execution of this code is
triggered by events. Using JavaScript for each
eventIn of a Script node a function with the
same name as the eventIn has to be de£ned.
The function takes the value of the eventIn
as argument. Within the function new values
can be assigned to eventOuts of the Script
node or to eventIns of other nodes. These
other nodes will then react accordingly to these
changes. Note, that in this way it is possible
to change an eventIn of a node without using
a route. The implementation of script nodes
using Java differs from the above and is de-
scribed in the section “Java Scripting API” of
the VRML97 speci£cation [14]. In particular,
the API provides the methods getValue()
and setValue() to read and write events.

As an alternative to Script nodes
VRML97 also provides the so-called External
Authoring Interface EAI. The EAI allows ap-
plets to call methods of the VRML browser and
vice versa.

3 Design Rationale

Our £nal goal is that constraints become an in-
tegral part of the VRML language. The £rst
step to achieve this is to provide an extension



of VRML97 such that we and others can exper-
iment with different ¤avors of constraints.

A £rst effort to implement constraints on
top of VRML with the help of a preproces-
sor turned out to be too restrictive and was
heavily depending on the routing mechanism
of a particular browser [4]. At a workshop
at VRML98 Richard presented an implementa-
tion where constraints had been hard coded in
a constraint solver in Java to control a VRML
scene [12].

In our approach constraints and solver are
separated and constraints are part of the VRML
£le. To achieve this we implemented a proto-
type Constraint. It encapsulates constraint
solvers in a Script node. The solvers are pro-
grammed in Java. The constraints are passed as
strings to the Script node.

EXTERNPROTO Constraint [
field MFString inames
field MFString innodes
field MFString protoField
field MFString protoType
field MFString domains
field MFString domainDefs
field MFString userFunctions
field SFBool startEval
field SFBool eventFirstPriority
field MFString constraints

] "ProtoConstraint.wrl#Constraint"

Some of the £elds of the Constraint
prototype are only needed as work arounds for
missing functionality of the Java Scripting API,
so we do not explain them here, but they are de-
scribed in [7].

The £elds domains and domainDefs
are used to de£ne the domains for £nite domain
constraints.

The £eld userFunctions offers the
possibility to add any needed function to the
constraint solver and use these functions in the
constraints. The syntax needed to support this

feature is very easy: First, the user has to de£ne
the signature of the function and then the func-
tion can be de£ned in JavaScript syntax. The
signature consists of the return type, the func-
tion name and the parameter types.

If the £eld eventFirstPriority is
TRUE, a variable which was changed by an
event and triggers the constraint solver can not
be set to a different value by the constraint
solver.

Finally, the £eld constraints contains
a list of strings (MFString), each string rep-
resents a constraint. The constraints are in-
terpreted as one-way equational constraints if
domains and domainDefs are empty and
as £nite domain constraints, otherwise.

Constraints are of the form path relop
expression where path identi£es a £eld in the
scene graph, relop is a relational operator and
expression is either a constant of primitive type
like MFInt32, a value of a £eld or a function,
see grammar below:

constraint → path relop expression
relop → = | != | <= | >= | < | >
expression → path

| functionname ( path∗ )
| constant

path → nodename.tail
tail → £eldname | £eldname [ int ]

| tail.tail

The following is an example of a constraint,
which relates the value of a £eld radius of
type SFFloat to the second value in a £eld
size of type SFVec3f:

CAR.children[2].radius
= Add( SLIDER.size[2], 10)

Assume that you want to position an object
A between two objects B and C and that you
have written a function middle(p,q) which
computes the mid point between two points p



and q. In VRML for the function we have to
create a Script node S and then we have to add
the following routes:

ROUTE B.translation_changed
TO S.set_p

ROUTE C.translation_changed
TO S.set_q

ROUTE S.result
TO A.set_translation

Using constraints we can just write:

A.translation
= middle(B.translation,

C.translation)

This is not just shorter, but it is also more read-
able, accessible and maintainable. More exam-
ples including the VRML source code can be
found in a previous paper [7].

4 Implementation

Figure 3 shows the scene graph, routes and
dependency graph of the £rst example con-
straint above. The dependency graph is built
by a Java program which is encapsulated in the
Constraint node in the scene graph. To bet-
ter understand the relation of the scene graph
and the dependency graph as well as how the
constraint solvers work, we look at the steps
performed by the initialization process and the
rendering loop of a VRML browser and what
additional steps are added by our extension.

4.1 Initialization

During initialization the VRML browser per-
forms the following three steps:

1. Load VRML £le, parse it and build scene
graph including script nodes.

2. Connect all routes.

3. Call method initialize() of each
script node.

In the last step also the method
initialize() of the script in the
Constraint prototype is called. It parses
the string contained in its £eld constraints
and creates a dependency graph. A node in
the dependency graph represents a variable
in the constraints and contains an attribute
outofdate, which indicates, that its value
of this variable is valid or not. It contains a
list dependencies of nodes representing
variables which depend on this variable and
it contains a list constraints of objects
representing single constraints. These objects
contain the variable, a relational operator
and a tree representing the expression in the
constraint. Finally, each node in the depen-
dency graph has two ¤ags which are needed
because not all £elds referenced in the paths
of a constraint must exist at all times. The ¤ag
nodeActive is false if the VRML-node
to which the £eld belongs does not exist
at initialization or whenever it is removed.
The ¤ag constraintActive is false,
whenever the ¤ag nodeActive of this node
or a node it depends on is false. As a result,
when a constraint is not active the constraint
solver will not try to solve it. But as soon as all
variables referenced in the constraint exist, it
will become active and thus be solved.

For each variable in the constraints it cre-
ates a script node which receives the value of
the variable and sends the name of the variable
to the script node of the Constraint proto-
type. For this, additional routes are added to the
scene graph. We need an intermediate node for
each variable, because in case of fan-in, i.e. if
several variables send their modi£ed values to
the script, the script node can not identify the
sender of each value, it just receives the value.



Figure 3: Relation of scene graph and dependency graph

But if the script receives the name of the vari-
able, it can access the value with the method
getValue() of the Java Scripting API.

For each user-de£ned function the method
initialize() of the Constraint proto-
type adds a script node, which encapsulates that
function, to the scene graph as we will explain
in the next section.

If the £eld startEval of the
Constraint prototype is TRUE, also
the constraint solver is invoked during this
initialization process.

4.2 Rendering Loop

After initialization the VRML browser exe-
cutes the following loop [16]:

1. Process events which are caused exter-
nally like mouse clicks and clock ticks.

2. Route the messages

3. Evaluate scripts and interpolators and
propagate events they cause. By us-
ing timestamps or similar techniques the
browser postpones the handling of events
which are changed more than once dur-
ing one iteration to the next iteration.

4. Update the scene graph based on the
events that occured since the last render-
ing

5. Render the scene



If the value of a £eld which is a variable in
the constraints changes, an event occurs and in
step 3 of the above loop the constraint solver
is invoked. It gets the names of all variables
which changed since the last frame rendered
and sets the attribute outofdate of these
variables in the dependency graph to false.

4.2.1 One-way equational constraints

To solve one-way equational constraints we
use an extension of the algorithm by Zanden et.
al. [17] for constraints with pointer variables.
In particular, we added activation and deacti-
vation of constraints to allow dynamic adding
and removing of nodes. As in their algorithm
the constraint solver has two phases. In the
nulli£cation phase all variables are marked as
outofdate which depend on a variable which
has become outofdate. In the re-evaluation
phase the values of all variables are recom-
puted recursively. Let k be the dependency
graph node whose value changed:

if (eventFirstPriority==false)
eval(k)

else
for each d ∈ k.dependencies

do eval(d)

In the second case only the values of all
depending variables are recomputed. Here is
the de£nition of the function eval().

eval(k) = {
if (k.isoutofdate

and k.activeNode
and k.constraintActive)

{ k.outofdate=false;
for each c ∈ k.constraints

do c.solveConstraint();
for each d ∈ d.dependencies

do eval(d); } }

where solveConstraint() computes
the value of the expression in the constraint.

4.2.2 Adding and removing nodes

In VRML it is possible that nodes can be
added or removed dynamically from the scene
graph by using the events addChildren
and deleteChildren. As a result, in
a path like CAR.children[2].radius
the node referenced by CAR.children[2]
might cease to exist or might be added later.
To cope with this situation routes are added
from each children £eld in a path to the
eventIn childrenControl of the script in
the Constraint prototype. The value of
the event is the partial path for this £eld, e.g.
CAR.children. The script can now activate
or deactivate the according node in the depen-
dency graph and all nodes depending on it.

4.2.3 User-de£ned functions

To implement user-de£ned functions we had
two alternatives: create a script node for each
use of such a function in a constraint or cre-
ate a script node for each function de£ned.
The structure and protocol of the £rst solution
would have been less complex, but it would
have increased the number of script nodes in
the scene graph considerably. Thus we chose
the second solution. Consider the follow-
ing example where we implement a function
EqualY(p,q) which returns true if the Y-
coordinate of the two points p and q are equal:

Constraint { ...
userFunctions
[ "SFBool

EqualY(SFVec3f, SFVec3f)"
"function eqy(x1, x2)

{ return x1[1]==x2[1]; }"
]

... }



At initialization the Constraint proto-
type will create the following script node from
the above speci£cation:

Script {
eventIn SFVec3f set_p1
eventIn SFVec3f set_p2
eventIn SFBool UpdateResult
field SFVec3f p1 0 0 0
field SFVec3f p2 0 0 0
eventOut SFBool ResultUpdated
eventOut SFBool result
url [
"vrmlscript:

function set_p1(value)
{ p1=value; }
function set_p2(value)
{ p2=value;

result=eqy(p1, p2);
ResultUpdated=true; }

function UpdateResult(value)
{ ResultUpdated=false; }
function eqy(x1, x2)
{ return x1[1]==x2[1]; }"

]
}

To evaluate an occurrence of the func-
tion EqualY(p,q) in a constraint,
the constraint solver (in the method
solveConstraint()), will perform
the following steps:

1. Set eventIn UpdateResult to false.

2. Set eventIn set_p1 to the value of p.

3. Set eventIn set_p2 to the value of
q. Then the function set_p2()
performs the test and sets the ¤ag
ResultUpdated which is used for
synchronization of the script node for the
function EqualY() and the constraint
solver, because these are running concur-
rently.

4. Wait until the ¤ag ResultUpdated
becomes true, then read the value of the
eventOut result.

4.2.4 Finite domain constraints

For £nite domain constraints we have to make
sure that all constraints are satis£ed before the
last step in the rendering loop, such that no in-
consistent scene is rendered. For this, we have
a copy of the value of each £eld in the depen-
dency graph and after all constraints have been
solved these values are written to the scene
graph at once. Our FDC solver uses backtrack-
ing with domains sorted by size (£rst fail prin-
ciple).

4.2.5 Technical Remarks

We would have liked to add a keyword
parent for paths in the constraints. Unfortu-
nately the Java Scripting API does not provide
a way to access the parent or one of the parents
of a node. The only workaround we came up
with was to mirror the whole scene graph and
process all events additionally in Java, which
would considerably degrade the performance.

Speaking of performance, we found that
the Java Scripting API is the major bottleneck
in our implementation. The problem is that
the value of a £eld is set by method calls in-
stead of assignments. We found that setting
the value of an object of class SFVec3f with
setValue() it is about 300 times slower
than assigning the value to a ¤oat array of size
three which would be an equivalent, but more
ef£cient representation. If the SFVec3f ob-
ject is actually a £eld in the scene graph, the ac-
cess is another 20% slower. Fortunately, we did
not use the External Authoring Interface EAI
and implement the constraint solver as an ap-
plet. For the EAI we measured that calls to
setValue() are even 20.000 times slower



than assignments to ¤oat arrays.

5 Conclusion

Applications of constraints for 3D computer
graphics on the internet include navigation,
collision-detection, con£guration and anima-
tion. Constraints capture the required knowl-
edge in a declarative way and thus increase
maintainability of such applications. We feel
that constraints provide a powerful, expressive
and natural way to specify dependencies be-
tween £elds of different nodes and that they
should replace or extend routes in a future
VRML standard. We have shown how con-
straints can be integrated into the initialization
process and the rendering loop of a VRML
browser. The whole extension was designed
such that it is easy to add other constraint
solvers as they only work on the dependency
graph. There should be no need to change
the parser, the communication with the VRML
scene and the handling of user-de£ned func-
tions. As part of our future research we want to
investigate how to combine our previous work
on VRML++ with that on constraints.
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