
Bootstrapped Semantics-Directed Compiler

Generation

Stephan Diehl

FB 14 - Informatik, Universit�at des Saarlandes,

Postfach 15 11 50, 66041 Saarbr�ucken, GERMANY

diehl@cs.uni-sb.de, http://www.cs.uni-sb.de/~diehl

to appear in Proc. of 2nd International Workshop on Action Semantics Amsterdam, The Netherlands, 1999

Abstract. We introduce our natural semantics-directed generator 2BIG

for compilers and abstract machines. It applies a sequence of transfor-

mations to a set of natural semantics rules including a pass separation

transformation. Then we discuss how it can be used to generate a com-

piler and abstract machine for action notation. With the help of these

components we can then generate compilers for other source languages

whose semantics has been speci�ed in Action Notation. We also briey

discuss the concept of an abstract machine language language based on

the abstract machine generated for action notation.

1 Introduction

Given a semantics speci�cation of a source language, current semantics-directed

compiler generators produce compilers from the source language into a �xed

target language.

generator

-

compiler

-

code

-

output

semantics program input

? ? ?

Rather than just generating compilers which translate source programs into

a �xed target language, our system generates both a compiler and an abstract

machine. The generated compiler translates source programs into code for the

abstract machine.

generator

-

-

compiler

-

abstract machine code

abstract machine

-

output

semantics program

input

? ?

?

?

We chose Action Notation[8] as an example of a realistic programming lan-

guage, because it o�ers a rich set of primitives underlying both imperative and

functional programming languages. Since Action Notation is used to write Ac-

tion Semantics speci�cations, we can then combine the generated compiler for

Action Notation with an Action Semantics speci�cation of a programming lan-

guage. As a result, we get a compiler from the programming language to the

generated abstract machine language for Action Notation.

source program

?

Action Semantics

of source language

-

generator

-

-

compiler

-

abstract machine code

abstract machine

-

output

semantics of

Action Notation

action term

input

?

?

?

?

Thus, in general, we can bootstrap semantics-directed compiler generators

(SDCG): Given an implementation of an SDCG for a semantics formalism F

1

,

we can get an SDCG for an semantics formalism F

2

, if we have a speci�cation

of F

2

in F

1

.

2 Action Semantics

Action semantics [8] has been developed to allow for useful semantics descriptions

of realistic programming languages. The language used to write such semantics

descriptions is called action notation.

The semantic entities of action semantics are actions, data and yielders. Ac-

tions are computational entities, they reect the step-wise execution of pro-

grams. Data are mathematical entities like numbers, truth-values, lists and sets.

Finally yielders represent unevaluated data. If the action containing a yielder

is performed, the yielder evaluates to a concrete datum. Actions can become

data by encapsulating them in abstractions, which can be enacted into actions

again. The performance of an action may complete (i.e., normal termination), es-

cape (i.e., exceptional termination which may be trapped), fail (i.e., abandoning

the performance of an action which can lead to the performance of an alter-

native action) or diverge (i.e., nontermination). Actions process di�erent kinds

of information and can be classi�ed according to which facet they belong: ba-

sic (control-ow, no data are changed), functional (transient information, i.e.,

intermediate results), declarative (scoped information, i.e., bindings), imperative

(stable information, i.e., the store), communicative (permanent information, i.e.,

messages send between actions), directive (�nite representation of self-referential

bindings). Actions which process information in more than one facet are called

hybrid. An action may commit and discard alternatives, e.g., in an action A

1

or

A

2

representing the nondeterministic choice between two sub-actions, A

1

may

commit and thus A

2

is discarded. Compound actions can be build from primitive

actions using a special kind of actions called action combinators.

Since action semantics provides so many actions and yielders we refrain from

giving an exhaustive listing but instead look at some examples.

Similar to denotational semantics the action semantics of a programming

language is given by semantic equations

1

:

� execute[[X ":=" E]] = evaluate E

then

store the given value in the cell bound to X

evaluate is a semantic function de�ned by semantics equations similar to the

way the semantic function execute is de�ned here. For a concrete value of E the

function evaluate yields a compound action. The action combinator A

1

then A

2

propagates the transients given to the whole action to A

1

, the transients given

by A

1

are propagated to A

2

, and only the transients given by A

2

are given by the

whole action. Thus then represents the left-to-right sequencing in the functional

facet. The primitive, imperative action store Y

1

in Y

2

stores the datum produced

by the yielder Y

1

in the store cell (a special kind of data) produced by the yielder

Y

2

. Note, that items of data are a special case of yielders, and always yield

themselves when evaluated. In the above example the variable name associated

with X in a concrete program would be such a special yielder.

� execute[["while" E "do" C "od"]] = unfolding

evaluate E

then

execute C then unfold

else

complete

The action combinator unfolding A performs the action A, but whenever it

reaches the dummy action unfold it performs A instead. The action complete

simply completes and is thus a neutral action with respect to some action com-

binators. The action combinator A

1

else A

2

is actually syntactic sugar for a

compound action: check the given truth-value and then A

1

or

check no the given truth-value and then A

2

The action check Y completes if the yielder Y evaluates to true and fails if

it evaluates to false. The yielder not Y evaluates to true (false) if Y evaluates

to false (true). The yielder the given D evaluates to a transient datum of sort

D given by a preceding action. There can be more than one transient datum,

which is taken care of by a labeling mechanism. The action which gives a datum

1

Instead of using parentheses to indicate precedence of actions, in action semantics

we use the convention that vertical lines group actions and their arguments.

can label it, e.g., give Y label #n and later a yielder can access it, e.g., the given

D label #n. Now give Y is short for give Y label #0 and the given D or just the

D is short for the given D label #0.

3 The 2BIG Generator

The 2BIG generator [2, 4] applies a sequence of established techniques to a Nat-

ural Semantics speci�cation in order to split it into a compiler and an abstract

machine. We believe that our framework, by virtue of being compositional, can

be extended over time to include even more powerful analysis and transfor-

mation methods. Actually, the transformations are mostly source-to-source and

after every transformation we have an executable speci�cation again. Of these

transformations pass separation is the most important one. Let p be a pro-

gram and x and y the static and dynamic input to this program, then par-

tial evaluation of p with respect to x yields a residual program p

x

, such that

p

x

(y) = p(x; y). In contrast pass separation transforms the program p into two

programs p

1

and p

2

such that p

2

(p

1

(x); y) = p(x; y). Note that here p

1

produces

some intermediate data, which are input to p

2

. When it comes to the generation

of compiler/executor pairs, pass separation provides an immediate solution, we

pass separate the interpreter interp into an executor exec and a compiler comp,

such that: interp(prog; data) = exec(comp(prog); data). Despite this potential

for compiler generation there is only little work on pass separation [7, 6, 3].

Our generator �rst transforms the 2BIG rules into a term rewriting system:

For this, it �rst removes side conditions by converting them into transitions,

thus there are now only transitions as preconditions. Then it factorizes rules

which have a common initial sequence of preconditions. Factorization replaces

these rules with a single rule which has the common initial sequence as its

preconditions and for each original rule a rule is generated with its remaining

preconditions. Next the generator adds a stack to the state in the transitions and

stores temporary variables, i.e. variables which are not used in an intermediate

transition. Variables which do not occur in the conclusion of a rule are eliminated.

The last step before the actual transformation into a term rewriting system is

called sequentialization. It converts all preconditions of a rule such that the result

state of one transition is the start state of the next. These rules can now be easily

turned into rewrite rules. Rules of the form

c

1

`e

1

!e

0

1

::: c

n

`e

n

!e

0

n

c`e!e

0

are

converted into h(c; p); ei ! h(c

1

; : : : ; c

n

; p); e

1

i where p is a new variable name.

Now the resulting term rewriting system is in a form, such that pass separa-

tion can be applied which yields two term rewriting systems: one representing a

compiler and one representing the abstract machine. These term rewriting sys-

tems are then further optimized to reduce the number and complexity of the

abstract machine instructions, e.g. the number of arguments.

4 Transforming a 2BIG speci�cation of Action Notation

In his PhD thesis [10] deMoura gives a natural semantics speci�cation of a subset

of action notation used in the compiler generator Actress [9]. In this speci�cation

the order of rules is important. We converted these rules into 2BIG rules adding

additional preconditions, when necessary, to make the rules determinate. Then

we used our system to generate a compiler and abstract machine represented as

term rewriting systems.

In Section 4.1 we demonstrate the generation process by transforming the

2BIG rules for of the GIVE action.

Our speci�cation consists of 100 2BIG rules de�ning the semantics of 39 action

notation constructs including the control, functional, declarative and imperative

facets but, as in other Action Semantics directed compiler generators, neither

the communicative facet, nondeterminism nor the interleaving of actions. After

transformation of side conditions we got 135 rules. Factorization resulted in 191

rules. After sequentialization we got 276 rules. Finally pass separation yielded

216 compiler rules and 276 abstract machine rules. We tested this compiler

and abstract machine by translating Mini-� programs (e.g., Fibonacci numbers)

based on an action semantics speci�cation of the language Mini-� [9] into action

terms. Then we compiled these action terms using the generated compiler into

an abstract machine program and executed the latter by the above abstract

machine rules. In other words we use a 2BIG semantics-based compiler generator

to generate a compiler and abstract machine for action notation. The generated

compiler is then inserted as the back end into a compiler generator based on

action semantics (see Figure 1). The front end of this compiler generator was

previously developed and used with a positive supercompiler for Prolog

2

as its

back end [1].

4.1 Transforming the GIVE Action

As an example we will now demonstrate step by step how our system generated

the abstract machine instructions for the GIVE action.

In the 2BIG speci�cation the following rules de�ne the action give which

evaluates the yielder Y and returns the resulting value D as a transient. In the

rules, states are composed of the transients T , the bindings B and a single-

threaded store S. Furthermore there is the outcome status O, which can be

failed or completed.

Y `[T;B;S]!datum(D) D 6=nothing

give(Y;N)`[T;B;S]![completed;[N 7!datum(D)];[];S]

Y `[T;B;S]!datum(D) not(D 6=nothing)

give(Y;N)`[T;B;S]![failed;[];[];S]

2

Positive supercompilation [12, 11] is a program specialization technique developed in

the functional community. Its adaption to Prolog is not much di�erent from partial

evaluation of Prolog [5].

P
as

s
Se

pa
ra

ti
on

an
d

ot
he

r
T

ra
ns

fo
rm

at
io

ns

...C* C*
L1 Ln

2BIG-DCAMG

L1 2BIG

AN 2BIG

Ln 2BIG

...

...

AM L1 & C L1

AMAN & CAN

AM Ln & C Ln

L1AN ... Ln AN

Interpreter

2BIG-Interpreter

Interpreter for Li

for Li

A
N

-I
nt

er
pr

et
er

 AN-DCG

Compiler from Li to AM AN

Composition with CAN

Li

2BIG

2BIG speci�cation of language Li

AN

2BIG

2BIG speci�cation of action notation

2BIG �DCAMG 2BIG directed generator of compilers and abstract machines

AM

Li

abstract machine for language Li

AM

AN

abstract machine for action notation

C

Li

compiler from language Li into AM

Li

C

Li

compiler from action notation into AM

Li

Li

AN

action semantics speci�cation of language Li

C

�

Li

compiler from language Li into AM

AN

AN �DCG action semantics directed compiler generator

Fig. 1. Action-Semantics Directed Compiler Generation

There are two side conditions in the above rules, one is the negation of the

other. Transforming the side conditions yields:

Y `[T;B;S]!datum(D) test

1

`[D]!true

give(Y;N)`[T;B;S]![completed;[N 7!datum(D)];[];S]

Y `[T;B;S]!datum(D) test

1

`[D]!false

give(Y;N)`[T;B;S]![failed;[];[];S]

test

1

` [D]! D 6= nothing

After factorization of the above rules we have:

Y `[T;B;S]!datum(D) test

1

`[D]!R fact

give

(N)`[[D;S];R]!E

give(Y;N)`[T;B;S]!E

fact

give

(N) ` [[D;S]; true]! [completed; [N 7! datum(D)]; []; S]

fact

give

(N) ` [[D;S]; false]! [failed; []; []; S]

test

1

` [D]! D 6= nothing

Now the stack (Z) is introduced and temporary variables are allocated:

Y ` [[SjZ]; [T; B; S]]! [[SjZ]; datum(D)]

test

1

` [[[S;D]jZ]; [D]]! [[[S;D]jZ]; R] fact

give

(N) ` [Z; [[D; S]; R]]! [Z;E]

give(Y;N)`[Z;[T;B;S]]![Z;E]

fact

give

(N) ` [Z; [[D;S]; true]]! [Z; [completed; [N 7! datum(D)]; []; S]]

fact

give

(N) ` [Z; [[D;S]; false]]! [Z; [failed; []; []; S]]

test

1

` [Z; [D]]! [Z;D 6= nothing]

Next these rules can be sequentialized:

Y ` [[SjZ]; [T; B; S]]! [[SjZ]; datum(D)]

conv

5

` [[SjZ]; datum(D)]! [[[S;D]jZ]; [D]] test

1

` [[[S;D]jZ]; [D]]! [[[S;D]jZ]; R]

conv

6

` [[[S;D]jZ]; R]! [Z; [[D; S]; R]] fact

give

(N) ` [Z; [[D; S]; R]]! [Z;E]

give(Y;N)`[Z;[T;B;S]]![Z;E]

fact

give

(N) ` [Z; [[D;S]; true]]! [Z; [completed; [N 7! datum(D)]; []; S]]

fact

give

(N) ` [Z; [[D;S]; false]]! [Z; [failed; []; []; S]]

test

1

` [Z; [D]]! [Z;D 6= nothing]

conv

2

` [[SjZ]; datum(D)]! [[[S;D]jZ]; [D]]

conv

3

` [[[S;D]jZ]; R]! [Z; [[D;S]; R]]

Now a term rewriting system is generated:

hgive(Y;N);C; [Z; [T;B; S]]i

=) hY ; conv

2

; test

1

; conv

3

; fact

give

(N);C; [[[S]jZ]; [T;B; S]]i

hfact

give

(N);C; [Z; [[D;S]; true]] =) hC; [Z; [completed; [N 7! datum(D)]; []; S]]i

hfact

give

(N);C; [Z; [[D;S]; false]] =) hC; [Z; [failed; []; []; S]]i

htest

1

;C; [Z; [D]] =) hC; [Z;D 6= nothing]i

hconv

2

;C; [[[S]jZ]; datum(D)]i =) hC; [[[S;D]jZ]; [D]]i

hconv

3

;C; [[[S;D]jZ]; R]i =) hC; [Z; [[D;S]; R]]i

Finally we apply the pass separation transformation and we get the following

compiler rules:

give(Y;N) =) give(Y;N);Y ; conv

2

; test

1

; conv

3

; fact

give

(N)

fact

give

(N) =) fact

give

(N)

test

1

=) test

1

conv

2

=) conv

2

conv

3

=) conv

3

And the following abstract machine rules:

hgive(Y;N);C; [Z; [T;B; S]]i =) hC; [[[S]jZ]; [T;B; S]]i

hfact

give

(N);C; [Z; [[D;S]; true]]i =) hC; [Z; [completed; [N 7! datum(D)]; []; S]]i

hfact

give

(N);C; [Z; [[D;S]; false]]i =) hC; [Z; [failed; []; []; S]]i

htest

1

;C; [Z; [D]]i =) hC; [Z;D 6= nothing]i

hconv

2

;C; [[[S]jZ]; datum(D)]i =) hC; [[[S;D]jZ]; [D]]i

hconv

3

;C; [[[S;D]jZ]; R]i =) hC; [Z; [[D;S]; R]]i

5 Prototyping Tools

In Figure 1 we show how the di�erent generators and interpreters can be used

for both rapid prototyping of language speci�cations and generation of compil-

ers and abstract machines. First we can use a 2BIG-interpreter to test a 2BIG-

speci�cation Li

2BIG

of programming languages Li. Then we can generate an

abstract machine AM

Li

for the language Li and a compiler C

Li

from Li to

AM

Li

using our 2BIG-semantics directed compiler and abstract machine gener-

ator (2BIG-DCAMG). The generator's central transformation is pass separation

of term rewriting rules. In addition it applies many pre- and post-processing

transformations including several optimizations.

Based on a 2BIG-speci�cation AN

2BIG

of a certain language, namely action

notation, we generate a compiler and abstract machine for action notation. Now

an action semantics speci�cation Li

AN

of a programming language Li can be

tested both by using an action notation interpreter or by composing the action

notation speci�cation,i.e., semantics equations mapping Li programs to action

notation terms, with the compiler C

AN

. This composition results in an action

semantics-directed compiler generator (AN-DCG).

Our prototyping environment includes several tools written in Prolog:

{ a 2BIG interpreter

{ an action notation interpreter (actually we have a handwritten interpreter,

but we can also use the 2BIG interpreter to execute action terms using the

2BIG speci�cation of action notation)

{ an interpreter for compiler and abstract machine rules

{ a compiler of source language programs to C using the compiler and abstract

machine rules

{ a compiler of compiler rules and abstract machine rules to SML

6 An Abstract Machine Language Language

Since Action Semantics is a formal language to de�ne programming languages,

we expect, that the abstract machine language AM

AN

generated for Action

Semantics is suitable to de�ne abstract machine languages. Rather than just

composing the AM

AN

and the semantics equation which gives us AN-DCG, we

could try a method similar to the combinator based approach of Wand [13, 14].

Given an Action Semantics speci�cation of a programming language L:

1. Translate the right hand sides of the semantics equation using the generated

compiler into AM

AN

(this results in an AN-DCG).

2. Look for recurring patterns in the translated right hand side.

3. De�ne new instructions based on these patterns. These new instructions form

an abstract machine speci�c for L.

4. Fold the patterns in the semantics equations by the new instructions. The

resulting equations constitute a compiler into the abstract machine for L.

7 Action Semantics-Directed Compiler Generation

Now we will show how our action semantics-based compiler generator works by

means of a simple example. The semantics of the language Mini-� is given by

equations like the following one:

� execute[[X ":=" E]] =

evaluate E

then store the value in the cell bound to X

These semantic equations de�ne a translation function from source language

programs to action terms. Using this action semantics speci�cation of Mini-�

the following program

let const i=1;

var x:integer;

in x:=2+i end

is translated into the following action term

� furthermore

give num(1) then bind i to the given value

before

allocate a cell of type integer then bind x to the cell

hence

give num(2) then give the value label#1

and

give the value stored in the cell bound to i

or

give the value bound to i

then

give the value label #2

then

give add(the value #1,the value #2)

then

store the given value in the cell bound to x

In our system we use pre�x notation instead of the mix�x notation usually

used for action terms. Thus A

1

then A

2

becomes then(A

1

; A

2

). The above

action term in pre�x notation is:

hence(

furthermore(

before(then(give(num(1),0),bind(i,the(value,0))),

then(allocate(cell(integer)),bind(x,the(cell,0))))),

then(

then(

and(then(give(num(2),0),give(the(value,0),1)),

then(or(give(stored(value,bound(cell,i)),0),

give(bound(value,i),0)),

give(the(value,0),2))),

give(add(the(value,1),the(value,2)),0)),

store(the(value,0),bound(cell,x))))

Now this action term is converted into a very long abstract machine program

by the generated compiler. One reason for the length of the abstract machine

program is that recurring subprograms are not shared.

hence(

furthermore(

before(

then(

(give(num(1); 0);

num(1);

conv

2

;

test

1

;

conv

3

;

fact

give

(0));

(bind(i; the(value; 0));

the(value; 0);

conv

1

4;

test

5

;

conv

1

5;

fact

bind

(i)));

give(num(1); 0);

:::

The execution of the above program by the abstract machine in the empty

environment yields the expected result: a memory cell is allocated for the variable

x and the value 3 is stored in it.

In the above example the action term could be simpli�ed before translating

it into the abstract machine language. As an example

give num(2) then give the value label#1

can be simpli�ed to give num(2) label#1. Analyses and simpli�cations of action

terms have been investigated in de Moura's PhD thesis [10]. It would be inter-

esting to use the simpli�ed action terms produced by his Actress system and

translate those into the generated abstract machine language.

8 Experimental Results for Optimizations

For the action notation speci�cation, the optimizations of the generated term

rewriting systems lead to a signi�cant reduction of the number of rules both of

the compiler and the abstract machine. First, by self-application, the number of

compiler rules was reduced from 216 to 43. Second, using the other optimizations

we got 181 instead of 276 abstract machine rules.

give(Y;N) =) give(Y;N);Y ; conv

2

; test

1

; conv

3

; fact

give

(N)

give(Y;N) =) give;Y ; comb; fact

disp

(factor

give

; N)

Comparing the original and the optimized compiler rule for the GIVE action

we �nd that the following optimizations have been applied:

{ The arguments to the abstract machine instruction give have been removed.

{ There are no more compiler rules for conv

2

, test

1

, etc.

{ The sequence of instructions conv

2

; test

1

; conv

3

has been combined into the

instruction comb.

{ Some abstract machine rules of factor

give

have been conicting with rules of

other instructions and thus these term rewriting rules have been factorized.

This lead to the introduction of the new instruction fact

disp

.

9 Conclusion

So far our prototyping tools have been used to implement a considerable subset

of Action Semantics. Instead one could also try to implement subsets of Action

Semantics restricted to a few facets. As an example, to specify functional lan-

guages we could implement a version of Action Semantics without the imperative

facet. As a consequence the generated abstract machine would not have a store

as a compenent of its state. Another approach would be to implement an anno-

tated version of Action Semantics and a preprocessing phase, e.g., a binding-time

analysis, which translates action terms into annotated terms. Finally, rather than

just experimenting with existing semantics formalism, our system can also be

used to design and implement new semantics formalisms.

References

[1] Stephan Diehl. A Prolog Positive Supercompiler. in Proceedings of "Arbeit-

stagung Programmiersprachen", Herbert Kuchen, editor, published as Arbeits-

bericht No. 58 of the Institut f�ur Wirtschaftsinformatik, Westf�alische Wilhelms-

Universit�at M�unster, 1997

[2] Stephan Diehl. Semantics-Directed Generation of Compilers and Abstract Ma-

chines. PhD thesis, University Saarbr�ucken, Germany, 1996. http://www.cs.uni-

sb.de/~diehl/phd.html.

[3] Stephan Diehl. Transformations of Evolving Algebras. In Proceedings of VIII

International Conference on Logic and Computer Science LIRA'97, pages 43{50,

Novi Sad,Yugoslavia, 1997.

[4] Stephan Diehl. Natural Semantics Directed Generation of Compilers and Abstract

Machines. Formal Aspects of Computing (to appear), 1999.

[5] R. Gl�uck and M.H. S�rensen. Partial Deduction and Driving are Equivalent. In

PLILP'94. 1994.

[6] John Hannan. Operational Semantics-Directed Compilers and Machine Architec-

tures. ACM Transactions on Programming Languages and Systems, 16(4):1215{

1247, 1994.

[7] U. J�rring and W.L. Scherlis. Compilers and Staging Transformations. In 13th

ACM Symposium on Principles of Programming Languages, 1986.

[8] P.D. Mosses. Action Semantics. Cambridge University Press, 1992.

[9] H. Moura and D. A. Watt. Action Transformations in the ACTRESS Compiler

Generator. In CC'94, volume LNCS 768. Springer Verlag, 1994.

[10] Hermano Moura. Action Notation Transformations. PhD thesis, University of

Glasgow, 1993.

[11] M.H. S�rensen, R. Gl�uck, and N. D. Jones. Towards Unifying Partial Evaluation,

Deforestation, Supercompilation and GPC. In D. Sannella, editor, Programming

Languages and Systems, volume LNCS 788. Springer Verlag, 1994.

[12] V.F. Turchin. The Concept of a Supercompiler. ACM TOPLAS, 8(3), 1986.

[13] Mitchell Wand. Semantics-Directed Machine Architecture. In Proc. of POPL'82.

1982.

[14] Mitchell Wand. From Interpreter to Compiler: A Representational Derivation. In

H. Ganzinger, N.D. Jones, editor, Programs as Data Objects, volume LNCS 217.

Springer Verlag, 1986.

