
Object-Oriented Animations with VRML++

Stephan Diehl

FB 14 - Informatik, Universit�at des Saarlandes,

Postfach 15 11 50, 66041 Saarbr�ucken, GERMANY

Email: diehl@cs.uni-sb.de, WWW: http://www.cs.uni-sb.de/~diehl

in Proc. of Virtual Environments Conference and 4th Eurographics Workshop, Stuttgart, 1998

Abstract

In this paper we show how VRML++ can be used to specify animations.

VRML++ extends the Virtual Reality Modeling Language VRML97 by classes

and inheritance, an improved type system, and dynamic routing. Using these

new features it is possible to de�ne abstractions of routing structures which we

call connection classes. Such connection classes are a powerful tool to de�ne

generic animation class. The example discussed in detail in this paper demon-

strates that VRML++ increases reuseability, readability, and extensibility of

speci�cations while reducing run-time errors.

1 Introduction

The Virtual Reality Modeling Language (VRML) is a data format to describe inter-

active, three-dimensional objects and scenes which are interconnected via the world

wide web. By introducing scripts, events and routes VRML 2.0 and now VRML97

added programming language concepts and thus behavior to VRML scenes. We

would like to reuse and parameterize such behavior. This is possible to some extent

in VRML97, but when we look at programming languages, reuse of code was greatly

simpli�ed by the development of object-oriented programming languages. In a sim-

ilar way the emerging virtual reality industry could bene�t from reuseable, reliable,

abstract virtual models and behaviors. In [Die97] we introduced VRML++, a lan-

guage which integrates key concepts of object-oriented programming languages into

VRML, and discussed its design and implementation. The current paper presents

a case study. The speci�cation of an animation written in VRML++ is presented

and the underlying VRML++ concepts are discussed in detail. The animation uses

generic animation classes which get sensors and interpolators as parameters.

2 Related Work

In [MHL96] Matsuda, Honda and Lea point out, that objects in VRML have prop-

erties, state variables and behaviors. Using standard terminology of the object-

1

Virtual Environments'98 2

Figure 1: Animation of two persons walking

oriented programming community, this can only be considered object-based. The

extension suggested by Park [Par97] is to replace ROUTEs and Scripts by Even-

thandlers. He calls the resulting language OO-VRML. But his extension does not

increase object-orientation. The work of Curtis [Bee97] shows that there is a need

for object hierarchies or even better class hierarchies when it comes to implementing

simulations involving behaviors in VRML. He tries to use VRML and Java to this

end, but because of the lack of inheritance in VRML his implementation becomes

complicated.

In our view the concepts present in VRML correspond roughly to those of OOPLS

as follows:

� Prototypes are classes without inheritance. Instantiation is done by creating

a copy of a prototypical instance.

� Nodes of the scene graph are objects.

� Events and Script nodes, which process events, are methods.

� Fields are variables.

Virtual Environments'98 3

But VRML lacks inheritance, the essential feature of object-orientation. Further-

more in VRML there is no elaborate type system, no dynamic binding and no

inclusion polymorphism.

3 VRML++: The bare bones

In this section we give a very brief introduction to VRML++, for more details see

[Die97] or the VRML++ web site.

Classes: Assume you have a prototype which has all �elds and events of an exist-

ing one, but in addition it should have some new �elds and events. In VRML you

would have to include the original prototype in the new one and associate explicitly

(using IS) each �eld and event of that instance with the �eld and events of the new

prototype. In the OO literature this implementation technique is called contain-

ment. This simple strategy to extend prototypes does usually not su�ce to extend

geometries, but it is a powerful way to extend behaviors.

1 PROTO Ball [field SFFloat size 1.0]

2 { Shape { geometry Sphere { radius IS size }

3 appearance ...

4 }

5 }

6

7 PROTO RotatingBall [field SFFloat size 1.0

8 field SFTime slowdown 1.0]

9 { DEF SELF Ball { size IS size }

10 DEF OI OrientationInterpolator { ... }

11 DEF CLOCK TimeSensor { cycleInterval IS slowdown }

12 ROUTE C.fraction_changed TO OI.set_fraction

13 ROUTE OI.value_changed TO SELF.set_fraction

14 }

In VRML++ this can be written in a more readable and maintainable way, because

�elds are inherited automatically:

1 PROTO RotatingBall [exposedField SFTime slowdown 1.0] EXTENDS Ball

2 { DEF OI OrientationInterpolator { ... }

3 DEF CLOCK TimeSensor { cycleInterval IS slowdown }

4 ROUTE C.fraction_changed TO OI.set_fraction

5 ROUTE OI.value_changed TO SELF.set_fraction

6 }

In a class de�nition SELF denotes the instance of the class, when it is instantiated.

More precisely: if the class inherits only from SFNode, then SELF denotes the �rst

node in the class de�nition. Otherwise, it denotes an instance of the �rst superclass.

A class can inherit from other classes, from other prototypes or from standard VRML

nodes like Sphere or Transform. The top class of the inheritance hierarchy is always

SFNode.

Virtual Environments'98 4

Multiple Inheritance: In VRML++ it is also possible for a class to have several

superclasses In this case every �eld and event is only inherited from the �rst class

in the list of superclasses which supports it. In other words the values of �elds and

events are only propagated to the �rst superclass providing it.

Types: The VRML type system only discriminates primitive types like integers,

oats and boolean values and all composed data are considered to be of type Node.

Furthermore the value of a �eld can be a single value (indicated by the pre�x SF of

the type) or a list of values (indicated by the pre�x MF of the type). In addition, in

VRML++ the names of standard nodes, as well as those of user-de�ned prototypes

and classes can be used as type restrictions for �elds and events. A major reason

for errors in VRML scenes are routes to nodes which do not have the �eld referred

to in the ROUTE. This problem becomes even more important, when nodes and

routes are created at runtime in Scripts (via the Browser Interface) or Applets (via

the External Authoring Interface) or in VRML++ via dynamic routing. By using

our improved type system constraints which are currently expressed verbally in the

VRML97 speci�cation can be made explicit and enforced by type checking, For

example, in the speci�cation we can read, that the value of the �eld appearance

must be a node of type Appearance. This can be directly expressed in VRML++

as:

1 CLASS Shape [exposedField Appearance appearance NULL

2 ...]

3 { }

Dynamic Routing: In VRML routes can only be declared between DEF'ed nodes

or added and deleted at runtime by programs. In contrast, VRML++ o�ers dynamic

routing. By dynamic routing we mean that routes are created between nodes which

are passed as �eld values to a prototype, e.g.

1 CLASS Filter [field MFNode sources []

2 field OrientationInterpolator filter NULL

3 field MFNode targets []] EXTENDS SFNode

4 { ROUTE source.fraction_changed TO filter.set_fraction

5 ROUTE filter.value_changed TO targets.set_rotation

6 }

We call such a class, which abstracts a routing structure, a connection class. A

connection class contains a generic set set of routes which can be instantiated. The

above example demonstrates a typical connection class, a Filter, which routes

di�erent source nodes like sensors to a �lter, e.g. an Interpolator, and routes the

result of this �lter to several target nodes.

4 Case Study: An Animation in VRML++

VRML++ provides all language constructs of VRML97 but in addition it provides

constructs to de�ne classes, express type restrictions and specify dynamic routing.

Virtual Environments'98 5

In this section we discuss the speci�cation of an animation of a walking person (see

Figure 1) using these new language concepts.

1 #VRML++ draft utf8

2

3 Background { groundColor [0.3 0.5 0.3 , 0.1 0.4 0.1]

4 groundAngle 1.57

5 skyColor 0 0 0.6

6 }

7

8 PROTO ArmPart [exposedField SFColor color 1 0 0]

9 { ... }

In VRML++ we can instantiate and de�ne prototypes using VRML97 syntax.

10 PROTO Arm

11 [exposedField SFRotation elbowrotation 0 0 0 0

12 exposedField SFRotation shoulderrotation 0 0 0 0

13 exposedField SFColor color 1 0 0

14]

15 { Transform {

16 children [ArmPart { color IS color }

17 Transform { children ArmPart { color IS color }

18 translation 0 0.40 0

19 rotation IS elbowrotation }

20]

21 rotation IS shoulderrotation }

22 }

To model an Arm of a person we use two ArmPart objects. The arm can be animated

by rotating its joints (shoulder and elbow). We also de�ne prototypes for BodyPart

and Head.

23 CLASS Leg [] EXTENDS Arm { }

In VRML++ a class can inherit from other classes and prototypes. The new class

has all the events and �elds of its superclasses, but the new class can also change

some of these events or �elds or add new ones. The topmost class of the inheritance

hierarchy of VRML++ is SFNode. Next we de�ne a subclass Man of SFNode which

gets as parameters objects representing the di�erent body parts of a person.

24 CLASS Man [exposedField MFNode head []

25 exposedField MFNode body []

26 exposedField MFNode rightarm []

27 exposedField MFNode leftarm []

28 exposedField MFNode rightleg []

29 exposedField MFNode leftleg []

30] EXTENDS SFNode

31 {

Virtual Environments'98 6

32 Transform { children [

33 Transform { children IS body },

34 Transform { children IS head

35 translation 0 0.35 0

36 },

37 Transform { children IS rightarm

38 translation 0.15 0.30 0

39 rotation 0 0 1 3.14

40 },

41 ...

42 ### similar for leftarm, rightleg and leftleg

43

44]

45 }

46 }

Note that an instance of this class is still a static object. To animate such an object,

we de�ne a subclass Walkman of Man. Some of the �elds of Walkman are interpolators

which animate the joints of the object. In VRML++ names of classes and prototype

can be used as types of �elds and events. These types can be used to prevent run-

time errors as we know them from VRML97. Usually these errors are reported when

a node is instantiated which tries to add a route to an event not supported by a

node.

In our example we de�ne a class JointInterpolator, which is only used as a type

restriction in class Walkman. In Java such classes, which can not be instantiated but

are used as intermediate classes in the inheritance hierarchy and for similar typing

purposes are called abstract classes.

47 CLASS JointInterpolator

48 [eventIn SFFloat set_fraction

49 eventOut SFRotation value_changed]

50 EXTENDS SFNode { } # abstract class

51

52 CLASS ArmShoulderInt []

53 EXTENDS OrientationInterpolator, JointInterpolator { }

54

55 #similar definitions for ArmElbowInt, LegShoulderInt

56 #and LegElbowInt

A concrete subclass of JointInterpolator could implement its events with a script.

But we simply use an OrientationInterpolator to de�ne the concrete subclass

ArmShoulderInt. The above de�nition is tricky. It uses multiple inheritance, i.e.,

several superclasses for the new class. As a result instances of the new class satisfy

the type restriction JointInterpolator but get their implementations from the

�rst superclass OrientationInterpolator.

In an animated, interactive virtual world routes can become obsolete and new routes

have to be established depending on the user's interaction. What we would like to

Virtual Environments'98 7

do, is to get a node at instantiation- (as a value of a �eld) or run-time (as a value

of an event or exposedField) and route from or to one of its events. This is not

possible in VRML97. In VRML97 one can only route from and to nodes which have

been bound to a name with DEF. The following example shows the dynamic routing

features of VRML++. Here the nodes which the prototype creates a route between

are not known until an instance of the prototype is created and the nodes are passed

as arguments to the prototype. Using dynamic routing we can de�ne connection

classes. A connection class abstracts a routing structure, i.e., a connection class is

a generic set of routes which can be instantiated.

57 CLASS Walkman

58 [field TimeSensor clock NULL

59 field JointInterpolator armrightelbow NULL

60 field JointInterpolator armrightshoulder NULL

61 ...

62 ### similar for armleftelbow, armleftshoulder, legleftelbow,

63 ### legleftshoulder, legrightelbow and legrightshoulder

64] EXTENDS Man

65 {

66 # MOVE RIGHT ARM

67 ROUTE clock.fraction_changed TO armrightelbow.set_fraction

68 ROUTE clock.fraction_changed TO armrightshoulder.set_fraction

69

70 ...

71 ### similar for armleftelbow, armleftshoulder, legleftelbow,

72 ### legleftshoulder, legrightelbow and legrightshoulder

73 }

Note in the above example that clock in the routes is not a DEF'ed name, but a

�eld name. In VRML++ it is also possible that the value of such a �eld is a list of

nodes. In this case routes from or to every node in the list are created.

So far an instance of Walkman would move its limbs, but the object would stay

at the same position. Next we de�ne a very useful generic animation class which

extends the standard prototype Transform. The new class Move gets a clock and

an interpolator as �eld values, routes the clock to the interpolator and the value of

the interpolator to the translation �eld, which it inherited from Transform. Thus

Move abstracts the classical animation mechanism used in VRML.

74 CLASS Move [field TimeSensor clock NULL

75 field PositionInterpolator moveInt NULL

76] EXTENDS Transform

77 { ROUTE clock.fraction_changed TO moveInt.set_fraction

78 ROUTE moveInt.value_changed TO SELF.set_translation

79 }

Now we have de�ned all body parts and animation classes for our example and it

remains to show how to use them. First we instantiate interpolators for the joints.

Note that the two interpolators below use the same key values but their keys are

reversed. This way we achieve that one arm goes up, when the other arm goes down.

Virtual Environments'98 8

80

81 DEF ArmRightShoulderInt

82 ArmShoulderInt {

83 key [0 , 0.2, 0.8, 1]

84 keyValue [0 0 0 0, 1 0 0 1.4, 1 0 0 -1.4, 0 0 0 0]

85 }

86 DEF ArmLeftShoulderInt

87 ArmShoulderInt {

88 key [1, 0.8, 0.2, 0]

89 keyValue [0 0 0 0, 1 0 0 1.4, 1 0 0 -1.4, 0 0 0 0]

90 }

91 ...

92

93 # dito for elbow joint of arm and joints of leg

We also want to animate the position of the person. We divide this in two ani-

mations. One animation changes the horizontal position of the person, the other

animation the vertical position. The second animation is necessary, because if the

person bends its knees its distance to the ground has to be decreased.

94 DEF PosInt

95 PositionInterpolator { # run 10 meters

96 key [0, 1]

97 keyValue [0 0 0, 0 0 20]

98 }

99

100 DEF HeightInt

101 PositionInterpolator { # adjust vertical position

102 key [0 , 0.5, 1]

103 keyValue [0 0 0, 0 -0.2 0, 0 0 0]

104 }

For our animations we use two clocks. A fast one which controls the joints and a

slow one which controls the position of the person.

105 DEF CLOCK TimeSensor { loop TRUE }

106

107 DEF SLOWCLOCK TimeSensor { cycleInterval 20 loop TRUE }

Finally the walking person can be instantiated.

108 DEF WALKER

109 Move {

110 clock USE SLOWCLOCK

111 moveInt USE PosInt

112 children

113 Move {

114 clock USE SLOWCLOCK

115 moveInt USE HeightInt

Virtual Environments'98 9

116 children

117 Walkman

118 { body BodyPart { color .14 .14 .15 }

119 head Head { color 0.4 0.4 0.5

120 hatColor 0.6 0.4 0.5 }

121 rightarm Arm { color 0.4 0.4 0.45 }

122 leftarm Arm { color 0.4 0.4 0.45 }

123 rightleg Leg { color 0.5 0.5 0.55 }

124 leftleg Leg { color 0.5 0.5 0.55 }

125 clock USE CLOCK

126 armrightelbow USE ArmRightElbowInt

127 armrightshoulder USE ArmRightShoulderInt

128 ...

129 ### similar for armleftelbow, armleftshoulder, legleftelbow,

130 ### legleftshoulder, legrightelbow and legrightshoulder

131 }

132 }

133 }

5 Implementation

We have implemented a preprocessor which translates VRML++ �les into VRML97

�les. By using such a preprocessor VRML++ becomes very portable and can be used

with every VRML97 browser. Currently these browsers have to support JavaScript

or VRMLScript.

You can download the source code and executables for Sparc stations (Sun OS) and

PCs (DOS) of the current version of our preprocessor from

http://www.cs.uni-sb.de/ ~diehl/vrml++/content.html

The VRML97 code generated by the preprocessor was tested with the WorldView,

CosmoPlayer and Live3D browsers. But all these browsers are moving targets, so

don't hesitate to contact the author if you have problems with viewing VRML++

worlds with your browser.

6 Future Work

Encouraged by the positive feedback after releasing VRML++ we have initiated

a working group o�cially recognized by the VRML Consortium. The goal of the

group is to develop object-oriented extensions for VRML97 or a future standard, see

http://www.cs.uni-sb.de/~diehl/ooevrml/

The ideas brought up in this group still have to be integrated into one consistent

proposal. Then we intend to implement this proposal reusing parts of the imple-

mentation of VRML++.

Virtual Environments'98 10

7 Conclusion

In this paper we gave a case study of how one can write animations in VRML++.

The speci�cations are more readable then similar VRML97 speci�cations. Because

of inheritance the speci�cations are also more reuseable and extensible. Finally

the type system of VRML++ describes the interface of an object to the rest of

the world more precisely and helps to prevent run-time errors. We are convinced

that VRML++ provides the right extensions for VRML to become object-oriented

and thus bene�t from object-oriented methodologies developed in the programming

language and software-engineering communities.

References

[Bee97] Curtis A. Beeson. An Object Oriented Approach to VRML Development.

In Proceedings of VRML'97, 1997.

[Die97] Stephan Diehl. VRML++: A Language for Object-Oriented Virtual Real-

ity Models. In Proceedings of the 24th International Conference on Tech-

nology of Object-Oriented Languages and Systems TOOLS Asia'97, Bei-

jing, China, 1997.

[MHL96] K. Matsuda, Y. Honda, and R. Lea. Sony's approach to behavior and

scripting aspects of VRML: an Object-Oriented perspective. Techni-

cal report, http://www.csl.cony.co.jp/ project/vs/proposal/behascri.html,

1996.

[Par97] Sungwoo Park. Object-Oriented VRML for Multi-user Environments. In

Proceedings of VRML'97, 1997.

