
A Prolog Positive Supercompiler

Stephan Diehl

FB 14 - Informatik, Universit�at des Saarlandes, Postfach 15 11 50, 66041 Saarbr�ucken,

GERMANY , diehl@cs.uni-sb.de

Proceedings of "Arbeitstagung Programmiersprachen", editor Herbert Kuchen, published

as Arbeitsbericht No. 58 des Institutes f�ur Wirtschaftsinformatik, Westf�alische Wilhelms-

Universit�at M�unster, 1997

Abstract. Supercompilation is a method for program specialization. It has

been developed in the context of functional languages. We present a positive

supercompiler for Prolog. We give the basic algorithm used in APROPOS and

explain the di�erent phases involved in supercompilation of logic programs.

Then the operation and e�ciency of the method is demonstrated by means of

examples. Finally we compare our work to related work in supercompilation

and partial evaluation.

1 Introduction

Supercompilation

1

is a program specialization technique originally developed by Valentin

F. Turchin (e.g. [Tur86]) for a language called Refal . Supercompilation is composed

of four steps: driving, generalization, folding and post-unfolding. Whereas in the orig-

inal supercompiler positive and negative information, i.e. equality and inequality of

variables and values was propagated, we restrict propagation to the case of positive in-

formation gained by uni�cation. In [S�r94, SGJ94] a positive supercompiler for a �rst-

order functional language is presented. We use folding, unfolding and post-unfolding

strategies similar to those used in S�rensen's supercompiler to specialize Pure Prolog

programs. In [GS94] the authors establish the correspondence between partial deduc-

tion [Kom92, Gal93, LS91], i.e. unfolding of predicate calls, and driving in positive

supercompilation. But as we will demonstrate here, also the remaining steps of posi-

tive supercompilation (folding, post-unfolding and generalization) can be adapted to

specialize logic programs.

2 APROPOS

Brie
y, APROPOS builds the SLD-tree with partially known data. For every node it

de�nes a new predicate. If it encounters a node, which is 'similar' to an existing one,

it lets the node point to the existing one and stops building that branch of the tree.

First we consider pure Prolog with disjunctions and conditionals:

P ::= C

�

v variable

C ::= L :� G c constructor

G ::= L j (L;L) j (L;L) j (L� > L;L) p predicate name

L ::= p j p(X; : : : ;X)

X ::= c j v j c(X; : : : ;X)

1

short for supervised compilation: run a program, observe its behaviour and generate a new,

more e�cient program.

Motivated by the presentation of the algorithm used in LogiMix [JGS93] we use

inference rules to de�ne a relation �;�;G! �

0

;�

0

; G

0

, which maps a goal G and the

database � containing the source program to the specialized goal G

0

and the database

�

0

containing the de�nitions for the specialized goal G

0

and all predicates specialized

during specialization of G.

We write

l

i

�! to name the di�erent relations l

i

2 f special; head; body; DB; def;

mod; singleg de�ned by inference rules. For better readability we will write

G

1

l

1

�!G

0

1

::: G

n

l

n

�!G

0

n

G

0

l

x

�!G

0

0

as a shorthand notation for

�;�;G

1

l

1

�!�

1

;�

1

;G

0

1

::: �

n�1

;�

n�1

;G

n

l

n

�!�

n

;�

n

;G

0

n

�;�;G

0

l

0

�!�

n

;�

n

;G

0

0

� denotes a substitution in the logic programming sense. In addition we assume,

that there is a global database � for entries of the form dbp(; ;), dbc(; ; ; ;), db()

and src(;). Initially for every clause H :� B of the source program, we have an entry

src(H;B) in the database. Furthermore it contains the entry db(0). We give the basic

algorithm used in APROPOS as a set of inference rules in �gures 1, 5 and 2.

For some cases marked with (�) we only give general rules. In APROPOS we used

more speci�c rules to obtain simpli�ed residuals. Furthermore we ignore in the fol-

lowing formal speci�cation the details, which would be necessary to describe forward

uni�cation as it was implemented in APROPOS . Basically after partially evaluating

a subterm we replace all variables in that subterm by ground terms, e.g. gvar(4). As

a result the bindings of uni�cation are only propagated forward. As is well known,

backward uni�cation would interfere with nonlogical predicates like var(X) and with

disjunctions and conditionals.

Finally the notation G) G

0

states that G evaluates to G

0

. In the special case

H t G) U we state that the uni�cation of H and G yields U , in other words the

most general uni�er mgu(H;G) = � exists. Note, that the bindings are propagated,

i.e. G) G

0

is short for �;�;G) �

0

;�;G

0

where all bindings which take place during

evaluation of G are recorded in �

0

, in the special case of uni�cation we have �

0

= � � �.

Each occurrence of denotes a fresh anonymous variable. By A v B we mean that

B is less general than A, i.e. A tB) B.

2.1 Database Entries

Assume we specialized a program with respect to the goal G = p(X

1

; : : : ; X

n

). Further-

more assume, that it was declared in the meta-knowledge, that p=n should be special-

ized, then the database will contain an entry dbp(1; G; S) where S = p(Y

1

; : : : ; Y

m

) and

Y

1

; : : : ; Y

m

are the variables occurring in X

1

; : : : ; X

n

. Thus we have p(X

1

; : : : ; X

n

) !

call db(1; p(Y

1

; : : : ; Y

m

)) and similar entries for all predicates specialized during the

specialization of G. The predicates in the database are then post-unfolded (see section

2.5) and the resulting database entries are translated into program clauses as shown in

�gure 3.

2

The database contains de�nitions for the specialized predicates, e.g. for the above

goal call db(1; p(Y

1

; : : : ; Y

m

)) there are entries of the form dbc(1;K;H;B; S

0

) repre-

2

We only give the two important translation rules here, the other rules just traverse the body

of a clause.

Fig. 1. Specialization Rules (!)

G! G if G is atomic

Use resid-

ual of previ-

ously special-

ized similar

goal.

8

>

>

>

>

<

>

>

>

>

:

G

head

�!G

0

G!G

0

(folding)

G

body

�!G

0

G!G

0

(folding)

Similar

rules are used

by most par-

tial evaluators

for Prolog

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

G

1

!G

0

1

G

2

!G

0

2

(G

1

;G

2

)!(G

0

1

;G

0

2

)

(�)

G

1

!true G

2

!G

0

2

(G

1

�>G

2

;G

3

)!G

0

2

G

1

!fail G

3

!G

0

3

(G

1

�>G

2

;G

3

)!G

0

3

G

1

!G

0

1

G

2

!G

0

2

G

3

!G

0

3

(G

1

�>G

2

;G

3

)!(G

0

1

�>G

0

2

;G

0

3

)

G

1

!G

0

1

G

2

!G

0

2

(G

1

;G

2

)!(G

0

1

;G

0

2

)

(�)

�;G)�

1

;true ::: �;G)�

n

;true

�;G!�;(�

1

;:::;�

n

)

if G is evaluable (all solutions)

where �

i

is a conjunction of uni�cations, such that �; �

i

) �

i

G)true

G!true

if G is evaluable (�rst solution)

G)fail

G!fail

if G is evaluable

The goal is

unfolded and

then special-

ized.

n

G

special

�! G

0

G!G

0

if G should be specialized

G! G otherwise

Fig. 2. Database Access Rules(

DB

�!;

mod

�!)

Database

Lookup

(

E2� EtH)H

0

H

DB

�!H

0

where E 2 � yields an element of � with new variables

Modi�cation

of Database

n

�

mod

�! �

0

(overwrite � by �

0

)

Fig. 3. Converting database entries into program clauses

Generate

a Prolog pro-

gram from the

database

8

>

<

>

:

call db(N; p(Y

1

; : : : ; Y

n

)) 7�! db N p(Y

1

,: : : ,Y

n

)

B 7�! B

0

dbc(N;K;H;B;p(Y

1

;:::;Y

n

)) 7�! db N p(Y

1

,: : : ,Y

n

) :� B

0

senting the K'th clause of the de�nition of the specialized predicate where H v G and

S

0

v S.

The database entry dbp(N;H; S) states, that the predicate call H has been spe-

cialized to the call S with index N . Finally db(N) is the number of currently de�ned

specialized predicates.

In the next sections the di�erent actions performed by APROPOS are discussed.

Fig. 4. Specialization Rules (

special

�! ;

def

�!;

simp

�!)

Lookup those clauses

in the source pro-

gram which match

the

current goal. Gener-

ate a call to a new

predicate de�ned by

the specialization of

these clauses.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

src(G;)

DB

�! src(H

1

; B

1

)

: : : src(G;)

DB

�! src(H

k

; B

k

)

db()

DB

�! db(N) G

simp

�! S �

mod

�! �

0

[H

1

; B

1

;G; S; N + 1; 1]

def

�! []

: : : [H

k

; B

k

;G; S;N + 1; k]

def

�! []

G

special

�! call db(N+1;S)

(driving)

where replacing db(N) by db(N + 1)

and adding dbp(N + 1;G; S) to � yields �

0

Generate

the K-th clause of the

de�nition of a new

predicate (with index

N+1). The body of

the clause is �rst spe-

cialized.

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

G tH) U �

mod

�! �

0

B ! B

0

�

00

mod

�! �

�

[H;B;G;S;M;K]

def

�![]

(driving)

where adding of dbc(M;K;H; pending; S) to �

yields �

0

and replacing dbc(M;K;H; pending; S)

in �

00

by dbc(M;K;H;B

0

; S) yields �

�

Generate a call pat-

tern from a goal, i.e.

the predicate name

and the free variables

in the goal.

8

>

>

>

<

>

>

>

:

p(X

1

; : : : ; X

k

)

simp

�! p(Y

1

; : : : ; Y

n

)

where Y

1

; : : : ; Y

n

are the variables

occurring in X

1

; : : : ;X

k

2.2 Driving

When a predicate call is encountered which according to the meta-knowledge should

be specialized, we compute the list of all matching

3

clauses H

1

: �B

1

; : : : ; H

k

: �B

k

and specialize the bodies of these clauses (c.f.

special

�!). Now we de�ne a new predicate

which is de�ned by these specialized clauses. Finally the predicate call is replaced by

a call to the newly created predicate. When a predicate call is encountered, which

has been specialized before, it is also replaced by a call to the specialized predicate.

This works in analogy to de�ning the specialized function f

0

as described above for

functional languages.

3

By matching we mean that the predicate call P is uni�ed with the head H of a clause

H : �B and thus some of the variables in the body B get instantiated, more precisely: if

Fig. 5. Specialization Rules (

head

�!;

body

�!)

If the current goal is less general

than the head of a previously

specialized goal, then generate a

call to that specialized goal.

8

<

:

dbp(; ;)

DB

�! dbp(N;H;S)

G v H H tG) U

G

head

�!call db(N;S)

(generalization)

If the current goal is less gen-

eral than the body of a clause

de�ning a previously specialized

goal, then generate a call to that

specialized goal. The specialized

goal must be de�ned by a single

clause.

8

>

>

>

>

>

<

>

>

>

>

>

:

dbc(; ; ; ;)

DB

�! dbc(N;K;H;B;S)

B tG) U G v B

dbc(N;K;H; ; S)

DB

�! dbc(N;K;H;B

0

; S)

U v B

0

B

0

v U N;K

single

�! N

0

G

body

�! call db(N

0

;S)

2.3 Folding

There are two cases of folding in APROPOS . One is the replacing of a predicate call

by a call to a specialized predicate (c.f.

head

�!). The other case is when we specialize an

expression e and e matches the body b of a clause of a specialized predicate p (c.f.

body

�!). In this case, the expression e is replaced by a call to that specialized predicate

p. Actually, if p has more than one de�ning clause, a new specialized predicate p

0

is

de�ned as p

0

:� b, the clause p :� b is replaced by p :� p

0

and e is replaced by a call to

p

0

(c.f.

single

�!).

Fig. 6. Basic Specialization Rules (

single

�!)

If the predicate is not de-

�ned by a single clause

(K > 0), then generate

a new predicate de�ned

by the body of the K-

th clause and replace the

body of the K-th clause

by a call to the new pred-

icate.

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

N; 0

single

�! N

db()

DB

�!db(M) �

mod

�!�

0

N;K

single

�! N

0

where replacing dbc(N;K;H;B; S) by

dbc(N;K;H; db(M + 1; S); S), db(M)

by db(M + 1) in � and adding

dbc(M + 1; 0;H;B; S) to � yields �

0

2.4 Generalization

If we look for a suitable predicate p to replace the body b of a clause (c.f.

body

�!), the

body of p must be comparable and moreover more general than b. Furthermore after

unifying these bodies we have to make sure, that no variables get bound, which are

local to the body of p, i.e. do not occur in the head, e.g.:

mgu(P;H) = � then the instantiated body is �(B).

current goal: q(8,9),r(9,Y)

defining clause: p(A,B) :- q(A,Z),r(Z,B).

In the above example, we can't replace the goal by p(8,Y), because unifying the

goal and the clause body yields A=8,Z=9,B=Y, i.e. the local variable is bound to 9.

Unfolding the call p(8,Y) yields q(8,Z),r(Z,Y) and thus the restriction, that Z has

to be 9, is lost. This generalization scheme can lead to overgeneralization, but it is the

least restrictive rule, which preserves the semantics. By overgeneralization we mean,

that instead of specializing predicate calls they will be folded using predicates, which

have been specialized before but are much too general, i.e. this generalization scheme

preserves the semantics but can disable possible specializations. To in
uence this be-

haviour, the user can specify additional restrictions in the meta-knowledge by de�ning

the predicate generalize=1.

2.5 Post-Unfolding

In the body B of the specialized clause dbc(N;K;H;B; S) predicate calls of the form

call db(M;X) may occur. Post-unfolding unfolds such calls in case there is only one

call to that specialized predicate in all clauses in the database. After post-unfolding a

predicate call the de�ning clauses of that predicate are removed from the database. We

could also post-unfold dbc(N;K;H;B; S) for N > 1 by constructing a disjunction of

the bodies of each clause. Actually post-unfolding does not unfold all such calls because

of recursion. Consider this simple example

p(X) :- X=[] -> true ; (X=[_|R],p(R)).

Unfolding p(R) would only complicate the de�nition of p, but we could not deleted

the de�nition of the predicate p. APROPOS computes the strongly connected compo-

nents of the call graph, removes all strongly connected components with more than

one element and all trivial cycles, i.e. a predicate calling itself. The result is a directed

acyclic graph and thus can be topologically sorted. Finally APROPOS unfolds those

predicates only called once in reverse topological order and removes their de�nitions.

2.6 Meta-Knowledge

User-de�ned predicates (sometimes called �lters) encoding meta-knowledge to con-

trol specialization have been used in several partial evaluators [FF88, LS90, Con90].

In APROPOS the user can control specialization, evaluation, generalization and post-

unfolding. Those predicates can be specialized of which we have a de�nition, i.e. all

predicates besides the system predicates. To reduce the number of newly created pred-

icates, the user can specify, which predicates should be specialized by de�ning the

predicate should specialize=1, which given a predicate call decides whether to special-

ize it or not. By de�ning the predicate evaluable=1 the user can also control, which

predicate calls are evaluated. Usually all predicate calls which are not side-e�ecting

and have only ground input parameters can be evaluated. Unfortunately there is no

clear distinction of input and output parameters in Prolog. Most calls with nonground

parameters can also be evaluated. For example, we can evaluate reverse([A,B,C],L),

but we can't evaluate reverse([F|R],L). So mode and groundness information is only

a crude heuristic. In o�ine partial evaluators a preprocessing phase called 'binding-time

analysis' annotates calls, so that at partial evaluation time the annotation determines

whether a call is evaluated. In APROPOS we let the user specify 'heuristics', when to

evaluate a predicate call. For the example above such a heuristic could be that a list

can be reversed if it is �nite:

evaluable(reverse(X,L)) :- nonvar(X),X=[].

evaluable(reverse(X,L)) :- nonvar(X),X=[A|R],evaluable(reverse(R,_)).

This strategy leads to a certain kind of binding-time improvement of the source-

program. Since we cannot annotate program points in our system, we can introduce

several versions of the same predicate but with di�erent names. These predicate names

encode some property of the program point they are called at and we can de�ne speci�c

rules, when to evaluate these calls. For the same reasons as in LogiMix, namely e�-

ciency, we let the user specify, whether the specializer should consider all solutions to

an evaluable predicate call or only the �rst one. In the latter case if the behaviour of the

program depends on another solution of this predicate, APROPOS does not preserve

the semantics. Note, that if the de�nitions of all predicates are accessible, APROPOS

will also work without any partial evaluation of predicates. Thus it can do pure positive

supercompilation, but the gains in e�ciency are less.

2.7 Other Features and Full Prolog

Since we use forward uni�cation and the user can specify conditions, when to evaluate

goals, APROPOS can in an admittedly restricted way cope with side-e�ecting predi-

cates like assert and retract. Another conservative strategy is, that APROPOS never

unfolds a call, if the de�ning clause contains a cut.

In the case of specialization of disjunctions and conditionals, the evaluation of

predicates with multiple solutions and the specialization of predicates with several

de�ning clauses we compute and propagate the common bindings, e.g. after specializing

the disjunction (X=a(1,b(U)) ; X=a(Z,b(1)))APROPOSwill propagate the common

binding X=a(_,b(_)). Similarmethods have been used in FUSE [WCRS91] andMixtus,

in the latter it is called anti-uni�cation.

3 Experiments

Pure positive supercompilation of the standard append/3 predicate yields good results,

e.g. for append([1,2,3],X,Y) we got the residual program:

db_1_append(A,[1|B]) :- B=[2|C], C=[3|D], D=A.

3.1 KMP Test

Another way to test the power of a program specializer is the KMP test (c.f. [CD89,

SGJ94]). After specializing a general pattern matcher with respect to a �xed pattern

we compare the residual program to the result of the Knuth-Morris-Pratt algorithm

(c.f. [KMP77]) which constructs a deterministic �nite automaton.

match(P,S) :- loop(P,S,P,S).

loop([],SS,OP,OS).

loop([P|PP],[S|SS],OP,OS) :- P=S -> loop(PP,SS,OP,OS) ; next(OP,OS).

next(OP,[]).

next(OP,[S|SS]) :- loop(OP,SS,OP,SS).

The above pattern matcher is not optimal. Each time a match fails (in the third

clause of loop), the �rst character of the string is removed and the matching starts

again (in the second clause of next). To simulate S�rensen's positive supercompiler we

used the following meta-knowledge.

should_specialize(X). % always unfold

evaluable1(X) :- ground(X). % evaluate all ground calls, consider

% only the first solution

evaluable(X=Y) :- ground(X); ground(Y). % evaluate unification if at

% least one argument is ground

postunfold_single_clause_predicates_only :- true. % f-functions only

generalize(X) :- fail. % identical folding

Supercompiling the predicate match(A,B) with respect to A=[a,a,b] yields the

following residual program.

db_1_match(A) :- db_2_loop(A).

db_2_loop([A|B]) :- A=a -> db_4_loop(B); db_3_next(A,B).

db_3_next(A,B) :- db_2_loop(B).

db_4_loop([A|B]) :- A=a -> db_7_loop(B) ; db_5_next(A,B).

db_5_next(A,B) :- A=a -> db_4_loop(B) ; db_3_next(A,B).

db_7_loop([A|B]) :- A=b -> true ; A=a -> db_7_loop(B) ; db_5_next(A,B).

This residual program works like a deterministic �nite automaton and is very close

to the residual program obtained by positive supercompiling a general pattern matcher

in a functional language (c.f. [SGJ94, S�r94]). The residual pattern matcher keeps track

of the recognized pre�x in its state (every clause encodes a state), i.e. it does not look

at a character in the string more than once. Actually as in the functional case there

is one redundant test in the above residual. In db_5_next the variable A is compared

to a although the calls in db_4_loop and db_7_loop guarantee that A does not unify

with a.

3.2 Specializing an Interpreters and Compiling Actions

We implemented an IMP interpreter based on the structural operational semantics

given in [Win93]. Supercompiling the IMP interpreter with a given program for com-

puting Fibonacci numbers and an unknown variable binding reduced the runtime by

20 percent. Similar speedups can be achieved with existing partial evaluators

4

.

In [BP93] the authors describe how they compile actions by partial evaluation of

an action interpreter written in Scheme. We did a similar experiment. We wrote a

language prototyping system, which uses action semantics descriptions of a source lan-

guage to convert source language programs into actions. These actions are executed

by an action interpreter based on an structural operational semantics for action nota-

tion. Supercompiling the prototyping system with respect to a given source language

description (mini-� in [BMW92]) and a simple source language program reduced the

runtime by 65 percent, i.e. we got a speedup of 2.8. For more complicated source lan-

guage programs, we couldn't achieve quite as good results. We expect, that binding

time improvements in the action interpreter would improve the results.

4

e.g. \Typical speed-ups for normal Prolog programs range from 3 to 20 %." [Sah90]

4 Related Work

Valentin F. Turchin's (e.g. [Tur86]) system was written in and for a functional language

called Refal , which was �rst developed in 1968 and although being very innovative

has never achieved great attention in the western world. In Turchin's supercompiler

positive and negative information, i.e. equality and inequality of variables and values

was propagated. In APROPOS positive information is propagated by uni�cation (see

section 2.2).

S�rensen's positive supercompiler was written for a �rst-order functional language

tailored for supercompilation. In a functional language all arguments of a function are

input parameters. In a logical language this is not the case. Mode information has

to be computed or as in our system provided by the user. Furthermore in S�rensen's

functional language there is only pattern matching for non-nested, linear patterns in

the �rst argument of a function. In Prolog we have powerful pattern matching via

uni�cation on all arguments. Finally in Prolog we have backtracking, i.e. not a single-

threaded store. On the other hand S�rensen proved, that his supercompiler preserves

the semantics of the original program.Our implementationof supercompilation for logic

programs applies transformations similar to the fold/unfold transformations presented

in [TS84, PP93, PP94, BC93]. In that framework supercompilation can be regarded as

a strategy which controls when to fold or unfold.

In partial evaluators like LogiMix calls are folded, which have been encountered

before

5

. In contrast to APROPOS there is no generalization, no folding of bodies and

no post-unfolding

6

. In partial evaluators most optimizations rely on the distinction

of static and dynamic data. In o�ine partial evaluators the source program has to be

annotated by a preprocessing phase called 'binding-time analysis'. In online systems

evaluation of expressions is decided on the
y as it is done in APROPOS . As noted in

[CD93] one can also combine online and o�ine methods to get the best of both.

We have also looked into self-application of APROPOS , but do not yet have any

interesting results. As noted in [Jon94], one might need a preprocessing phase rather

di�erent from binding-time analysis. In order to achieve this, one has to �nd general,

but powerful rules when to specialize or evaluate a goal.

5 Conclusion

We used techniques found in partial evaluators to implement a supercompiler for Pro-

log. We explained how it works and demonstrated its e�ciency by means of examples.

As expected APROPOS passes the KMP test. The experimental results suggest that

APROPOS is as powerful as the more sophisticated partial evaluators for Prolog. We

hope the existence of a supercompiler for Prolog - a widely used language compared to

Refal - will lead to new and more interest in the pioneer work of Valentin Turchin.

References

[BC93] A. Bossi and N. Cocco. Basic transformation operations which preserve computer

answer substitutions of logic programs. Journal of Logic Programming, 16(1, 2):47{

87, 1993.

5

A special case of this scheme is called loop detection in Mixtus.

6

This is not quite true for Mixtus.

[BMW92] D. F. Brown, H. Moura, and D. A. Watt. ACTRESS: an Action Semantics Di-

rected Compiler Generator. In CC'92, LNCS 641. Springer Verlag, 1992.

[BP93] Anders Bondorf and Jens Palsberg. Compiling Actions by Partial Evaluation.

FPCA'93, 1993.

[CD89] C. Consel and O. Danvy. Partial Evaluation of Pattern Matching in Strings. In-

formation Processing Letters, 30(2), 1989.

[CD93] C. Consel and O. Danvy. Tutorial Notes on Partial Evaluation. In POPL'93. 1993.

[Con90] Charles Consel. The Schism Manual, Version 1.0. Yale University, New Haven,

Connecticut, December 1990.

[FF88] H. Fujita and K. Furukawa. A self-applicable partial evaluator and its use in in-

cremental compilation. New Generation Computing, 6(2,3):91{118, 1988.

[Gal93] J. Gallagher. Tutorial on specialisation of logic programs. In Partial Evaluation

and Semantics-Based Program Manipulation, Copenhagen, Denmark, June 1993,

pages 88{98. New York: ACM, 1993.

[GS94] R. Gl�uck and M.H. S�rensen. Partial Deduction and Driving are Equivalent. In

PLILP'94. 1994.

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Englewood Cli�s, NJ: Prentice Hall, 1993.

[Jon94] N. D. Jones. The Essence of Program Transformation by Partial Evaluation and

Driving. In Logic, Language and Computation, volume 792. Springer LNCS, 1994.

[KMP77] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching in Strings. SIAM

Journal on Computing, 6(2), 1977.

[Kom92] J. Komorowski. An introduction to partial deduction. In A. Pettorossi, editor,

Meta-Programming in Logic, Uppsala, Sweden, June 1992 (Lecture Notes in Com-

puter Science, vol. 649), pages 49{69. Berlin: Springer-Verlag, 1992.

[LS90] A. Lakhotia and L. Sterling. ProMiX: a Prolog Partial Evaluation System. In

L. Sterling, editor, The Practice of Prolog. MIT Press, 1990.

[LS91] J.W. Lloyd and J.C. Shepherdson. Partial evaluation in logic programming. Jour-

nal of Logic Programming, 11:217{242, 1991.

[PP93] M. Proietti and A. Pettorossi. The loop absorption and the generalization strate-

gies for the development of logic programs and partial deduction. Journal of Logic

Programming, 16(1, 2):123{161, 1993.

[PP94] M. Proietti and A. Pettorossi. Completeness of Some Transformation Strategies

for Avoiding Unnecessary Logical Variables. In Proc. of the 11th International

Conference on Logic Programming. MIT Press, 1994.

[Sah90] Dan Sahlin. The Mixtus Approach to Automatic Partial Evaluation of Full Prolog.

In Proc. of the 1990 North American Conference on Logic Programming. MIT

Press, 1990.

[SGJ94] M.H. S�rensen, R. Gl�uck, and N. D. Jones. Towards Unifying Partial Evaluation,

Deforestation, Supercompilation and GPC. In ESOP'94. Springer LNCS, 1994.

[S�r94] M.H. S�rensen. Turchin's Supercompiler Revisited: An Operational Theory of Pos-

itive Information Propagation. Master's thesis, Department of Computer Science,

University of Copenhagen, 1994.

[TS84] H. Tamaki and T. Sato. Unfold/Fold Transformation of Logic Programs. In

S. Tarnlund, editor, Proc. of Second International Conference on Logic Program-

ming. 1984.

[Tur86] V.F. Turchin. The Concept of a Supercompiler. ACM TOPLAS, 8(3), 1986.

[WCRS91] D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Automatic online partial evalu-

ation. In J. Hughes, editor, FPCA'91, volume LNCS 523, pages 165{191. Springer,

1991.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

This article was processed using the L

a

T

E

X macro package with LLNCS style

