
IDEVELOPAR: A Programming Interface to
enhance Code Understanding in Augmented Reality

1st Lucas Kreber
University of Trier

Trier, Germany
kreberl@uni-trier.de

2nd Stephan Diehl
University of Trier

Trier, Germany
diehl@uni-trier.de

3th Patrick Weil
University of Trier

Trier, Germany
s4paweil@uni-trier.de

Abstract—During software maintenance developers spend a
considerable amount of time on tasks like navigating, identifying
required code locations or tracing various call hierarchies. The
classical tabbed interfaces, as found in modern IDEs, are not ideal
for such tasks, leading to an inefficient workflow containing many
context switches. Therefore, several programming environments,
like Code Bubbles, were proposed to overcome these issues by
allowing users to freely arrange code fragments on a canvas to
make relations more explicit and better understand the codebase.
Relations are made explicit using visual links or extra space
between groups of code fragments. As a consequence, these
approach quickly run out of screen space. In this paper, we
present IDEVELOPAR, a tool to enhance code understanding in
augmented reality. Due to the use of AR, a user is not restricted
anymore by limited display sizes and can use the entire physical
space as a workspace for placing and grouping code fragments
as well as making changes to the codebase. First, we introduce
the views and interactive functionalities of our tool. Next, we
illustrate the usefulness of the tool by navigating an example
program to locate and fix a bug. Finally, we briefly discuss the
results of a cognitive walk-through using the cognitive dimension
framework as well as a formative user study to identify potential
usability problems. Moreover, in this study the participants also
mentioned several advantages of our approach over the classical
one. Furthermore, we found that over time the participants
developed their own placement strategies.
Video URL: https://youtu.be/wCNkLS1qQfM

Index Terms—augmented reality, programming tool, program
comprehension, code navigation

I. INTRODUCTION

Software complexity has increased massively over the last
decades, leading to an ever-growing codebase in software
projects, where maintenance is becoming more and more
critical. High-level maintenance tasks like correcting faults,
improving run-time or memory performance, extending func-
tionality, or adapting to a changed environment include low-
level tasks like reading, navigating and editing source code. In
particular, developers have to identify relevant code fragments
when working on such tasks. Finding these code fragments is
non-trivial and very time-consuming. For example, in a study
Ko et al. [1] found that developers spend 35% of their time
solely on navigation.

While modern integrated development environments (IDEs)
facilitate code navigation, their visual interfaces have a bento-
box design that partitions the available screen space into
separate areas [2]. Programmers typically need to switch

between tabs in order to navigate to a different file. As a result,
it is quite hard to remember more than a few navigation steps
and already seen code fragments.

Alwis et al. [3] identified several factors potentially trigger-
ing disorientation while working on a software project. There
is an absence of connecting navigation context. Switching
tabs does not lead to a visual connection between files.
Furthermore, a developer can not see all the necessary in-
formation required for a specific task. So there is a lack
of surrounding context regarding the viewed source code.
This behavior finally leads to a redundant and inefficient
workload. One approach to overcome these issues are the
so-called ”Code Bubbles” that visually link different code
views and display these views side by side on the same
canvas [4]. In a study the authors compared their approach
with a traditional IDE (Eclipse) and found that programmers
using Code Bubbles successfully completed significantly more
program understanding tasks as well as that it took them
significantly less time [5].

However, the approach of integrating such a visualiza-
tion directly into the IDE has the significant flaw of finite
screen space. Even though the minimum display size of 24”
recommended by the authors is today’s standard in almost
every workplace, it reaches its limit when displaying many
code fragments or using a laptop computer. Therefore, in
this paper, we describe IDEVELOPAR, an Augmented Reality
Application that adopts the approach of linked code views
from Code Bubbles and leverages the HoloLens 2 to extend
the developer’s workspace beyond the limited screen space to
an almost infinite space using AR. When using AR, all the
code fragments opened during navigation are placed in the
surrounding room as 3D objects. These visual objects help
users build spatial awareness of the opened code fragments.
Navigating in the AR space also creates visual links between
opened code fragments to visualize the current navigation his-
tory as well as call and usage dependencies. Due to the almost
unlimited space, a single code fragment will not disappear, so
context switches are brought to a minimum. All these aspects
are promising to facilitate the code comprehension of existing
projects and simplify the overall very challenging process of
navigation.

Our tool provides a fully functional programming interface
parallel to an existing IDE where code fragments can be freely

Diehl
Schreibmaschine
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Diehl
Schreibmaschine
Accepted Version. Paper to appear in the Proceedings of the 10thh IEEE Working Conferenceon Software Visualization (VISSOFT 2022), Limassol, Cyprus, October 02-03, 2022 



arranged in the surrounding physical space. IDEVELOPAR
supports basic functions to open, navigate and edit arbitrary
code fragments. A developer can use the tool either simulta-
neously to an IDE or exclusively in the AR space, where all
key features of the IDE are provided and accessible through
gesture control. Using an augmented space can further support
developers in reducing their mental load, as shown by Tang
et al. [6], leading to a more efficient and effective workflow.

In the following, we first present the features of our tool in
Section II, then we demonstrate its usefulness by describing
how to identify and fix a bug in an example program in
Section III. In Section IV we present the results of a cognitive
walk-through and a formative user study. Finally, we briefly
discuss related work in Section VI and Section VII concludes
this paper.

II. IDEVELOPAR
IDEVELOPAR1 is our approach for supporting developers

with a fully functional programming environment in Aug-
mented Reality. The tool consists of two parts, the actual aug-
mented reality application running on the HoloLens 2 and any
IDE out of the JetBrains family running on a regular computer.
Although, our current prototype only supports Java, without
much effort, the tool can be adapted to every programming
language supported by one of the JetBrains IDEs.

To prepare the IDE for the use of our tool, one only needs
to install a plugin that starts all the required infrastructure used
by the tool directly in the IDE. All requested information will
be sent over the established network connection from the IDE
directly to the HoloLens 2, including source code and code
completions. All the logic, code analysis, etc., runs in the IDE.

A. Linked Code Panels in AR

The code panel is the core element of the tool, which visu-
ally represents a code fragment of the project using augmented
reality. A code fragment is either the code of an entire class, a
single method or a single constructor. For example, the panel
in Figure 3:A shows the code of a Java class. Most of the
space is taken up by the code, which automatically uses the
color scheme of the IDE. The fully qualified name of a class or
method is shown in the lower area of the panel. All changes in
a code panel are directly synced to the connected IDE. Various
buttons are available in the upper right area of the panel. These
are used resize the panel or to close the panel or the complete
sub-tree with the panel as its root.

In a code panel a user can click at a class name, a method
or a constructor call. As a result a new code panel with the
related code fragment will be opened. To indicate the relation
to the original code panel a visual link is drawn to connect it to
the newly opened code panel. If a user followed a method or
constructor call the link is colored green, if the user opened a
class declaration the link is colored blue. The emerging code-
panel tree, see f.e. Figure 3:B, not only visually represents the
navigation history, but depending on the navigation strategy of

1The acronym is a composition of the three central core features: IDE,
development and AR

Fig. 1. Hand Menu. Menu for controlling basic functions (switch to
programming mode, run code on IDE and show project view). The menu
appears as soon as the user raises a hand and turns its palm towards their
face.

the user shows parts of the static call graph or the aggregation
structure.

Depending on the distance between the code panel and
the user, the font may be too small, making it impossible to
read the source code in it. Therefore, if a certain distance
is exceeded the information in the code panel is shown at a
different level of detail (semantic zooming) with a larger font
size. The code panel will automatically switch to an overview
representation consisting of only basic information such as
the name of the opened code fragment, the corresponding
package path or the type of the opened code (class or method).
Semantic zooming allows the user to keep track of all open
code panels without placing them in close proximity, see
Figure 3:B.

B. Code Navigation

We strived to design all interactions to feel as natural and
intuitive as possible for a user, allowing an efficient workflow
without putting too much effort into managing only the tool’s
controls.

Basic functionalities are controlled via the hand menu
(Figure 1). It appears as soon as a user raises their hand
and points the palms towards their face. In the first prototype
version, the hand menu has three options: Switching the
programming mode on and off, compiling and running the
program in the desktop IDE, and opening the project overview.
A drop-down menu appears on the right side of the hand menu
by clicking the project view option, displaying all available
classes structured in the standard package-sorted way in a
hierarchical menu (an indented tree similar to the way they
are shown in the project tab in the IDE). Packages can be
folded and unfolded by clicking on them. The user can scroll
the menu using up and down buttons. Clicking on one of the
classes will open a new code panel with the code of the class.

The user can scroll through the program code using the
HoloLens 2 eye-tracking functionality. By either looking at the
top or the bottom of a code panel, the text will scroll in the
appropriate direction. When reading longer passages of code,



the text will automatically scroll at the speed of the current
reader, without any additional action by the user.

Once the user has opened the first code panel, there are
two ways of opening new code panels: via the hand menu as
described above or by clicking at a method call or class name
in the code shown in a code panel.

When clicking on a method call, the user can choose if the
newly opened code panel should display only the requested
method code or the entire class code containing the specific
method (See Figure 3:C). The equivalent applies when clicking
on a class name. Here a user can choose to open only
the constructor of the class or the entire code of the class.
Whether class or method, every newly opened code panel is
connected to its parent panel via a visual link. As a result the
navigation history becomes visible in form of a code-panel
tree. Every navigation step following a method or constructor
call is indicated by a green link. All other navigation steps
are visually represented with blue links. Due to this approach,
a user can easily distinguish parts of the explored call graph
within the navigation tree.

When new code panels are created by navigation, an auto-
matic layout places the new panel right of its parent below
already existing siblings. The new panel and its siblings are
vertically centered relative to their parent. Figure 3:B shows
the layout strategy applied to new panels. Panels created over
the hand menu appear in front of the user. At any time, the user
can adapt the placement to their needs by simply grabbing a
panel and moving it around. The grabbing action is triggered
by the pinch gesture, i.e. by pinching the pointing finger and
the thumb together. While moving a panel around, the user
can rotate the panel by rotating their hand.

Each code panel provides a button to activate an expansion
mode. While in this mode, the corresponding code panel can
be reduced or enlarged in size by grabbing one of its corners
and dragging it either inward or outward. Through this kind
of functionality, a user can adjust every code panel to their
own preferred size or just put individual, essential elements in
the foreground for better recognition.

C. Programming within Code Panels
The source code can be changed directly in each code panel

when the programming mode is activated over the hand menu.
After activation, a cursor appears in the focused code panel.
Through the connected Bluetooth keyboard, a user can make
changes as usual. The use of a virtual keyboard is possible but
currently not implemented. While typing, full code completion
is provided to support the user (See Figure 2).

All code changes are synced to the connected IDE if the
programming mode is activated. Thus a potential switch be-
tween the 2D desktop and the augmented reality environment
is no problem at all and possible without any further delays.
This option leads to a free choice of the preferred workplace
for a different set of work tasks.

III. DEMONSTRATION STUDY

In this section, we look at an example to demonstrate how
to use IDEVELOPAR to identify and fix a bug. The bug is

Fig. 2. Code panel in programming mode. In Line 22, the cursor is visible.
At the right, a list of code completions suggested by the IDE is shown.

located in a version of the game Super Mario [7] which is
implemented in Java. The bug manifests itself in the lack of
collision between opponents and the environment. We used
the same program and two more bugs in our formative user
evaluation in Section V-B.

Assume Jane has has already imported the game project
in Intellij.To start the IDEVELOPAR-Plugin she clicks at the
corresponding icon in the toolbar and puts on the AR glasses.
First, she executes the code by opening the hand menu and
clicking on “run code” to get a first impression of how the bug
affects the game. The game starts, and she can see that there
exists no collision between Goombas and bricks. Mario is not
affected by this bug. Therefore she starts searching for the
affected code location by opening the first code fragment. She
opens the hand menu again and clicks on “project view”. The
project view appears on the right side of the menu. Because
the collision is only missing for Goombas, she opens the
class Goomba. But the class Goomba does not reveal any
possible defects. Thus she follows the inheritance hierarchy
from Goomba to Enemy and continues to its superclass
GameObject. It contains the potentially important method
updateLocation() where the new location of an object
is set (line 67) by adding the horizontal velocity to the previous
x coordinate. This is not wrong but could result in incorrect
positions if faulty values are used for the velocity. For this rea-
son, she only closes the two previous code panels and moves
the code fragment containing the GameObject code aside for
later inspection. Next, she needs to identify the code location
of the collision detection. She starts searching in the class
GameEngine that contains the main() method. This class
consists of several hundred lines of code, so she scrolls down
the code by looking at the bottom of the displayed code panel
until she spots a run() method. This method calls the method
gameLoop() regularly. By clicking on gameLoop() and
choosing “open method”, she follows the call and opens a
new code panel containing only the corresponding method
code. In this code the method checkCollisions() is



Fig. 3. IDEVELOPAR in practice. The exemplary procedure from section III is shown. (A) Opened code panel (B) Two independent, visual linked emerging
code panel trees shown at a different level of detail (semantic zooming) (C) Code navigation, when clicking on a followable code element

called. Because Jane searches for the location of the collision
detection, she navigates into checkCollisions(). The
method body shown in the new code panel only contains
the line mapManager.checkCollisions(), so calls are
actually delegated to another class. To get an overview of
the class MapManager, she clicks on the called method, but
this time she opens the entire code of the class and not only
the corresponding method. The class MapManager contains
various methods for loading the map, assigning points, man-
aging objects, and indeed many methods checking different
cases of collisions. To fade out all the methods of no interest,
Jane clicks again on mapManager.checkCollisions()
in the previous code panel, but now she opens only the corre-
sponding method code. In this code she quickly identifies a call
of the method checkEnemyCollisions(). Navigating to
the code of this method leads her to the program logic handling
the collisions of enemies, especially of Goombas. Jane finds a
line of code (line 229) where the horizontal velocity is set to
the current value of the object’s velocity if there is an inter-
section with a brick. By looking at the code panel of the class
GameObject which she opened at the beginning, she recalls
that the direction of enemies depends on the corresponding
velocity. And because this velocity does not change, it results
in the seen behavior that Goombas do not invert their direction
when they collide with a brick. To fix that, Jane she opens
the hand menu and enables the programming mode. Then she
changes the code in line 229 with the connected keyboard such
that the velocity is multiplied by -1. To test if her fix actually

solved the problem, Jane runs the program through the hand
menu. The bug is fixed.

IV. EVALUATION

To investigate the effectiveness and usability of
IDEVELOPAR, we conducted a two-stage evaluation. First,
our work group analyzed the tool based on the cognitive
dimension framework [8], a technique to evaluate the usability
of an existing system. The second stage was a formative user
study with a total of eight participants.

1) Cognitive Dimensions Framework: To get a first im-
pression regarding the state of IDEVELOPAR, we conducted a
lightweight analysis based on the cognitive dimension frame-
work. This framework “is a broad-brush evaluation technique
for interactive devices and for non-interactive notations” [8],
defining 14 different cognitive dimensions. Table I gives a
short overview of the different dimensions (for more detailed
descriptions of each dimension see the paper by Blackwell and
Green [9]).

Through the discussion of the different dimensions, we
identified the potential usability issues shown in Table II.

In order to not delay the formative user evaluation, we
decided to prioritize the identified problems and fix only those
that we found to be critical for the user evaluation. For the
remaining issues we decided that we would combine them with
the insights gained by the user study for a later revision of our
tool. Thus, we before the user study, we extended our tool to
address the first two points in Table II. This extended version



TABLE I
LIST OF COGNITIVE DIMENSIONS BASED ON [9]

Dimension Description
Abstraction [CD1] types and availability of abstraction

mechanisms
Closeness of mapping [CD2] closeness of representation to domain
Consistency [CD3] similar semantics are expressed in

similar syntactic forms
Diffuseness [CD4] verbosity of language
Error-proneness [CD5] notation invites mistakes
Hard mental operations [CD6] high demand on cognitive resources
Hidden dependencies [CD7] important links between entities are

not visible
Premature commitment [CD8] constraints on the order of doing

things
Progressive evaluation [CD9] work-to-date can be checked at any

time
Role-expressiveness [CD10] the purpose of a component is readily

inferred
Secondary notation [CD11] extra information in means other than

formal syntax
Viscosity [CD12] resistance to change
Visibility [CD13] ability to view components easily
Provisionality [CD14] degree of commitment to actions or

marks

TABLE II
ISSUES IDENTIFIED USING THE COGNITIVE DIMENSIONS FRAMEWORK

Issue Dimensions
1 It should be possible to close a complete path of code

panels with one click.
CD3, CD12

2 Visual links should provide more information, e.g. by
using labeled links or different link types for different
dependencies.

CD5, CD7,
CD11

3 Currently, only classes and methods can be opened.
In addition, it should also be possible to display
arbitrary files.

CD1, CD2

4 Code panels should be more distinguishable by using
different shapes for different kinds of data (class,
method, or file).

CD1, CD13

5 A visual indication should be shown when several
identical code panels (same class or method) are
open.

CD6, CD7

6 It should be possible to split a code-panel tree, e.g.,
for rearranging subgroups of panels.

CD8

7 If navigating to an abstract class, the concrete imple-
mentation should be opened in a new code panel, or
at least the user should have a choice of opening it.

CD7

8 The state of the application should be persistent. The
previous session should be restored if the application
is closed and reopened.

CD11

9 It should be possible to pin comments to arbitrary
code panels in addition to accustomed comments
directly in the code.

CD11

10 It could help users to keep track of displayed code
panels if the code panels align with the direction of
their gaze. Similarly, it could be helpful if users could
pin selected code panels into their field of view.

CD13

is actually the one that we described in Section II. In the earlier
prototype, a user could only close a single code panel at a time.
So to close a complete sub-tree required many interactions
and thus a poor user experience. Thus, we implemented the
possibility to close complete (sub)-trees of code panels with
one action. Furthermore, we identified a lack of information
content on visual links. Therefore, we added a color-coding
to each visual link, depending on whether the link leads to a
class (blue link) or to a method (green link).

2) Formative User study: In addition to identifying more
usability issues, our user study focused on evaluating the
general usability our tool and potential advantages or disadvan-
tages of the approach. A total of 8 computer science students
participated in this study. Each participant had previously
completed our Advanced Programming course and thus has
appropriate programming skills. No one had used a HoloLens
2 before, so this kind of HMD was new to all of them. In
each evaluation run, two participants took part simultaneously
as a team. The task of each team was to identify and fix three
bugs in the given software, an object-oriented implementation
of Super Mario bros. implemented in Java [7]. The third bug
was mainly meant as a backup, in case the participants fixed
the first two bugs in less then 60 minutes.

Before the actual experiment, all participants completed a
two-phase tutorial to become familiar with the use of the
HoloLens 2 in general and the usage of our tool in particular.
First, they completed the interactive tutorial that comes with
the HoloLens 2, learning all the controls and gestures provided
by the HMD. Second, they worked through an interactive
tutorial designed in the same style, but tailored to the use
of our tool. At the beginning of each run, both participants
got a description of the current bug. Each bug considered on
its own was not hard to fix, but it was not trivial to locate the
defect in the code. So navigating to that location in the code
was one major challenge. Although we encouraged the teams
to fix all three bugs, it was not essential for the study that
they successfully completed all three tasks, but we were more
interested in their experience and that they actually used the
functionalities provided by the tool. All bugs could be repro-
duced by playing the game for a few seconds. The first bug
prevents enemies from colliding with the world, the second
bug leads to the possibility of unlimited jumping of Mario,
and the third bug left the points counter unchanged when
coins were collected. Each team worked in a pair programming
setting [10] with a driver and a navigator role. The driver
is the person who is actually writing and changing code. In
our setting, the driver wears the HoloLens 2 and works with
our IDEVELOPAR tool. The other participant, the navigator,
observes and corrects the work of the driver and suggests
strategies on how to solve the given task. The navigator sits
at a desktop computer with two screen. One screen shows the
IntelliJ IDE with our plugin, while the second screen shows a
live stream of the driver’s sight through the HoloLens 2. Both
participants were encouraged to communicate and think aloud
as much as possible [11]. We recorded the HoloLens 2 display
during the experiment, capturing every interaction performed



by the driver together with all holograms in the room. We
used the HoloLens 2 audio input to record the communication
among the team members. Additionally, we created logs of
every action performed by the driver with our tool. When a
team started to work on the next bug, they changed the driver
and navigator roles. At the end, the participants were asked
to fill in a short questionnaire containing a System Usability
Scale (SUS) part [12], [13], a User Experience Questionnaire
(UEQ) [14], and some rating questions about the usability of
particular features our the tool. Finally, we conducted a short
interview, which was also recorded.

After the first run, we found that the participants of the first
team had severe problems opening new code panels via the
hand menu. It turned out that during the development of the
tool, we had got accustomed to a workaround such that we
we were no longer aware that it initially was a workaround.
Thus, we decided to fix this problem first, as it almost made
the tool unusable. The other three teams all used this revised
prototype.

V. RESULTS

A. Quantitative Analysis

For the quantitative analysis, we used the data of the SUS,
the UEQ and the feature rating. Due to the low number
of participants, we did not perform any statistical tests but
only provide descriptive statistics in form of mean values in
Figure 4 and Figure 5. In these barcharts the 95% confidence
intervals are also shown to indicate the degree of uncertainty
of the result. Both the classical SUS score 72.19 (with 95%
confidence interval [52.72 - 85.00]) as well as improved
SUS score for small samples [15] 69.45 indicate that the
participants perceived the overall usability of the prototype
as acceptable (in the OK-to-good range).

Figure 4 shows the results of the perceived usability and
usefulness of the features of the tool. We used a 6-point
scale from 1=Very hard to use to 6=Very easy to use. The
participants could also indicate that they didn’t use a feature.

Almost every feature of IDEVELOPAR is generally rated as
useful, with values between five and six. Only the usefulness of
resizing a code panel and semantic zooming was rated slightly
below average.

In general, the usability was primarily positive. All but
one values lie at four or above. However, we could identify
some features with usability problems. Code editing (F6) was
rated as highly useful but only reached an average usability
rating. The same applies to other features like opening new
code panels or scrolling the code. Thus, inconsistent ratings
of a feature (F2, F9-F11) suggest that it should be improved,
but do not indicate what the concrete problems are. To gain
more insight about these cases, we actually looked at the
ratings of each team before the interviews, and asked them to
comment on features which they rated with high usefulness,
but lower usability. One participant mentioned, “You must
become familiar with the tool first until you can operate
these functions properly.” So it is definitely plausible that the
usability ratings may raise after a longer period of use.

0 1 2 3 4 5 6

Hand menu (F1)

Project overview (F2)

Moving code panels (F3)

Resizing code panels (F4)

Closing code panels (F5)

Code edi�ng (F6)

Naviga�ng (F7)

Scrolling in code panels (F8)

Eye scroll lock (F9)

Seman�c zooming (F10)

Running the code (F11)

Usability Usefulness

Fig. 4. Average ratings per feature regarding usability and usefulness. The
error bars show the 95% confidence interval.

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

2,50

A�
ra

c�
ve

ness

Pers
picu

ity

Effi
cie

ncy

Dependab
ilit

y

S�
m

ula�
on

Nove
lty

Bad Below Average Above Average

Good Excellent Mean

Fig. 5. Results of the User Experience Questionnaire. The error bars show
the 95% confidence interval.

Figure 5 shows the results of the UEQ. Compared with the
benchmark, our tool classifies above average except for the
efficiency category. However, because of the small number of
participants, it is also difficult to make statistically reliable
statements here. Still, we could observe that the results coin-
cide with the participants’ comments. Regarding the efficiency
aspect, a few participants perceived the tool as not as efficient
as their normal IDE: “In a normal IDE, the errors would have
been found more efficiently.” and for some, it was too slow to
operate: “So some things eat up too much time.” On the other
hand, the good values of the perspicuity category are reflected
in the user comments. One participant stated, “I had more of
an overview now of where I am, what I need to do right now.”



B. Qualitative Analysis
For our analysis we first transcribed the recorded interviews

and used a mix of open coding and theoretical (for the features)
coding to identify interesting phenomena in the data. As of yet,
we did not analyze the video and log data. In the following
we use the abbreviation GiPj to refer to participant j of group
i.

a) Features: For several features, no problems were
reported at all. For example, no group experienced problems
with semantic zooming (F10), “this minimized view was really
good” (G1P2) was the general opinion across all groups. Ad-
ditionally, moving and placing code panels (F3) was described
as a good usable feature.

On the other hand, for some of the features with inconsistent
ratings, we found very concrete descriptions of usability
problems. With respect to code editing (F6), it was mentioned
several times, that it was cumbersome to place the cursor
at the desired location. Although it was introduced to the
participants, that they can position the cursor by holding Ctrl
on the keyboard while looking at the corresponding code
location, most of them had problems to use it that way: “What
also didn’t work so well is clicking into the code that you
are actually in the line to edit. I tried that for a while, but
couldn’t get it to work” (G1P1). Another participant stated,
that it was unusual to move the cursor with the eyes and that
based on previous experience the Ctrl shortcut is associated
with a different kind of functionality: “With Ctrl, I am just
used to jump over words in normal IDEs” (G3P1).

The feature eye-scroll lock (F9) was almost not used during
the evaluation. But one participant had the problem to press
the corresponding button, located at the bottom of each code
panel, because the code scrolled unintentionally while moving
the eyes to focus the button: “You have to look at the button
somehow to press it, but during this time it keeps scrolling”
(G2P2).

The participants had very opposing opinions about scrolling
in code panels (F8) using eye-tracking. One said: “I find
scrolling with my eyes extremely exhausting” (G1P2), but in
contrast, another participant mentioned: “The scrolling over
the code, I found that actually very simple” (G3P2). In
addition, the participant (G1P2) has noted, “while scrolling,
you are looking for something in the code and can’t scroll
down and read at the same time”, but this is actually a
misconception of how eye-tracking based scrolling works.
When reading code in a code panel, the text will automatically
scroll down adapted to the reading speed. During the eval-
uation, several participants considered scrolling and reading
as two completely separate tasks, which leads to unnecessary
complexity. As a result, these participants may find scrolling
more tiring than those who understand scrolling and reading
as one task, leading to these opposing opinions.

b) Code-Panel Tree: Using IDEVELOPAR, the partici-
pants get a better overview of the project. They could build
a graph representation of the code fragments of interest and
navigate to their desired code locations. During the interview,
we got overall positive feedback regarding the question if the

tool improves code comprehension. One participant answered:
“I found it significantly easier to understand the program that
way, through all the graphs and such, than if I had just seen it
on the computer” (G1P2). Further, the participant mentioned
that “this [the overview] is much better here through this
graph. I see I started here, then I went that way, and now
I got there via these three detours because one method always
calls the next. And that’s not so easy with normal windows”
(G1P2).

c) Learning curve: A learnability effect was observable
within the last group, which found all three bugs. In their last
run, they used the tool very effectively and improved their
approach with the experiences gained from the previous tasks.
“I have now noticed the biggest advantage on the third try. I
now had much more overview of the code. I had one code
panel for the method and one for the class” (G4P2). This
feedback supports our hypothesis that a significant learning
effect occurs with prolonged use, which could increase the
effectiveness of the tool over time. But in general, we could
observe a wide range of different learning curves. Some got
along quickly, and others took a little longer to operate the
tool properly. But in the end, we often got the feedback that
“it was like you would kind of expect it to be” (G4P1), which
is an essential aspect of an intuitive, usable tool.

d) Strategies: Furthermore, the participants described
different approaches how they used the tool to solve the tasks.
They often followed the same approach as in a classical IDE,
but with increasing time of use, most participants developed
some placement strategies. These range from more enhanced
code view placements to usage of the surrounding physical
space: “For example, you can go to the corner now, say I’m
going to open the class here, and a few methods that I need
and maybe go somewhere else and open a few more classes
there” (G4P2) towards unexpected strategies. One participant
used a office swivel chair to build a 360-degree workspace to
place the code views all around him.

e) Suggested extensions: Besides all this substantial
feedback, the participants missed some advanced features they
knew from their IDE. For example, they missed a visual cue if
a class, method, or variable is not used somewhere in the code.
Furthermore, they missed some basic error highlighting in the
code panels. They additionally had some problems regarding
the efficiency of controlling the tool. Features do not work
on the first try due to a mix of a faulty implementation of
the software and some technical tracking problems of the AR
glasses. Some participants have used wrong gestures, leading
to incorrect tracking and, therefore, to a poor user experience.

f) Beyond usability: Walking opens the free flow of ideas
and is a simple method to boost creative thinking [16]. As one
participant put it “if you sit, then I feel, it is harder to think,
as if you walk around a bit.”

VI. RELATED WORK

Researchers introduced many approaches and visualizations
to support developers in gaining a better understanding of their
source code and facilitate the overall programming process.



The survey by Sulir et al. [17] on visual augmentation of
source-code editors includes more than 100 approaches that
were published between 2002 and 2017. Many more have been
published since.

A. Information Needs and Diagrams

In general, it is hard for the human working memory to
keep track of all the related programming tasks: Navigate
through code, remember already visited code fragments, keep
an overview of call hierarchies, and much more. Therefore
developers tend to create visual representations of the current
software project, often in the form of various diagrams or
sketches. These kinds of visual representations of software
systems are promising for supporting developers during their
work [18]. In an empirical study Lee et al. [19] investigated
how to support developers with diagramming tools. In a first
step, the authors asked the participants what a diagram should
show to a developer. The most desired information mentioned
by the participants are: “Who calls a method/call hierarchy”,
“Who uses/references who”, “The paths navigated through
methods” and “Type hierarchy”. In general, it turns out that
such diagrams help to find a way around the software. One
participant said: “It would be useful to develop a cognitive map
of the software, and it would help to navigate relationships”.
While this quote shows the possibilities of such visualizations,
participants also mentioned that the available screen size is not
sufficient for showing diagrams and that it is hard to display
all desired information.

Fleming et al. [20] applied Information Foraging Theory to
investigate how software developers use tools to perform tasks
like debugging, refactoring and code reuse. Here, programmers
are seen as information predators who gather information
(prey) using evolutionary foraging mechanisms to reduce en-
ergy. In particular, predators need to predict how much useful
prey they will gather on a path. In an empirical study with
professional developers Piorkowski et al. [21] found that over
50% of developers’ navigation choices produced less value
than they had predicted and nearly 40% cost more than they
had predicted.

B. Novel User Interfaces for Programming

Code Canvas [2] was proposed as an alternative to bento-
box design of existing development environments. In Code
Canvas the files of a software project are placed on a possibly
infinite canvas, such that developers can create their own
software map to better exploit their spatial memory.

Code Bubbles [4], [5], that we briefly described in the
introduction, provides a working set-based interface for IDEs
(especially for Eclipse). It allows a user to create side-by-
side code views, displaying not necessarily file-based data
but making it possible to show only the essential fragments
out of a method or class. When navigating through the code,
new views will open automatically when following, e.g.,
method calls. Connecting edges between the views visually
highlights all the emerging call hierarchies and thus gives an
structured overview of the navigation history. In subsequent

work, the Code Bubbles approach was reused to create a user
interface for debugging [22]. Patchworks [23] and its successor
CodeRibbon [24] provide a ribbon-based interface. A ribbon
is basically a canvas that is only infinite in horizontal direction
where visual elements, here document editors, can be placed
on a grid.

C. AR for Software Engineering

In a vision paper [25] Merino et al. discussed the potential
of AR in the context of software development with respect
to several general aspects like collaboration, communication,
embodiment, mediated reality, mobility, multi-device und per-
vasiveness. Currently, there exist only few papers in the
software engineering community (and many of those are short
papers) on the use of AR in software engineering. Most
papers use AR to place existing 3D software visualizations
(e.g. city metaphor [26], [27] or 3D tree visualizations [28]
in the physical space and use these visualization to analyze
software architecture [29]–[31], software performance [26],
[32] or project management [32], [33].

VII. CONCLUSION

We have presented IDEVELOPAR, a novel AR-based user
interface to enhance code understanding. By allowing the
user to place code panels freely in the physical space around
them they are no longer limited by the display size nor are
they bound to sit next to their desktop computer. While the
main goal of our formative study was to gain insights on
how to improve the overall usability of our tool, we also
found that the participants felt that the tool improved code
comprehension compared to their classical IDE. Although the
statistical analysis has to be considered with caution, it is in
line with the results of the qualitative study that a user can
get a better overview with the help of the tool and that for
some of the features with inconsistent rating the participants
mentioned concrete usability problems.

The main goal of the work presented in this paper was to
develop linked code views in AR and improve their usability.
As a next step we intend to leverage AR to enable novel usage
scenarios where code views are linked to objects in the real
world. As part of our future work, we also want to extend the
quantitative analysis by performing additional user sessions.
Furthermore, we will further improve the user-interface based
on the results of our study and add more features.

REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, dec 2006.

[2] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 2, 2010, pp. 207–210.

[3] B. de Alwis and G. Murphy, “Using visual momentum to explain
disorientation in the Eclipse IDE,” in Visual Languages and Human-
Centric Computing (VL/HCC’06), 2006, pp. 51–54.



[4] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, “Code bubbles: rethinking
the user interface paradigm of integrated development environments,” in
2010 ACM/IEEE 32nd International Conference on Software Engineer-
ing, vol. 1, 2010, pp. 455–464.

[5] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, “Code
bubbles: A working set-based interface for code understanding and
maintenance,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 2503–2512. [Online].
Available: https://doi.org/10.1145/1753326.1753706

[6] A. Tang, C. Owen, F. Biocca, and W. Mou, Performance Evaluation of
Augmented Reality for Directed Assembly. London: Springer London,
2004, pp. 311–331. [Online]. Available: https://doi.org/10.1007/978-1-
4471-3873-01 6

[7] Çandıroğlu. Ahmet, S. Unas, and B. Umut, “Classic
Super Mario Bros. game implemented with Java,”
https://github.com/ahmetcandiroglu/Super-Mario-Bros, 2022.

[8] T. Green and M. Petre, “Usability analysis of vi-
sual programming environments: A ‘cognitive dimensions’
framework,” Journal of Visual Languages & Computing,
vol. 7, no. 2, pp. 131–174, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X96900099

[9] A. Blackwell and T. Green, “Notational systems–the cognitive dimen-
sions of notations framework,” HCI models, theories, and frameworks:
toward an interdisciplinary science. Morgan Kaufmann, vol. 234, 2003.

[10] L. A. Williams, “Pair programming.” Encyclopedia of software engi-
neering, vol. 2, 2010.

[11] M. Van Someren, Y. F. Barnard, and J. Sandberg, “The think aloud
method: a practical approach to modelling cognitive,” London: Aca-
demicPress, vol. 11, 1994.

[12] J. Brooke, “Sus: a retrospective,” Journal of usability studies, vol. 8,
no. 2, pp. 29–40, 2013.

[13] ——, “SUS: a “quick and dirty’usability,” Usability evaluation in
industry, vol. 189, 1996.

[14] B. Laugwitz, T. Held, and M. Schrepp, “Construction and evaluation of
a user experience questionnaire,” in Symposium of the Austrian HCI and
usability engineering group. Springer, 2008.

[15] N. Clark, M. Dabkowski, P. J. Driscoll, D. Kennedy, I. Kloo, and H. Shi,
“Empirical decision rules for improving the uncertainty reporting of
small sample system usability scale scores,” International Journal of
Human–Computer Interaction, vol. 37, no. 13, pp. 1191–1206, 2021.

[16] M. Oppezzo and D. Schwartz, “Give your ideas some legs: The
positive effect of walking on creative thinking,” Journal of experimental
psychology. Learning, memory, and cognition, vol. 40, 04 2014.

[17] M. Sulı́r, M. Bačı́ková, S. Chodarev, and J. Porubän,
“Visual augmentation of source code editors: A systematic
mapping study,” Journal of Visual Languages & Com-
puting, vol. 49, pp. 46–59, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1045926X18301861

[18] S. Baltes and S. Diehl, “Sketches and diagrams in practice,” in FSE
2014, 2014.

[19] S. Lee, G. C. Murphy, T. Fritz, and M. Allen, “How can diagramming
tools help support programming activities?” in 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing, 2008, pp. 246–
249.

[20] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. M. Burnett, R. K. E.
Bellamy, J. Lawrance, and I. Kwan, “An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks,” ACM
Transactions on Software Engineering and Methodology, vol. 22, no. 2,
2013. [Online]. Available: https://doi.org/10.1145/2430545.2430551

[21] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: Developers’
predictions of value and cost,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 97–108. [Online]. Available:
https://doi.org/10.1145/2950290.2950302

[22] A. Bragdon, K. Rowan, J. Jacobsen, R. DeLine, and
R. DeLIne, “Debugger canvas: Industrial experience with
the code bubbles paradigm,” in International Conference
on Software Engineering, June 2012. [Online]. Avail-

able: https://www.microsoft.com/en-us/research/publication/debugger-
canvas-industrial-experience-with-the-code-bubbles-paradigm/

[23] A. Z. Henley and S. D. Fleming, “The patchworks code editor:
Toward faster navigation with less code arranging and fewer navigation
mistakes,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 2511–2520. [Online].
Available: https://doi.org/10.1145/2556288.2557073

[24] B. P. Klein and A. Z. Henley, “Coderibbon: More efficient workspace
management and navigation for mainstream development environments,”
in 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2021, pp. 604–608.

[25] L. Merino, M. Lungu, and C. Seidl, “Unleashing the potentials
of immersive augmented reality for software engineering,”
in 27th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2020, London, ON, Canada,
K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M. Fokaefs,
and M. Zhou, Eds. IEEE, 2020. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054812

[26] L. Merino, M. Hess, A. Bergel, O. Nierstrasz, and D. Weiskopf,
“PerfVis: Pervasive visualization in immersive augmented reality for
performance awareness,” in Companion of the 2019 ACM/SPEC
International Conference on Performance Engineering, ICPE 2019,
V. Apte, A. D. Marco, M. Litoiu, and J. Merseguer, Eds. ACM, 2019.
[Online]. Available: https://doi.org/10.1145/3302541.3313104

[27] D. Baum, S. Bechert, U. W. Eisenecker, I. Meichsner, and R. Müller,
“Identifying usability issues of software analytics applications in
immersive augmented reality,” in Working Conference on Software
Visualization, VISSOFT 2020, Adelaide, Australia. IEEE, 2020.
[Online]. Available: https://doi.org/10.1109/VISSOFT51673.2020.00015

[28] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak,
“Visualization of software architectures in virtual reality and augmented
reality,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–12.

[29] R. Mehra, V. S. Sharma, V. Kaulgud, and S. Podder, “XRaSE: Towards
virtually tangible software using augmented reality,” in 34th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2019, San Diego, CA, USA. IEEE, 2019. [Online]. Available:
https://doi.org/10.1109/ASE.2019.00135

[30] R. Mehra, V. S. Sharma, V. Kaulgud, S. Podder, and A. P.
Burden, “Towards immersive comprehension of software systems using
augmented reality - an empirical evaluation,” in 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2020, Melbourne, Australia. IEEE, 2020. [Online]. Available:
https://doi.org/10.1145/3324884.3418907

[31] C. S. C. Rodrigues, C. M. L. Werner, and L. Landau, “VisAr3D: an
innovative 3D visualization of UML models,” in Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, L. K. Dillon, W. Visser, and L. A. Williams, Eds. ACM,
2016. [Online]. Available: https://doi.org/10.1145/2889160.2889199

[32] J. Waller, C. Wulf, F. Fittkau, P. Dohring, and W. Hasselbring,
“Synchrovis: 3D visualization of monitoring traces in the city
metaphor for analyzing concurrency,” in 2013 First IEEE Working
Conference on Software Visualization (VISSOFT), Eindhoven,
The Netherlands, A. Telea, A. Kerren, and A. Marcus,
Eds. IEEE Computer Society, 2013. [Online]. Available:
https://doi.org/10.1109/VISSOFT.2013.6650520

[33] V. S. Sharma, R. Mehra, V. Kaulgud, and S. Podder, “An extended
reality approach for creating immersive software project workspaces,”
in Proceedings of the 12th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE@ICSE 2019,
Montréal, QC, Canada, Y. Dittrich, F. Fagerholm, R. Hoda, D. Socha,
and I. Steinmacher, Eds. IEEE / ACM, 2019. [Online]. Available:
https://doi.org/10.1109/CHASE.2019.00013


