
Retargetable Compilation with XSLT and Aspects

Andreas Wagner
Computer Science Department, University of Saarland, Germany

awagne@studcs.uni-sb.de

Stephan Diehl
Computer Science Department, University Trier, Germany

diehl@acm.org

Abstract

In this paper we show how XSLT and aspect-oriented
programming can be used to implement retargetable com-
pilers. New devices can be specified using an XML-based
device specification language. A retargeting generator pro-
duces a new compiler from this specification, actually it
only produces a device specific kernel which is used by the
compiler. Both the retargeting generator and the generated
compiler are implemented by XSLT scripts that produce In-
ject/J scripts which weave code into a kernel Java program.

As an example we look at remotely programmable
robots. Programs are sent in an XML-based programming
language called roboXL over the internet to the server. A
compiler on the server translates them into Java programs
for the specific robot. The Java program is then transferred
to and executed by the robot.

1. Introduction

Aspect-oriented programming allows to specify code
fragments for different properties (concerns, aspects) of a
system separately and to compose (weave) them to build a
version of the system [6]. Typical aspects are synchroniza-
tion or access control. In this paper we look at compilers
and show how to implement their target platform or target
device by aspects.

In our example application we use Java-programmable
robots as target devices. Instead of using Java directly
to program the robots, programs should be written in an
XML-based language called roboXL, such that they can be
constructed and manipulated by different XML-based tools.
Moreover, the programs can be send over the network and
replaced at runtime. Robots typically differ in what sensors
and effectors they have and how these can be controlled.
Motors for example can change speed, slow down, acceler-

ate, break, and so on. To handle this we allow to extend the
XML-Schema of roboXL to create a device specific version
of the language.

To build our robots we use Lego Mindstorms [7]. By
replacing the firmware of the robot by a Java virtual ma-
chine [3] programmers are no longer restricted to using a
proprietary visual programming language but can actually
download Java byte-code into their robot’s brain, a special
Lego brick called RCX. As new similar robot construction
systems like Leonardo or JCX [9] enter the market the need
for retargeting the compiler to their APIs and runtime envi-
ronments arises.

A simple and elegant way to implement compilers is by
using XSLT scripts [4]. We solve the retargetability prob-
lem by implementing the target device as an aspect. More
precisely we implement a retargeting generator as well as
the generated compiler with XSLT and AOP only. As long
as no complex program analyses are required, the proposed
approach is more maintainable and extendable compared to
directly implementing the generator with classical compiler
techniques in Java [1].

The rest of the paper is organized as follows. Section 2
introduces the language roboXL, then in Section 3 our gen-
eral approach to retargetable compilation is presented. Sec-
tion 4 and Section 5 show how compilation and retargeting
work in our approach. Finally, related work is discussed in
Section 6 and Section 7 concludes the paper.

2. Remote Programming

As a running example we use what is called a linebot in
the Lego Mindstorm tutorials: a robot that follows a dark
line on the ground. The robot has a light sensor and two
motors. If both motors rotate in the same direction, it will
drive in this direction, if they rotate in opposite directions,
the robot turns. The program written in roboXL is shown in
Figure 1. The language was designed as a target language

for visual programming tools, as well as to allow transfor-
mation, search, and transfer with XML tools.

roboXL provides control structures for sequential, paral-
lel, repeated and conditional execution. The most important
elements of roboXL are <SENSOR> terms in expressions
to read values and <MOTOR> statements to control motors.
In the example program the robot tests in an endless loop
(counter is set to zero) whether the value of a light sensor
(kind is light) measured as a percentage (mode is pct)
is less than 50%. The rotation direction and speed of the
motors is then adjusted as mentioned before. Finally, to
provide computation time to other threads on the robot, the
command <SLEEP> suspends the current thread for 500
milliseconds.

<XL-SEQUENCE>
<LOOP counter="0">
<SWITCH>
<EXPRESSION op="less" type="bool">
<SENSOR id="1" type="int">

<KIND>light</KIND>
<MODE>pct</MODE>

</SENSOR>
<VALUE><INT>50</INT></VALUE>

</EXPRESSION>
<CASE>
<VALUE><BOOL>true</BOOL></VALUE>
<MOTOR id="1">

<POWER>4</POWER><FWD/>
</MOTOR>
<MOTOR id="2">

<POWER>4</POWER><FWD/>
</MOTOR>

</CASE>
<CASE>
<VALUE><BOOL>false</BOOL></VALUE>
<MOTOR id="1">

<POWER>4</POWER><FWD/>
</MOTOR>
<MOTOR id="2">

<POWER>4</POWER><BWD/>
</MOTOR>

</CASE>
</SWITCH>
<SLEEP unit="msec">500</SLEEP>
</LOOP>

</XL-SEQUENCE>

Figure 1. Example roboXL program
FollowMe.xml lets robot follow dark line.

In the rest of the paper we will look at the <SENSOR>
tag to illustrate how roboXL can be extended, compiled and
retargeted.

The device-independent parts of the language roboXL

are defined by an XML Schema which is contained in file
EXOS.xsd. It defines the control structures and the basic
types for motor and sensor tags as shown in Figure 2.

<xsd:complexType name="Sensor">
<xsd:attribute name="id"

type="SensorId" use="required"/>
<xsd:attribute name="type" use="required">

<xsd:simpleType>
<xsd:restriction base="xsd:string">

<xsd:enumeration value="int"/>
<xsd:enumeration value="float"/>
<xsd:enumeration value="bool"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
</xsd:complexType>

Figure 2. Device-independent schema defini-
tion of the type Sensor in file EXOS.xsd.

These types can be refined for a specific robot using in-
heritance. For example, for the RCX we extend the type
Sensor by the parameters KIND and MODE and use the
resulting type for the SENSOR tag and define the type
SensorId as the integers from 1 to 3 as shown in Figure 3.
In our example, we define three kinds of RCX sensors: raw,
touch, temperature and light. For each of these sensors we
can either access the measured values as raw (absolute val-
ues), boolean or percentage data:

The underlined line in Figure 1 thus is an RCX specific
<SENSOR> term and reads the value of the light sensor 1 as
an integer. This integer value is interpreted as a percentage.

3. Retargetable Compilation

Apart from its XML-based, illegible syntax roboXL is
very similar to Java. There are at least three approaches that
we could follow to translate a roboXL program into a Java
program for the RCX or another device:

specific compiler Write a compiler that simply generates
a RCX specific Java program from the roboXL pro-
gram. Obviously, this requires to write n compilers for
n different target devices.

specific kernel + generic compiler Separate the RCX
specific parts from the general parts. Put the specific
parts in a kernel and write a compiler that generates
a Java program that accesses specific functionality
through the kernel. As a result we have to implement
only one compiler, but n kernels for n different
devices. This approach also has the advantage that it

<xsd:element name="SENSOR">
<xsd:complexType><xsd:complexContent>

<xsd:extension base="Sensor">
<xsd:sequence>
<xsd:element ref="KIND"/>
<xsd:element ref="MODE"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent></xsd:complexType>
</xsd:element>

<xsd:element name="KIND">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="raw"/>
<xsd:enumeration value="touch"/>
<xsd:enumeration value="temp"/>
<xsd:enumeration value="light"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="MODE">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="raw"/>
<xsd:enumeration value="bool"/>
<xsd:enumeration value="pct"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:simpleType name="SensorId">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="3"/>

</xsd:restriction>
</xsd:simpleType>

Figure 3. Device-specific definition of the
tags SENSOR, MODE and KIND, and the type
SensorId in file RCX.xsd.

facilitates extending or changing the roboXL language
without modifying the device specific parts.

generated kernel and generic compiler Use a compiler
as above, but in addition separate generic (reusable)
and specific parts of the kernel and write a generator
that produces a specific kernel from a device specifi-
cation. This approach allows us to change the device
without having to rewrite the kernel, but instead it is

generated from a specification of the new device. So
retargeting is reduced to writing n device specifica-
tions for n different devices. The generic kernel and
compiler have to be written once. Reducing retarget-
ing to writting a device specification not only reduces
the amount of work to be done, but also the possible
sources of errors.

For the latter approach Figure 4 shows both the compila-
tion and retargeting processes as well as the files involved.

RCX.xsd

EXOS.xsd

RCX.xml

retarget.xsl

RCX.ij

EXOSKernel.java

RCXKernel.java

FollowMe.xml

compile.xsl

FollowMe.ij

RCXFollowMe.java

RetargetingRetargetingRetargeting

CompilationCompilationCompilation

Figure 4. Compilation and Retargeting: Files
in bold face are provided by our framework,
files in normal font face are user defined and
files in italics are generated.

The whole process was implemented as a Java program
using the Java API for running the scripts1 and the resulting
Inject/J scripts were executed externally [5]. As a matter of
fact, the XSLT scripts can be even run with a XSLT enabled
web browser like the one most people use today.

4. Compilation

Basically, compilation works by weaving code into a
device specific kernel. First the user writes a roboXL
program, which is then transformed by the XSLT script
compile.xsl into an Inject/J script. This script (see for
example Figure 5) then changes the device specific kernel
by adding member variables to the kernel, as well as pro-
gram code to its main() method.

The interesting point about compile.xsl is that it
does not have to know all tags of the source language. In
the roboXL extension for the RCX we added parameters to

1Actually, we use the JAXP1.2 API, which provides the validating
XERCES2 parser instead of the Apache XALAN parser included in Sun’s
current Java runtime API.

add to members ${ String strArg1="1", strArgint="int", strArglight="light",
strArgpct="pct", strArgPOWER="POWER", strArg4="4",
strArgFWD="FWD", strArgEmpty="", strArg2="2", strArgBWD="BWD"; };

script FollowMe {
in class ’ExOSKernel’ do { foreach method ’main(*)’ do {
before ${ ExOSKernel kern = new ExOSKernel();

while(true) {
kern.boolStack.push((((Integer)

kern.readSensor(kern.strArg1,kern.strArgint,
kern.strArglight,kern.strArgpct)).getValue()<50));

if (kern.boolStack.top()== true) {
kern.controlMotor(kern.strArg1,kern.strArgPOWER,kern.strArg4);
kern.controlMotor(kern.strArg1,kern.strArgFWD,kern.strArgEmpty);
kern.controlMotor(kern.strArg2,kern.strArgPOWER,kern.strArg4);
kern.controlMotor(kern.strArg2,kern.strArgFWD,kern.strArgEmpty); }

if (kern.boolStack.top() == false) {
kern.controlMotor(kern.strArg1, kern.strArgPOWER, kern.strArg4);
kern.controlMotor(kern.strArg1, kern.strArgFWD, kern.strArgEmpty);
kern.controlMotor(kern.strArg2, kern.strArgPOWER, kern.strArg4);
kern.controlMotor(kern.strArg2, kern.strArgBWD, kern.strArgEmpty); }

kern.boolStack.pop();
try Thread.sleep(500); catch (InterruptedException ie) {} }

}$; } } }

Figure 5. Inject/J script FollowMe.ij generated from the roboXL program FollowMe.xml by the XSLT
script compile.xsl.

the sensor tag. As can be seen in Figure 6, the XSLT script
does not know these additional parameters, but it trans-
lates the roboXL term <SENSOR> into a call to the method
kern.readSensor(). The generated call is underlined
in Figure 5. The script passes the values of the attributes id
and type as well as the values of all tags contained within
the <SENSOR> tag as parameters to this method. As we
will see later, the method readSensor() will be gener-
ated from the device specification and thus will know how
to handle these values. Finally, note how the type attribute
is used to cast the return value of the method call.

As reduced Java virtual machines, like the one that runs
on the RCX, might not perform garbage collection, our
compiler collects all String constants in the program code
and defines them once as member variables of the kernel
(e.g. strint, strFWD, ...) to avoid repeated allocation in
loops.

5. Retargeting

Basically, retargeting works by weaving code into a
generic kernel to produce a device specific one. The generic
kernel contains auxiliary methods, state (e.g. an explicit re-
cursion stack), and a scheduler for parallel threads.

To get a specific kernel, we first have to write a spec-

ification of the new device. It consists of the Java pack-
ages, that have to be imported, variables to maintain state,
initialization code and specifications of the arguments of
the readSensor() and controlMotor() methods as
well as code to implement these on the specific device. Fig-
ure 7 shows parts of the specification for the RCX.

So, the device specification is basically an aspect written
in an XML-based language, which can be easily translated
by the XSLT script retarget.xsl into an Inject/J script.
As can be seen in Figure 8, the script retarget.xsl ac-
tually is a mix of three languages: Java, Inject/J and XSLT

First the XSLT processor interprets the XSLT tags and
replaces them by Java code extracted from the device spec-
ification, next the instruction add to members is inter-
preted by Inject/J and finally, the resulting Java source code
is compiled by a Java compiler.

The resulting Inject/J script for our above example spec-
ification is shown in Figure 9.

6. Related Work

roboXL is not the first XML-based robot control lan-
guage, see for example RoboML [8] which is more complex
and puts a focus on data exchange between robots. When
designing roboXL we tried to stay close to Java while keep-

<xsl:when test="$elem=’SENSOR’">
((<xsl:choose>

<xsl:when test="@type=’bool’">Boolean</xsl:when>
<xsl:when test="@type=’int’">Integer</xsl:when>
<xsl:when test="@type=’float’">Float</xsl:when>

</xsl:choose>
) kern.readSensor(kern.strArg<xsl:value-of select="@id"/>,

kern.strArg<xsl:value-of select="@type"/>
<xsl:for-each select="*">
, <xsl:choose>

<xsl:when test=".=’’">kern.strArgEmpty</xsl:when>
<xsl:otherwise>

kern.strArg<xsl:value-of select="."/>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>)).getValue()

</xsl:when>

Figure 6. Excerpt of the XSLT script compile.xsl that translates a roboXL program into an Inject/J
script. Here we only show the part that translates the <SENSOR> tag.

ing some of the concepts of Lego’s visual programming lan-
guage RoboLab.

XSLT as a tool for program generation is discussed at
length in [4]. SmartTools combines AOP with XSLT to gen-
erate programming environments[2], while we focus on the
retargeting of compilers.

7. Conclusions

To take advantage of XML tools we developed an XML-
based language to program robots. The language can be
easily translated into Java, but there are robot specific parts
that would require re-implementation of such a compiler
whenever we choose a new target robot. In order to facil-
itate retargetability, we separated the compiler and the de-
vice specific parts and put the latter into a specification file.
From this specification a device specific kernel is generated.
For compilation as well as retargeting we use XSLT scripts
that produce Inject/J scripts which weave code into kernel
modules.

In conclusion, we found that the approach of defining an
XML-based application-specific aspect language and then
converting it with XSLT to Inject/J scripts or the like is both
simple and powerful. It allowed us to concentrate more on
separating the reusable and the specific parts and less on the
implementation of the conversion process itself, because it
was often straightforward having tools like XSLT and In-
ject/J at hand.

References

[1] A. W. Appel. Modern Compiler Implementation in Java.
Cambridge University Press, New York, Cambridge, 1998.

[2] I. Attali, C. Courbis, P. Degenne, A. Fau, J. Fillon, C. Held,
D. Parigot, and C. Pasquier. Aspect and XML-oriented Se-
mantic Framework Generator: SmartTools. In Proceedings
of 2nd Workshop on Language Descriptions, Tools and Ap-
plications LDTA’02. Electronic Notes in Computer Science,
Elsevier, 2002.

[3] B. Bagnall (webmaster). lejOS – Java for the RCX. Open
source project at http://lejos.sourceforge.net,
2004.

[4] J. C. Cleaveland. Program Generators with XML and Java.
Prentice Hall, 2001.

[5] Inject/J Team. Inject/J – Source Code Transformation at your
Fingertips. http://injectj.fzi.de, 2004.

[6] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP).
Springer-Verlag LNCS 1241, 1997.

[7] Lego Company. Lego Mindstorms. http:
//mindstorms.lego.com, 2004.

[8] M. Makatchev and S. K. Tso. Human-Robot Interface Us-
ing Agents Communicating in an XML-Based Markup Lan-
guage. In Proceedings of the 2000 IEEE International Work-
shop on Robot and Human Interactive Communication RO-
MAN2000, pages 270–275, Osaka, Japan, September 2000.

[9] Systronix Corporation. JCX – Java Control System. http:
//jcx.systronix.com, 2004.

<SPECIFICATION>
<IMPORTS>josx.platform.rcx.Motor, . . . </IMPORTS>
<VARIABLES>

private String strlight="light"; private String strpct="pct";
private Boolean objReturnBoolean=new Boolean(false);
private Integer objReturnInteger=new Integer(0); . . .

</VARIABLES>
<INIT> sensors=Sensor.SENSORS; </INIT>
<READSENSOR> <ARGS>String sensor,String type,String kind,String mode</ARGS>

<CODE>
int intKind=0; int intMode=0;
if (kind.equals(strlight)) intKind=SensorConstants.SENSOR_TYPE_LIGHT; . . .
if (mode.equals(strpct)) intMode=SensorConstants.SENSOR_MODE_PCT; . . .
int sensorNr=stringToInt(sensor)-1;
((Sensor) sensors[sensorNr]).setTypeAndMode(intKind,intMode);
((Sensor) sensors[sensorNr]).activate();
if (type.equals(strint))

{ objReturnInteger.setValue(((Sensor) sensors[sensorNr]).readValue());
return objReturnInteger; }

else if (type.equals(strbool))
{ objReturnBoolean.setValue(((Sensor) sensors[sensorNr]).readValue());

return objReturnBoolean; }
else { objReturnInteger.setValue(0); return objReturnInteger; }

</CODE> </READSENSOR> . . . </SPECIFICATION>

Figure 7. The device specification RCX.xml for the Lego robot.

add to members ${ public synchronized Object readSensor
(<xsl:value-of select="/exos:EXOS/exos:SPECIFICATION/exos:READSENSOR/exos:ARGS"/>)
{ <xsl:value-of select="/exos:EXOS/exos:SPECIFICATION/exos:READSENSOR/exos:CODE"/> } }$;

Figure 8. Excerpt of the XSLT script retarget.xsl. Here we only show the part that generates the
device-specific readSensor() method.

script RCX { in class ’ExOSKernel’ do {
add to imports ${josx.platform.rcx.Motor,. . . }$;
in method ’ExOSKernel()’ do { before ${ sensors=Sensor.SENSORS; . . . }$; }
add to members ${ private String strlight="light"; private String strpct="pct";

private Boolean objReturnBoolean=new Boolean(false);
private Integer objReturnInteger=new Integer(0); . . . }$;

add to members ${ public synchronized Object
readSensor(String sensor, String type, String kind, String mode) {

int intKind = 0; int intMode = 0;
if (kind.equals(strlight)) intKind = SensorConstants.SENSOR_TYPE_LIGHT; . . .
if (mode.equals(strpct)) intMode = SensorConstants.SENSOR_MODE_PCT; . . .
int sensorNr=stringToInt(sensor)-1;
((Sensor) sensors[sensorNr]).setTypeAndMode(intKind, intMode);
((Sensor) sensors[sensorNr]).activate();
if (type.equals(strint)) {

objReturnInteger.setValue(((Sensor) sensors[sensorNr]).readValue());
return objReturnInteger; }

else if (type.equals(strbool)) {
objReturnBoolean.setValue(((Sensor) sensors[sensorNr]).readValue());
return objReturnBoolean; }

else { objReturnInteger.setValue(0); return objReturnInteger; } } }$; } }

Figure 9. Inject/J script RCX.ij generated from the specification RCX.xml by the XSLT script
retarget.xsl.

	reference: in Proceedings of 2nd Asian Workshop on Aspect-Oriented Software (AOAsia 2006), Tokyo, Japan, September 2006.

