Graphs, They Are Changing
Dynamic Graph Drawing for a Sequence of Graphs

Stephan Diehl and Carsten Gorg

University of Saarland, FR 6.2 Informatik,
PO Box 15 11 50, D-66041 Saarbriicken, Germany
diehl®@acm.org, goerg@cs.uni-sb.de

Abstract. In this paper we present a generic algorithm for drawing se-
quences of graphs. This algorithm works for different layout algorithms
and related metrics and adjustment strategies. It differs from previous
work on dynamic graph drawing in that it considers all graphs in the
sequence (offline) instead of just the previous ones (online) when com-
puting the layout for each graph of the sequence. We introduce several
general adjustment strategies and give examples of these strategies in
the context of force-directed graph layout. Finally some results from our
first prototype implementation are discussed.

1 Introduction

Optimizing the layout adjustment for a sequence of graph changes,
e.g. for an off-line animation, is still an open yet very challenging area
of research. - Jiirgen Branke [3]

Dynamic graph drawing addresses the problem of computing layouts of graphs
which evolve over time by adding and deleting edges and nodes. This results in
an additional aesthetic criterion known as “preserving the mental map” [13] or
dynamic stability.

The ad-hoc approach is to compute a new layout for the whole graph after
each update using those algorithms developed for static graph layout. In most
cases this approach produces layouts which do not preserve the mental map.
The common solution is to apply a technique known from key-frame animations
called inbetweening to achieve “smooth” transitions between subsequent graphs,
i.e. animations show how nodes are moved to their new positions. This approach
yields decent results if only a few nodes change their position or whole clusters
are moved without substantially changing their inner layout or if the transition
is subdivided into several phases [9]. But in most cases the animations are just
nice and do neither convey much information nor help to preserve the mental
map.

2 Mental Map and Mental Distance

A layout is a mapping of the nodes and edges of a graph onto a plane or into a
volume.

M.T. Goodrich and S.G. Kobourov (Eds.): GD 2002, LNCS 2528, pp. 23-B1] 2002.
© Springer-Verlag Berlin Heidelberg 2002

24 Stephan Diehl and Carsten Gorg

The term mental map refers to the abstract structural information a user
forms by looking at the layout of a graph. The mental map facilitates navigation
in the graph or comparison of it and other graphs. In the context of dynamic
graph drawing changes to this map should be minimal, in other words algorithms
to draw sequences of graphs should preserve the mental map. Misue et. al. [13]
discuss three models for the mental map

— Orthogonality: The horizontal and vertical order of nodes should stay the
same when changing node positions.

— Proximity Relations: The distance to all or at least to all neighboring nodes
should be about the same.

— Topology: The dual graph should be maintained.

Based on each of these models we can define metrics that indicate how close
the mental maps of two given layouts are. For the purpose of this paper we
call the resulting class of metrics mental distances. Let Layout be the set of all
layouts, i.e. in the simplest case mappings from nodes to points in R2.

Definition 1 (Mental Distance). Let l1, 1l € Layout be two layouts. Then the
function A : Layout x Layout — RJ is a metric for how good ly preserves the
mental map of 1. In particular A(ly,1l2) = 0 means that l; and ls have the same
mental map.

Most metrics only compare the layouts for the common subgraph of the
underlying graphs, but we could also have metrics which additionally consider
the layout of those nodes and edges which are only present in one of the layouts.

2.1 Examples of Mental Distances

Many researchers proposed distance metrics, e.g. [I2/4]. We give here two which
we use in our current implementation. The metrics below are based on node
positions only. There are other metrics which take clustering or edge routing
into account. For an overview see for example [3].

Definition 2 (Euclidean and Orthogonal Mental Distance).
Let 11,ls € Layout be two layouts. Their Euclidean mental distance is defined
as Ay(ly, 1) = > dist(ly(v),l2(v)) where dist(p,q) yields the Euclidean dis-
veVINV,

tance of two points. Let sgn(x) € {—1,0,+1} yield the sign of a (real) number
x. Their orthogonal mental distance is
A (ly,l2) = > Isgn(l1(v1).x — l1(v2).x) —sgn(la(vy).x — l2(v2).x)]

v €ANVa tsgn(ly (v1).y — 11 (v2).y) — sgn(la(vi).y — l2(v2).y)]

3 The Offline Dynamic Graph Drawing Problem

Assume that the quality of a layout could be measured by a function I" regarding
aesthetic goals like compactness, even distribution of nodes, minimal number of
edge crossings, etc [I5]. Such formal criteria are the computational crutches to
substitute real models of human cognition or simply taste.

Graphs, They Are Changing 25

Definition 3 (Layout Quality). Let ! € Layout be a layout. Then the function
I' : Layout — RS‘ is a metric for the quality of a single layout. In particular
I'(l) = 0 means that I has minimal quality.

Now we can state the problem of dynamic drawing of a sequence of graphs.
In most applications the graphs in such a sequence will result from changes to
the preceding graph and thus will share some nodes and edges.

Definition 4 (The Offline Dynamic Graph Drawing Problem). Given a
sequence of n graphs g1, ..., gn. Compute layouts ly, ... 1, for these graphs such
that

1. A= > A(l;,liy1) is minimal 2.T'= Y I(l) is mazimal

1<i<n 1<i<n

Unfortunately, the two optimization goals can not be achieved at the same
time in general. For the online dynamic graph drawing problem l4,...,l,—1 and
gn are given and l,, has to be computed.

3.1 Foresighted Layout without Tolerance

In a previous paper we introduced a dynamic graph drawing algorithm which
we called Foresighted Layout [1].

Given a sequence of n graphs we compute a global layout which induces a
layout for each of the n graphs. In the simplest case this global layout is just the
layout of the supergraph of all graphs in the sequence. By forming temporal
equivalence classes of nodes and edges Foresighted Layout can also produce
more compact global layouts. In a GAP (graph animation partition) nodes with
disjoint live times are grouped together. In an RGAP (reduced GAP) also edges
with disjoint live times are represented by a single edge. We have proven the N/P-
completeness of computing a minimal GAP respectively RGAP by reduction on
the minimal graph coloring problem [6I10].

A unique feature of the above approach is that once they are drawn on the
screen neither nodes nor the bends of edges change their positions in graphs
subsequently drawn. This algorithm preserves the mental map in a trivial way
by using the global layout, but does so at the cost of other aesthetic criteria.

Foresighted Layout does not work for all classes of graphs equally well, as it
requires that the supergraph, GAP or RGAP of the graphs belongs to the same
class as the individual graphs. For example, in general the supergraph of trees
is not a tree, and the supergraph of planar graphs is not a planar graph.

3.2 Foresighted Layout with Tolerance

In this paper we extend the above method, such that it can trade aesthetic
quality for dynamic stability and vice versa. To this end we use a tolerance
value § and allow such layouts for individual graphs in the sequence for which
the mental distance to certain other graph is smaller than §. As a result we
can formulate a weaker problem.

! The strategies that we are going to present differ particularly with regard to what
other graphs are chosen for comparison.

26 Stephan Diehl and Carsten Gorg

Definition 5 (The Tolerant Offline Dynamic Graph Drawing Prob-

lem). Given a sequence of n graphs g1, ..., gn and a tolerance value 6. Compute
layouts ly,. ..,y for these graphs such that
1. Al ligr) <6 foralll <i<mn 2.I'= I'(1;) is mazimal
1<i<n

As a simple corollary we get that 0 < A < n * §. In general we can expect
that I increases for larger values of 6. In other words a small § enforces dynamic
stability, while larger values increase local quality.

For efficiency reasons we do not try to compute an optimal solution, but we
compute approximations. Algorithm 1 is generic in the sense that it works with
different static layout algorithms and related metrics and adjustment strategies.
We use the notation /|, to denote the layout which results from restricting [to
the nodes and edges in g. In other words [}, is the layout for g induced by the
layout . We use uppercase letters for the global layout L and layouts L; for
graphs g; induced by the global layout. For all other layout we use lowercase.

Algorithm 1. Foresighted Layout with tolerance ¢
Compute global layout L for supergraph (resp. GAP or RGAP) of g1,...,9n
for i:=1ton do
Li:= Ly,
i = adjust(....) // Compute I; by adjusting L;
v """/ // using one of the strategies discussed in Section [3.3]
if i==1 then
Draw graph g1 using [y
else
Draw graph g; by morphing from l;_; to I;
end if
end for

3.3 Layout Adjustment Strategies

Classical layout adjustment methods adjust(g;,;—1) draw a graph g; by adapting
the layout l;_; of the preceding graph. Our adjustment strategies also take the
global layout into account. We use the supergraph (resp. GAP or RGAP) as
a rough abstraction of the whole sequence of graphs. In a sense it contains
information about the whole future. In addition the strategies might consider
the previous, next or all graphs in the sequence. Instead of the graph g; these
strategies get the layout L; for the graph induced by the global layout and try
to adjust it while regarding constraints on the mental distance to other layouts.
If they can not fulfill the constraints these strategies yield the induced layout.

Strategy 1 (Independent Adjustment). ; = adjust(L;, J)
This strategy tries to preserve the mental map by ensuring that A(L;,[;) < 0.
As a result all graphs in the animation stay close to the global layout.

Graphs, They Are Changing 27

Strategy 2 (Predecessor Dependent Adjustment). [; = adjust(L;,l;—1,9)
This strategy differs from the above by requiring that the layout stays close to
that of the preceding one, i.e. A(l;_1,1;) < d. Note, that there is no constraint
for adjusting Li. As a result [; can be very far from the induced layout and this
can have undesirable effects. The value of A(l1, Ly) might get greater than ¢ and
all adjustments to Ly might not sufficiently reduce the mental distance. In this
case the adjustment will fail and return the induced layout.

Strategy 3 (Context Dependent Adjustment). [; =adjust(L;,l;—1, Li+1,9)
This strategy extends the previous one by enforcing that the layout stays close
to both the preceding layout as well as the induced layout for the subsequent
graph, i.e. A(l;_1,1;) < 6 and A(l;, Li+1) < 6. In particular, this strategy makes
sure that [; stays close to Ly and thus we do not run into the problem discussed
above when adjusting L.

The above strategies try to adjust a layout as much as possible, before pro-
ceeding to the next one. The previous layout can thus impose too much restric-
tions on the next one and render adjustments impossible. The following strategy
strives to evenly adjust all layouts in the sequence.

Strategy 4 (Simultaneous Adjustment). (I1,...,l,)=adjust(Ly,...,Ly,,d)
This strategy simultaneously adjusts the induced layouts L1, ..., L, such that
A(liyliv1) < 9§ for all 1 < 4 < n. An variant of the simultaneous adjustment
strategy could also try to preserve the inertia of movements.

3.4 Layout Adjustment for Force-Directed Layout

We show how a simple spring embedder [8I2] can be modified to perform layout
adjustment according to the above strategies. Unfortunately once this embed-
ders have computed a layout that does not preserve the mental map further
iterations do not resolve the problem. As a result we extended these embedders
by simulated annealing. We assume a global temperature 7" which cools off after
each iteration.

Algorithm 2. adjust(L;,l;—1, Li+1,) context dependent

l:= Li
for j:=1 to #lterations do

Compute forces for each node in [with global temperature T

Compute new layout I’ by applying forces to nodes in [

if A(li_hl/) < ¢ and A(l/,LH_l) < 6 then

1=

end if

T := anneal(T, j)
end for
return [

28 Stephan Diehl and Carsten Gorg

Algorithm 2 follows immediately from the above general description of the
strategies. In Algorithm 3 the iterations of the embedder are performed simulta-
neously on all layouts. After each step we check whether the mental distances of
a layout and the layouts of its previous and next graphs are below the tolerance
value. If not the layout is discarded and the layout of the previous iteration is
used for the next iteration.

Algorithm 3. adjust(L1,..., L,,d) simultaneous
(ll,...,ln) = (Ll,...,Ln)
for j:=1 to #lterations do
for i :=1ton do
Compute forces for each node in /; with global temperature T’
Compute new layout I’ by applying forces to nodes in I;
if A(ll;l,l,) < 6 and A(l,,lzurl) < ¢ then

T := anneal(T}, j)
end for
end for
return (I1,...,0,)
4 Examples

In Figure [navigation through word collocation graphs is shown, more precisely
the sequence consists of the three graphs for the words Lecture, Corbate, Award
and Turing. In the first column the supergraph layouts of the graphs are shown.
The nodes for the mentioned words have always the same relative position (the
three layouts have small mental distances), but the layouts are of poor quality.
In the second column context dependent adjustment with orthogonal mental
distance and § = 2 is shown. The layout quality is better, but the mental distance
is larger, because the nodes Lecture and Corbate have changed their horizontal
order. In the third column simultaneous adjustment with orthogonal mental
distance and § = 2 is shown. The layout of the first graph is even more compact
(because more iterations could be performed) and the mental distance is equal
to that of context dependent adjustment.

We have done experiments with several animations including navigation in
the genealogy of the Hohenzollerns (family of German emperors), navigation in
word collocation graphs based on data from www.wortschatz.uni-leipzig.de)
computation of a full lattice for a given set of pairs of integers, as well as several
random animations of graphs and trees. Obviously, these animations are difficult
to show in a paper. Therefore a Java applet with examples is available online at
http://www.cs.uni-sb.de/"diehl/ganimation/|

www.wortschatz.uni-leipzig.de
http://www.cs.uni-sb.de/~diehl/ganimation/

Graphs, They Are Changing 29

Supergraph Context delta=2 Simultan delta=2
alate A

M

\\\\\\\

Fig. 1. Different adjustment strategies.

5 Implementation

In our first prototype implementation we implemented a spring embedder with
polar and parallel magnetic fields, gravity, and simulated annealing similar to
the algorithm used in VCG [16] (except that we do not use local temperatures).
The prototype implements all strategies discussed in this paper and provides
orthogonality and Euclidean distance as mental distances. Smooth transition
between two graphs are animated in the following phases. First all deleted edges
shrink and disappear. Then all deleted nodes disappear. Next all remaining nodes
and edges are moved to their new positions using linear interpolation. Finally
all new nodes appear and all new edges expand. We are currently working on
adjustment strategies for hierarchical layout and these will be integrated into our
original Foresighted Layout implementation that used hierarchical layout [7].

6 Related Work

So far, we have not found any published work on offline dynamic graph draw-
ing. An overview of online dynamic graph drawing has e.g. been given in [3].
The general framework of Brandes and Wagner [I] characterizes the tradeoff be-
tween local quality and dynamic stability using conditional probabilities. In their
formulation the conditional probability for a layout depends on those of the pre-

30 Stephan Diehl and Carsten Gorg

ceding ones, i.e. no look-ahead in the sequence is available, but the formulation
could be easily adapted to the offline case.

Finally there are several papers that suggest layout adjustment algorithms
for certain classes of graphs. All these algorithms have in common that they are
based on a certain mental map distance built into the algorithm [I3/5l12]14].

7 Conclusion and Future Work

We presented a generic algorithm to compute graph animations. We discussed
several strategies for layout adjustment. The effectiveness of the resulting ani-
mations needs to be studied and evaluations similar to those of Purchase [15]
for aesthetic rules must be performed for dynamic stability. For this we plan to
implement additional layout algorithms and metrics.

The generic nature of our approach allows us to easily combine different
layout algorithms, metrics and adjustment strategies. This comes at the cost of
performance. One solution is to manually or automatically specialize the generic
algorithm with respect to a given layout algorithm, adjustment strategy and
metric before computing the layout. In a specialized algorithm the phases could
be interleaved and allow more clever adjustment, e.g. only new coordinates are
computed for those nodes which violate orthogonality.

References

1. U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout. In
Graph Drawing (Proc. GD ’97), volume 1353 of Lecture Notes Computer Science.
Springer-Verlag, 1997.

2. Ulrik Brandes. Drawing on physical analogies. In Drawing Graphs [11). 2001.

Jirgen Branke. Dynamic graph drawing. In Drawing Graphs [11]]. 2001.

4. S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal graph
drawing algorithms. In Proceedings of 6th International Symposium on Graph
Drawing GD’98. Springer LNCS 1457, 1998.

5. R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis. Dynamic graph draw-
ings: Trees, series-parallel digraphs, and st-digraphs. SIAM Journal on Computing,
24(5), 1995.

6. S. Diehl, C. Goérg, and A. Kerren. Foresighted Graphlayout. Technical Re-
port A/02/2000, FR 6.2 - Informatik, University of Saarland, December 2000.
http://www.cs.uni-sb.de/tr/FB14.

7. Stephan Diehl, Carsten Gorg, and Andreas Kerren. Preserving the Mental Map

using Foresighted Layout. In Proceedings of Joint Eurographics — IEEE TCVG

Symposium on Visualization VisSym’01. Springer Verlag, 2001.

P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42, 1984.

9. C. Friedrich and M. E. Houle. Graph Drawing in Motion II. In Proceedings of
Graph Drawing 2001. Springer LNCS (to appear), 2001.

10. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of N'P-Completeness. Freeman and Company, 1979.

11. M. Kaufmann and D. Wagner, editors. Drawing Graphs — Methods and Models,
volume 2025 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

w

®

12.

13.

14.

15.

16.

Graphs, They Are Changing 31

K.A. Lyons, H. Meijer, and D. Rappaport. Cluster busting in anchored graph
drawing. Journal of Graph Algorithms and Applications, 2(1), 1998.

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout Adjustment and the Mental
Map. Journal of Visual Languages and Computing, 6(2):183-210, 1995.

A. Papakostas and I.G. Tollis. Interactive orthogonal graph drawing. IEEE Trans-
actions on Computers, 47(11), 1998.

H.C. Purchase, R.F. Cohen, and M. James. Validating graph drawing aesthetics. In
F. J. Brandenburg, editor, Graph Drawing (Proc. GD ’95), volume 1027 of Lecture
Notes Computer Science. Springer-Verlag, 1996.

G. Sander. Visualization Techniques for Compiler Construction. Dissertation (in
german), University of Saarland, Saarbriicken (Germany), 1996.

	1 Introduction
	2 Mental Map and Mental Distance
	2.1 Examples of Mental Distances

	3 The Offline Dynamic Graph Drawing Problem
	3.1 Foresighted Layout without Tolerance
	3.2 Foresighted Layout with Tolerance
	3.3 Layout Adjustment Strategies
	3.4 Layout Adjustment for Force-Directed Layout

	4 Examples
	5 Implementation
	6 Related Work
	7 Conclusion and Future Work
	References

