
Future Generation Computer Systems 16 (2000) 739–751

Abstract machines for programming language implementation

Stephan Diehla,∗, Pieter Hartelb, Peter Sestoftc
a FB-14 Informatik, Universität des Saarlandes, Postfach 15 11 50, 66041 Saarbrücken, Germany

b Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
c Department of Mathematics and Physics, Royal Veterinary and Agricultural University, Thorvaldsensvej 40,

DK-1871 Frederiksberg C, Denmark

Accepted 24 June 1999

Abstract

We present an extensive, annotated bibliography of the abstract machines designed for each of the main programming
paradigms (imperative, object oriented, functional, logic and concurrent). We conclude that whilst a large number of efficient
abstract machines have been designed for particular language implementations, relatively little work has been done to design
abstract machines in a systematic fashion. © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Abstract machine; Compiler design; Programming language; Intermediate language

1. What is an abstract machine?

Abstract machines aremachinesbecause they per-
mit step-by-step execution of programs; they are
abstractbecause they omit the many details of real
(hardware) machines.

Abstract machines provide an intermediate lan-
guage stage for compilation. They bridge the gap
between the high level of a programming language
and the low level of a real machine. The instructions
of an abstract machine are tailored to the particu-
lar operations required to implement operations of a
specific source language or class of source languages.

Common to most abstract machines are a program
store and a state, usually including a stack and regis-
ters. The program is a sequence of instructions, with a
special register (the program counter) pointing at the

∗ Corresponding author. Tel.:+49-681-302-3915.
E-mail addresses:diehl@cs.uni-sb.de (S. Diehl),
phh@ecs.soton.ac.uk (P. Hartel), sestoft@dina.kvl.dk (P. Sestoft)

next instruction to be executed. The program counter
is advanced when the instruction is finished. This ba-
sic control mechanism of an abstract machine is also
known as its execution loop.

1.1. Alternative characterizations

The above characterization fits many abstract ma-
chines, but some abstract machines are more abstract
than others. The extremes of this spectrum are char-
acterized as follows:
• An abstract machine is an intermediate language

with a small-step operational semantics [107].
• An abstract machine is a design for a real machine

yet to be built.

1.2. Related terms

The termabstract machineis sometimes also used
for different concepts and other terms are used for
the concept of abstract machines, e.g. some authors

0167-739X/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(99)00088-6



740 S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751

use the termsemulatoror interpreter and some use
the termvirtual machinefor implementations of ab-
stract machines, similar as we use the termprogram
for implementations of an algorithm. Sun calls its
abstract machine for Java the Java Virtual Machine
[86,91]. The term virtual machine is widely used for
the different layers of abstractions in operating sys-
tems [121] and in IBM’s VM operating system virtual
machines are execution environments for running
several versions of the same operating system on the
same machine. In theoretical computer science the
term abstract machine is sometimes used for models
of computation including finite state machines, Mealy
machines, push down automata and Turing machines
[61].

1.3. What are abstract machines used for?

In the above characterization of abstract machines
their use as an intermediate language for compila-
tion is an essential feature. As a result the imple-
mentation of a programming language consists of two
stages. The implementation of the compiler and the
implementation of the abstract machine. This is a typ-
ical divide-and-conquer approach. From a pedagogi-
cal point of view, this simplifies the presentation and
teaching of the principles of programming language
implementations. From a software engineering point
of view, the introduction of layers of abstraction in-
creases maintainability and portability and it allows
for design-by-contract. Abstract machines have been
successful for the design of implementations of lan-
guages that do not fit the “Von-Neumann computer”
well. As a consequence most abstract machines are for
exotic or novel languages. There are only few abstract
machines for languages like C or Fortran. Recently
abstract machines have been used for mobile code in
heterogenous networks such as the Internet.

In addition to all their practical advantages abstract
machines are theoretically appealing as they facilitate
to prove the correctness of code generation, program
analyses and transformations [20,111].

2. Where do abstract machines come from?

Abstract machines are often designed in an ad-hoc
manner based on experience with other abstract ma-
chines or implementations of interpreters or compilers

for the same source language. But also some system-
atic approaches have been investigated. Wand was one
of the first to deal with the question of deriving ab-
stract machines from the semantics of a language. In
1982, he proposed an approach based on combinators
[130]. To find suitable combinators was not automated
and was a difficult task, which was simplified in a later
paper [131]. The CAM (1985) was derived in a similar
way [34]. Another approach is based on partial eval-
uation of interpreters with given example programs
and folding of recurring patterns in the intermediate
code [44,80,98]. Finally there are approaches based
on pass separation [45,56,70,89,116]. Pass separation
is a transformation which splits interpreters into com-
piling and executing parts, the latter being the abstract
machine. It has also been used in the 2BIG system
(1996) to automatically generate abstract machines
from programming language specifications [43,46].

3. Abstract machines for imperative
programming languages

Discussions in the late fifties within the ACM and
other related bodies resulted in various proposals being
made for an UNCOL: A UNiversal Computer Oriented
Language. Various UNCOLs have been proposed.
Conway’s machine [33] for example was a register
machine, with two instructions. Steel’s machine [119]
had sophisticated adressing modes. The principle of
an UNCOL is sound, but they have not been much
used. We believe that this is mainly because of the
lack of performance of the generated code. Chow and
Ganapathi [30] give an overview of abstract machines
for imperative programming languages that were cur-
rent in the mid-1980s. Some believe that the Java Vir-
tual Machine [86] of the late 1990s might finally play
the role of an UNCOL, but we think that performance
will remain a concern in many areas of computing.

We will now look at some successful abstract ma-
chines, which were designed for rather more modest
goals:
• The Algol Object Code (1964) [109] is an abstract

machine for Algol60. It has a stack, a heap and
a program store. Its instructions provide mecha-
nisms for variable and procedure scope, allocation
of memory, access to variables and arrays, and
call-by-value and call-by-name procedure calls.



S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751 741

• The P4-machine (1976) is an abstract machine for
the execution of Pascal programs, developed by
Wirth and colleagues [7]. The compiler from Pascal
to P4 and the abstract machine code are documented
in [102]. The P4 machine has fixed-length instruc-
tions. It implements block structure by a stack of ac-
tivation records (frames), using dynamic and static
links to implement recursion and static scoping, re-
spectively.

• The UCSD P-machine [32] is an abstract ma-
chine for the execution of Pascal programs, with
variable-length instructions. The compact bytecode
of the machine has special instructions for calling
Pascal’s nested procedures, for calling formal pro-
cedures, for record and array indexing and index
checks, for handling (Pascal) sets, for signalling
and waiting on semaphores, etc. The P-machine
was used in the popular UCSD Pascal system for
microcomputers (ca. 1977). A commercial hard-
ware implementation of the P-machine was made
(see Section 11).

• Forth (1970) may be considered as a directly exe-
cutable language of a stack-based abstract machine:
expressions are written in postfix (reverse Polish no-
tation), a subroutine simply names a code address,
etc. [77,94].

4. Abstract machines for object-oriented
programming languages

Abstract machines for object-oriented languages are
typically stack-based and have special instructions for
accessing the fields and methods of objects. Memory
management is often implicit (done by a garbage col-
lector) in these machines.
• Smalltalk-80 (1980) is a dynamically typed

class-based object-oriented language, implemented
by compilation into a stack-based virtual machine
code. The bytecode has instructions for stack ma-
nipulation, for sending a message to an object (to
access a field or invoke a method), for return, for
jump, and so on [51] (the second edition [52] omits
most of the material on the virtual machine).

• Self (1989) is a dynamically typed class-less
object-oriented language. Self has a particularly
simple and elegant stack-based virtual machine
code: every instruction has a three-bit instruction

op-code and a five-bit ‘index’, or instruction argu-
ment. The eight instructions are: push self, push
literal, send message (to invoke a method or access
a field), self send, super send, delegate (to a par-
ent), return, and index extension. The bytecode is
dynamically translated into efficient machine code
[28,29].

• Java (1994) is a statically typed class-based
object-oriented language, whose ‘official’ interme-
diate language is the statically typed Java Virtual
Machine (JVM) bytecode. The JVM has special
support for dynamic loading and linking, with
load-time verification (including type checking) of
the bytecode. The instruction set supports object
creation, field access, virtual method invocation,
casting an object to a given class, and so on [86].
For hardware implementations of the JVM (see
Section 11).

5. Abstract machines for string processing
languages

A string processing language is a programming lan-
guage that focuses on string processing rather than
processing numeric data. String processing languages
have been around for decades in the form of com-
mand shells, programming tools, macro processors,
and scripting languages. This latter category has be-
come prominent as scripting language are used to
‘glue’ components together [101]. The components
are typically written in a (systems) programming lan-
guage, such as C, but they may be glued components
themselves.

String processing languages are either implemented
by interpreting a proprietary representation of the
source text, or the implementation is based on some
low level abstract machine. There are two reasons for
using a proper abstract machine: improved execution
speed and better portability. Machine independence
has become less of an issue in recent years, because the
number of different computer architectures has fallen
dramatically over time, and because C acts as a lingua
franca to virtually every platform currently in use.

We will discuss two prominent examples of early
string processing languages, where an abstract ma-
chine is used mainly to achieve machine indepen-
dence.



742 S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751

• Snobol4 [54] is a string processing language with
a powerful pattern matching facility. The language
has been used widely to build compilers, symbolic
algebra packages, etc. The Snobol4 abstract ma-
chine (SIL) operates on data descriptors, which con-
tain either scalar data or references, as well as the
type of the data and some control information. The
data representation makes it possible to treat strings
as variables, and to offer data directed dispatch of
operations, much in the same way as object oriented
systems offer today. The machine operates a pair of
stacks, a garbage collected heap (mark scan). The
instruction set is designed firstly to provide efficient
support for the most common operations and sec-
ondly to ease the task of porting it [53].

• ML/I [23] is a macro processor. Macro processors
are based on a substitution model, whereas ordinary
string processors treat strings as data to which oper-
ations are applied. Macro processors are generally
more difficult to program than ordinary string pro-
cessors. The ML/I macro processor is implemented
via the LOWL abstract machine. This machine
offers two stacks, three registers, non-recursive
sub-routines and a small set of instructions. Porta-
bility has been the major driver for the design.
UNIX has had a profound influence on what we

consider scripting languages today. With UNIX came
the now classical tool-set comprising the shell, awk,
and make. As far as we know, all of these are imple-
mented using an internal representation close to the
source text. Descendants of these tools are now ap-
pearing that use abstract machines again, mainly for
speed but also for machine independence:
• Awk [1] constructs a parse tree from the source. The

interpreter then traverses the parse tree, interpret-
ing the nodes. Interior nodes correspond to an op-
erator or control flow construct; leaves are usually
pointers to data. Interpreter functions return cells
that contain the computed results. Control flow in-
terruptions like break, continue, and function return
are handled specially by the main interpreter.

• Nmake [49] is a version of the make tool for
UNIX, which provides a more flexible style of de-
pendency assertions. To be able to port these new
make files to older systems, Nmake can translate
its input into instructions for the Make Abstract
Machine (MAM). These are easy to translate into
more common Makefile formats [78].

• Tcl [100] is a command language designed to be
easily extensible with application specific, com-
piled commands. The most widely know applica-
tion of Tcl is the Tk library for building Graphical
User Interfaces. The flexibility of Tcl is achieved
primarily by representing all data as strings and
by using a simple and uniform interface to com-
mands. For example the while construct from the
Tcl language is implemented by a C procedure,
taking two strings as arguments. The first string
is the conditional expression and the second is the
statement to be executed. The C procedure calls
the Tcl command interpreter recursively to evaluate
the conditional and the statements ([100], p. 321).
The abstract machine does not have any stacks of
its own, it relies on the C implementation.

Since version 8.0 Tcl uses a bytecode interpreter
[74].

• Perl [128] is a scripting language, with an enor-
mous collection of modules for a wide range of
applications, such as building CGI scripts for Web
servers. The implementation compiles Perl code
into an intermediate, tree structured representation,
with each instruction pointing to the next. The
abstract machine has seven stacks which are ex-
plicitly manipulated by the compiled instructions.
There are six different data types, and over 300
instructions. Reference counting is used to perform
storage management [118].

• Python is an object oriented scripting language [87].
Python is implemented using a stack based abstract
machine. The instructions are rather like method
calls, dispatching on the type of the operands found
on the stack. There are over 100 instructions, or-
ganized as segments of code, with jumps to alter
the flow of control. Python uses a reference count
garbage collector.

Hugunin [63] has created an implementation of
JPython, which targets the Java Virtual Machine
instead.
The performance of the scripting languages has

above been studied by a number authors. Kernighan
and van Wyk [74] compare Awk, Perl, Tcl, Java,
Visual Basic, Limbo, C and Scheme. They show
that depending on the benchmark and the platform,
C and Java sometimes do worse than the scripting
languages. Romer et al. [110], benchmark Java, Perl
and Tcl using a cache level simulator of the MIPS



S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751 743

architecture. They conclude that eventhough scripting
language perform less well than C, special hardware
support is not warranted.

6. Abstract machines for functional programming
languages

The first abstract machines for functional languages,
such as the SECD [81] and FAM [26], defined strict
evaluation, also known as eager or call-by-value eval-
uation, in which function arguments are evaluated be-
fore the call, and exactly once. More recently, most
work has focused on lazy (or call-by-need) evalua-
tion, in which function arguments are evaluated only
if needed, and at most once. One reason is that effi-
cient implementation of strict evaluation is now well
understood, so that the need to go via an abstract ma-
chine has diminished.

Central concepts in abstract machines for functional
languages include:
• A stackin general represents the context of a nested

computation. It may hold the intermediate results of
pending computations, activation records of active
function invocations, active exception handlers, etc.
The stack is sometimes used also for storing argu-
ments to be passed to functions.

• An environmentmaps program variables to their
values.

• A closureis used to represent a function as a value.
It typically consists of a code address (for the func-
tion body) and an environment (binding the free
variables of the function body).

• A heapstores the data of the computation. Abstract
machines usually abstract away from the details of
memory management, and thus include instructions
for allocating data structures in the heap, but not for
freeing them; the heap is assumed to be unlimited.

• A garbage collectorsupports the illusion that the
heap is unlimited; it occasionally reclaims unreach-
able heap space and makes it available for alloca-
tion of new objects.

6.1. Strict functional languages

• The SECD machine (1964) was designed by Landin
for call-by-value evaluation of the pure lambda cal-
culus [81]. The machine derives its name from the

components of its state: an evaluation stack S, an
environment E, a control C holding the instructions
to execute, and a dump D holding a continuation.
(i.e., a description of what must be done next).

• Cardelli’s Functional Abstract Machine (1983) is
a much extended and optimized SECD machine
used in the first native-code implementation of ML
[26,27].

• The Categorical Abstract Machine (1985) was de-
veloped by Cousineau et al. [34]. Its instructions
correspond to the constructions of a Cartesian
closed category: identity, composition, abstraction,
application, pairing, and selection. It was the base
for the CAML implementation of ML.

• The Zinc Abstract Machine (1990) developed by
Leroy [82] permits more efficient execution. It is an
optimized, strict version of the Krivine machine (see
Section 6.2 below). This machine is the basis of the
bytecode versions of Leroy’s Caml Light [35,135]
and Objective Caml implementations, and is used
also in Moscow ML [117].

6.2. Lazy functional languages

In a lazy language, function and constructor argu-
ments are evaluated only if needed, and then at most
once. Although this can be implemented by represent-
ing an unevaluated argument by a ‘thunk’, a function
that will evaluate the argument and replace itself with
the result, efficiency calls for other approaches. An im-
portant idea due to Wadsworth is to represent the pro-
gram by a graph which is rewritten by evaluation. The
evaluation (rewriting) of a shared subgraph will auto-
matically benefit all expressions referring to it. How-
ever, repeatedly searching a graph for subexpressions
to rewrite is slow.

Early implementations compiled the program to a
fixed set of combinators (closed lambda terms all of
whose abstractions are at the head); these may be
thought of as graph rewriting rules [123]. Later it was
shown to be beneficial to let the program under con-
sideration guide the choice of combinators (so-called
supercombinators) [62].
• In his seminal paper [123], David Turner describes

the SK-machine to support the implementation of
SASL. The compiler is based on the equivalence be-
tween combinatory logic [113] and theλ-calculus
[40]. It generates code for what is essentially a two



744 S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751

instruction machine. To make the machine more ef-
ficient, Turner added further instructions, each with
a functionality that is provably equivalent to a num-
ber of S and K combinators.

• The G-machine (1984) was designed by Augusts-
son and Johnsson for lazy (call-by-need) evaluation
of functional programs in supercombinator form
[10,68,104]. Instead of interpreting supercombi-
nators as rewrite rules, they were compiled into
sequential code with special instructions for graph
manipulation. The G-machine is the basis of the
Lazy ML [11] and HBC Haskell [13] implementa-
tions.

• The Krivine machine (1985) is a simple abstract
machine for call-by-name evaluation (i.e. without
sharing of argument evaluation) of the pure lambda
calculus [39]. It has just three instructions, cor-
responding to the three constructs of the lambda
calculus: variable access, abstraction, and appli-
cation. A remarkable feature is that the argument
stack is also the return stack (continuation).

• The Three Instruction Machine TIM (1986) is a
simple abstract machine for evaluation of super-
combinators, developed by Fairbairn and Wray
[48]. The basic call-by-name version of this ma-
chine is quite similar to the Krivine machine. A
lazy (call-by-need) version needs extra machinery
to update shared function arguments; it is somewhat
complicated to implement this efficiently [8].

• The Krivine machine can be made lazy just as the
TIM [36,37,115]. Alternatively one may add an ex-
plicit heap and a single new instruction for making
recursive let-bindings [116]. The resulting machine
has been used in some theoretical studies, e.g. [112].

• The Spineless-Tagless G-machine (1989) was de-
veloped by Peyton Jones as a refinement of the
G-machine [105]. It is used in the Glasgow Haskell
compiler [103].
There are many more abstract machines for func-

tional languages than we can mention here. Typically
they were developed for theoretical study, or during
the work on some novel language or implementation
technique.

It is ultimately the performance that decides whether
an abstract machine has been well designed. A com-
prehensive overview of over 25 functional language
implementations is provided in the Pseudoknot bench-
mark [58].

7. Abstract machines for logic programming
languages

Logic programming languages are based on predi-
cate calculus. The program is given as a finite set of
inference rules. The execution of a logic program per-
forms logical inferences. Prolog is the most promi-
nent logic programming language. In Prolog the rules
are in a standard form known as universally quantified
‘Horn clauses’. A goal statement is used to start the
computation which tries to find a proof of this goal.

Most research in compiling of Prolog programs is
centered around the Warren Abstract Machine WAM
(1983) which has become the de facto standard [133].
It offers special purpose instructions, which include
unification instructions for various kinds of data and
control flow instructions to implement backtracking.
The original report by Warren [132] gives just the bare
bones and there have been several efforts to present
the WAM in a pedagogical way [2,50,138]. The WAM
uses four memory areas: heap, stack, trail, and PDL.
• The WAM allocates structures and variables on the

heap. Garbage collection automatically reclaims
heap space allocated by structures and variables
which are no longer reachable from the program.

• Thestackcontains choice points and environments.
In a choice point there are entries for the address
of the previous choice point, the next alternative
clause (continuation pointer) and to store some of
the registers of the WAM. An environment con-
sists of the permanent variables in a clause. Con-
ceptually the stack can be divided into two stacks,
called the AND-and OR-stacks. The AND-stack
contains environments and the OR-stack contains
choice points.

• On thetrail , the WAM keeps track of which bind-
ings have to be retracted after a clause fails and be-
fore an alternative clause can be tried, i.e. during
backtracking.

• Finally thepush down list, PDL,contains pairs of
nodes, which have to be considered next by the uni-
fication algorithm. Unification matches the current
goal with the head of a clause and binds variables
in both the goal and the head.
Research has focussed on the generation of opti-

mized WAM code and resulting extensions and mod-
ifications of the WAM have been proposed. Some of
the techniques, which have been investigated, are in-



S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751 745

dexing of clauses, environment trimming, register al-
location [66,88] and tabling of goals [108]. Data flow
analysis, in particular abstract interpretation, and tail
recursion optimizations have been the basis of efficient
implementations of Prolog [125,127].

8. Abstract machines for hybrid programming
languages

Programming language researchers try to combine
the best of different language paradigms in hybrid pro-
gramming languages. For functional logic languages
abstract machines have been designed as extensions
of abstract machines for functional languages [79,97]
or as extensions of the WAM [21,57]. The WAM has
also been the basis for abstract machines for constraint
logic programming languages [16,65], the concurrent,
constraint logic programming language OZ [90] and
the concurrent, real time language Erlang [9].

9. Abstract machines for parallel programming
languages

As noted by Blair [18], parallel and distributed mod-
els converge due to trends towards high-speed net-
works, platform independence and micro-kernel based
operating systems. Several such models are discussed
in [73], most notably the Parallel Virtual Machine
PVM (1990) which serves as an abstraction to pro-
gram sets of heterogeneous computers as a single com-
putational resource [15,120]. The Threaded Abstract
Machine TAM (1993) [38] and a similar, but simpler
abstract machine [3,47] have been proposed as gen-
eral target architectures for multi-threading on highly
parallel machines.

Parallel and distributed architectures provide com-
putation power which programming language imple-
mentations on these systems try to exploit.

Pure functional languages are referentially trans-
parent, and parallel evaluation of e.g. the arguments
of a function invocation would seem a promising
idea. Indeed, several abstract machines have been
suggested which implement parallel graph reduction,
e.g. 〈ν, G〉-machine [12], GRIP [106], GUM [122],
and DREAM [22]. Also an abstract machine for par-
allel proof systems [67] is based on parallel graph

reduction. A critical review of parallel implementa-
tions of functional languages, in particular of lazy
languages, is given by Wilhelm et al. [137]. They
observe that the exploitation of natural parallelism
in functional programming languages has not been
successful so far [137]. In general, giving the pro-
grammer control over the parallelism in the language
allows for better results, e.g. the PCKS-machine
[96].

Parallelism naturally arises in logic programming:
Several clauses for the same goal (AND-parallelism)
or all goals in a clause (OR-parallelism) can be tried in
parallel. AND-Parallel models have been proposed in
[59,85], some of the OR-Parallel models are the SRI
model [134], the Argonne model [24], the BC machine
[4], the MUSE model [5,6] and the model proposed in
[31]. Furthermore there have been attempts to combine
AND and OR parallelism [55]. There have also been
parallel abstract machines, which are totally different
from the WAM. One of these is the PPAM [71], which
is based on a dataflow model.

Some of the important issues in implementing par-
allel abstract machines for programming languages are
static and dynamic scheduling [19,114], granularity of
tasks, distributed garbage collection [69] and code and
thread migration [126,136].

10. Special-purpose abstract machines

Abstract machines are not only used for translation
of programming languages, but also as intermediate
levels of abstraction for other purposes. Term rewriting
[42] is a model of computation used in various areas
of computer science, including symbolic computation,
automated theorem proving and execution of algebraic
specifications. Abstract machines for term rewriting
systems include the abstract rewriting machine ARM
[72], µARM [129] and TRAM [99].

Portability is the main reason for the success of
DVI [76] and PostScript [64] as page-description lan-
guages. DVI is a simple language without control-flow
constructs, whereas PostScript is a full programming
language in the tradition of Forth. Both are used as
intermediate languages by text processing systems.
They are either further compiled into the language of
a certain printer or interpreted by the printer’s built-in
processor.



746 S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751

In natural language parsing abstract machines based
on the WAM are investigated. In contrast to usual Pro-
log programs, terms in unification grammars tend to
be large and thus efficient unification instructions are
added to the WAM [17,139].

The Hypertext Abstract Machine (1988) is a server
for a hypertext storage system [25]. The data struc-
tures of the machine are graphs, contexts, nodes, links
and attributes. The instructions of the machine initi-
ate transactions with the server to access and modify
these.

11. Concrete abstract machines

A computer processor (CPU) could be considered a
concrete hardware realization of an abstract machine,
namely the processor’s design. While this view is
rather extreme when applied to processors such as the
x86, SPARC, MIPS, or HP-PA, it makes more sense
when applied to unconventional, special-purpose pro-
cessors or abstract machines.

For many years (roughly, from the early 1970s to
the late 1980s) it was believed that efficient imple-
mentation of symbolic languages, such as functional
and logic languages, would require special-purpose
hardware. Several such hardware implementations
were undertaken, and some resulted in commercial
products. However, the rapid development of conven-
tional computer hardware, and advances in compiler
and program analysis technology, nullified the advan-
tages of special-purpose hardware, even microcoded
implementations. Special-purpose hardware was too
expensive to build and could not compete with stock
hardware.

A tell-tale sign is that the conference seriesFunc-
tional Programming and Computer Architecture(ini-
tiated in 1981) published few papers on concrete
computer architecture, and when merging with the
Lisp conference series in 1996, dropped ‘Computer
Architecture’ from its title.

Some examples of concrete hardware realizations
of abstract machines are:
• The Burroughs B5000 processor (1961) had hard-

ware support for efficient stack manipulation, such
as keeping the top few elements of the stack in
special CPU registers. The goal was to support
the implementation of Algol 60 and other block-

structured languages. Subsequently many machines
with hardware stack support have been developed
(see [77]).

• A Lisp machine project was initiated at MIT in
1974 and led to the creation of the company Sym-
bolics in 1980. Symbolics Lisp Machines had a
special-purpose processor and memory, with sup-
port for e.g. the run-time type tags required by
Lisp. The entire operating system and development
environment were written in Lisp. By 1985 the
company had sold 1500 Lisp Machines; by 1996 it
was bankrupt.

• The Pascal Microengine Computer (1979) is a
hardware implementation of the UCSD P-code ab-
stract machine [92](see Section 3). Analogously
to the Lisp machines, the operating system and
development environment were written entirely in
Pascal. The machine was commercially available
in the early 1980s.

• ALICE (Applicative Language Idealized Comput-
ing Engine) [41] by Darlington and Reeve was the
first hardware implementation of a reduction ma-
chine. It was built using 40 transputers connected
by a multi-stage switching network.

• Kieburtz and others (1985) designed a hardware
implementation of Augustsson and Johnsson’s
G-machine (see Section 6.2) for graph reduction of
lazy functional languages [75]. Simulations of the
processor and memory management system were
done, but the hardware was never built.

• The Norma was created by the Burroughs company
(1986) as a research processor for high speed graph
reduction in functional programming languages
(see e.g. [77]).

• Scheme-81 is a chip implementing an evaluator
(abstract machine) for executing Scheme [14].

• A number of special-purpose machines for Prolog
execution have been developed, mostly based on the
WAM and modifications thereof. Several machines
were designed within the Japanese Fifth Genera-
tion Project (1982–1992), and a total of around 800
such machines were built; they were used mostly
inside the project. Other hardware implementations
include the KCM project (1988) at ECRC in Eu-
rope, and the VLSI-BAM, an implementation of the
Berkeley Abstract Machine, designed at Berkeley
in the USA. For more information and references
(see [124], Section 3.2).



S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751 747

• The Transputer (1984) [84] is a special-purpose
microprocessor for the execution of Occam [83], a
parallel programming language with synchronous
communication, closely based on Hoare’s theoreti-
cal language CSP [60]. It has special hardware and
instructions for creating networks of Transputers.

• MuP21 (1993) is an extremely simple but fast mi-
croprocessor for executing Forth programs. It has
two stacks, 20-bit words, just 24 (five-bit) instruc-
tions, and its implementation requires only 7000
transistors [95].

• A series of Java microprocessors which directly
execute Java Virtual Machine bytecode (see Sec-
tion 4) and support also conventional imperative
languages was announced by Sun Microsystems
in 1996. Technical specifications for the microJava
701 processor were available by early 1998 [93],
but apparently the chip was not yet in volume
production by early 1999.

12. Conclusion

For almost 40 years abstract machines have been
used for programming language implementation. As
new languages appear, so will abstract machines as
tools to handle the complexity of implementing these
languages. While abstract machines are a useful tool
to bridge the gap between a high level language and a
low level architecture, much work remains to be done
to develop a theory of abstract machines. Such a theory
is necessary to support the systematic development
of abstract machines from language and architecture
specifications.

Acknowledgements

We thank David Barron, Hugh Glaser, Brian
Kernighan, John Ousterhout, Guido van Rossum and
Reinhard Wilhelm for their help with our research.

References

[1] A.V. Aho, B.W. Kernighan, P.J. Weinberger, The AWK
Programming Language, Addison-Wesley, Reading, MA,
1988.

[2] H. Aït-Kaci, Warren’s Abstract Machine – A Tutorial
Reconstruction, MIT Press, Cambridge, MA, 1991.

[3] Engelhardt, Alexander, Wendelborn, An overview of the Adl
language project, Proceedings of the Conference on High
Performance Functional Computing, Denver, Colorado, 1995.

[4] K.A.M. Ali, OR-parallel execution of Prolog on BC-machine,
Proceedings of the Fifth International Conference and
Symposium on Logic Programming, MIT Press, Cambridge,
MA, 1988, pp. 1531–1545.

[5] K.A.M. Ali, R. Karlsson, Scheduling OR-Parallelism in
MUSE, Proceedings of the 1990 North American Conference
on Logic Programming, MIT Press, Cambridge, MA, 1990,
pp. 807–821.

[6] K.A.M. Ali, R. Karlsson, The MUSE Or-Parallel Prolog
Model and its Performance, Proceedings of the Eighth
International Conference on Logic Programming, MIT Press,
Cambridge, MA, 1991, pp. 757–776.

[7] U. Ammann, Code Generation of a Pascal-Compiler, In: D.W.
Barron (Ed.), Pascal – The Language and its Implementation,
Wiley, New York, 1981.

[8] G. Argo, Improving the three instruction machine,
Fourth International Conference on Functional Programming
Languages and Computer Architecture, Imperial College,
London, Addison-Wesley, Reading, MA, September 1989, pp.
100–112.

[9] J.L. Armstrong, B.O. Däcker, S.R. Virding, M.C. Williams,
Implementing a functional language for highly parallel real
time applications, Proceedings of the Conference on Software
Engineering for Telecommunication Systems and Services
(SETSS’92), Florence, 1992.

[10] L. Augustsson, A compiler for lazy ML, 1984 ACM
Symposium on Lisp and Functional Programming, Austin,
Texas, ACM, 1984, pp. 218–227.

[11] L. Augustsson, The interactive lazy ML system, J. Funct.
Programming 3 (1) (1993) 77–92.

[12] L. Augustsson, T. Johnsson, Parallel graph reduction
with the 〈ν, G〉 machine, Proceedings of the Conference
on Functional Programming Languages and Computer
Architecture (FPCA’89), London, ACM, New York, 1989,
pp. 202–213.

[13] L. Augustsson, HBC – The Chalmers Haskell compiler,
Web Page, 1999, URL: http://www.cs.chalmers.se/augustss/
hbc.html.

[14] J. Batali et al., The Scheme-81 architecture, system and chip,
MIT Conference on Advanced Research in VLSI, 1982.

[15] A. Beguelin, J. Dongarra, A. Geist, B. Manchek, V. Sunderam,
Recent Enhancements to PVM, Internat. J. Supercomput.
Appl. 9 (2) (1995).

[16] C. Beierle, Formal design of an abstract machine for constraint
logic programming, IFIP Congress, vol. 1, 1994, pp. 377–382.

[17] C. Beierle, G. Meyer, H. Semele, Extending the
Warren Abstract Machine to Polymorphic Order-sorted
Resolution, Technical Report IWBS Report 181, Institute for
Knowledge-based Systems, Stuttgart, 1991.

[18] G.S. Blair, A convergence of parallel and distributed
computing, in: M. Kara, J.R. Davy, D. Goodeve, J. Nash
(Eds.), Abstract Machine Model for Parallel and Distributed
Computing, IOS Press, Amsterdam, 1996.



748 S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751

[19] J. Blazwicz, K.H. Ecker, G. Schmidt, J. Weglarz, Scheduling
in Computer and Manufacturing Systems, Springer, Berlin,
1994.

[20] E. Börger, D. Rosenzweig, The WAM – Definition and
Compiler Correctness, in: C. Beierle, L. Plümer (Eds.), Logic
Programming: Formal Methods and Practical Applications,
North-Holland, Amsterdam, 1995, pp. 22–90.

[21] P.G. Bosco, C. Cecchi, C. Moiso, An extension of WAM
for K-LEAF: a WAM-based compilation of conditional
narrowing, Proceedings of the Sixth International Conference
on Logic Programming (Lisboa), MIT Press, Cambridge, MA,
1989.

[22] S. Breitinger, U. Klusik, R. Loogen, Y. Ortega-Mallén, R.
Pena, DREAM: The DistRibuted Eden Abstract Machine, in:
Implementation of Functional Languages – Selected Papers
of the Ninth International Workshop (IFL’97), Lecture Notes
in Computer Science, vol. 1467, Springer, Berlin, 1997, pp.
250–269.

[23] P.J. Brown, Macro Processors and Techniques for Portable
Software, Wiley, Chichester, UK, 1988.

[24] R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, R.
Stevens, Scheduling Or-Parallelism: An Argonne Perspective,
in: Proceedings of the Fifth International Conference and
Symposium on Logic Programming, MIT Press, Cambridge,
MA, 1988.

[25] B. Campbell, J.M. Goodman, HAM: a general purpose
hypertext abstract machine, Commun. ACM 31 (7) (1988)
856–861.

[26] L. Cardelli, The functional abstract machine, Technical Report
TR-107, AT&T Bell Labs, 1983.

[27] L. Cardelli, Compiling a functional language, Lisp and
Functional Programming, ACM, New York, 1984.

[28] C. Chambers, D. Ungar, E. Lee, An efficient implementation
of Self, a dynamically typed object-oriented language based
on prototypes, in: OOPSLA’89, New Orleans, LA, October
1989, SIGPLAN Notices 24 (10) (1989) 49-70.

[29] C. Chambers, D. Ungar, E. Lee, An efficient implementation
of Self, a dynamically typed object-oriented language based
on prototypes, Lisp Symbol. Comput. 4 (3) (1991) 57–95.

[30] F.C. Chow, M. Ganapathi, Intermediate languages in
compiler Construction-A bibliography, ACM SIGPLAN
Notices 18 (11) (1983) 21–23.

[31] A. Ciepielewski, S. Haridi, B. Hausman, Or-Parallel Prolog
on Shared Memory Multiprocessors, J. Logic Programming
7 (1989) 125–147.

[32] R. Clark, S. Koehler, The UCSD Pascal Handbook,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[33] M.E. Conway, Proposal for an UNCOL, Commun. ACM
1 (10) (1958) 5–8.

[34] G. Cousineau, P.-L. Curien, M. Mauny, The Categorial
Abstract Machine, Proceedings of FPCA’85, Springer, LNCS
201, 1985.

[35] G. Cousineau, M. Mauny, The Functional Approach to
Programming, Cambridge University Press, Cambridge, 1998.

[36] P. Crégut, An abstract machine for the normalization
of λ-terms, ACM Conference on Lisp and Functional
Programming, Nice, France, ACM Press, 1990, pp. 333–340.

[37] P. Crégut, Machinesá environnement pour la réduction
symbolique et l’évaluation partielle, Ph.D. Thesis, Université
Paris VII, France, 1991.

[38] D. Culler, S.C. Goldstein, K. Schauser, T. von Eicken, TAM –
A Compiler Controlled Threaded Abstract Machine, Special
Issue on Dataflow, J. Parallel Distrib. Comput. 1993.

[39] P.L. Curien, Theλρ-calculus: an abstract framework for
environment machines, Rapport de Recherche LIENS-88-10,
Ecole Normale Supérieure, Paris, France, 1988.

[40] H.B. Curry, R. Feys, Combinatory Logic, vol. I,
North-Holland, Amsterdam, 1958.

[41] J. Darlington, M.J. Reeve, ALICE: A multiple-processor
reduction machine for the parallel evaluation of applicative
languages, Proceedings of FPCA’81, 1981, pp. 65–76.

[42] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: J. van
Leeuwen (Ed.), Handbook of Theoretical Computer Science,
vol. B, North-Holland, Amsterdam, 1990, pp. 243–320.

[43] S. Diehl, Semantics-directed generation of compilers and
abstract machines, Ph.D. Thesis, University Saarbrücken,
Germany 1996, http://www.cs.uni-sb.de/∼diehl/phd.html.

[44] S. Diehl, An experiment in abstract machine design, Software
– Practice and Experience 27 (1) (1997).

[45] S. Diehl, Transformations of evolving algebras, Proceedings
of the VIII International Conference on Logic and Computer
Science LIRA’97, Novi Sad,Yugoslavia, 1997, pp. 43–50.

[46] S. Diehl, Natural semantics-directed generation of compilers
and abstract machines, Formal Aspects of Computing, in
press.

[47] Engelhardt, Wendelborn, A partitioning-independent
paradigm for nested data parallelism, Internat. J. Parallel
Programming 24 (2) (1996).

[48] J. Fairbairn, S.C. Wray, TIM: A simple, lazy abstract
machine to execute supercombinators, in: G. Kahn
(Ed.), Functional Programming Languages and Computer
Architecture, Portland, Oregon, Lecture Notes in Computer
Science, vol. 274, Springer, Berlin, 1987, pp. 34–45.

[49] G. Fowler, A case for make, Software–practice and experience
20 (S1) (1990) 35–46.

[50] J. Gabriel, T. Lindholm, E.L. Lusk, R.A. Overbeek, A
Tutorial on the Warren Abstract Machine, Technical Report
ANL-84-84, Argonne National Laboratory, Argonne, IL,
1985.

[51] A. Goldberg, D. Robson, Smalltalk-80, The Language and
Its Implementation, Addison-Wesley, Reading, MA, 1983.

[52] A. Goldberg, D. Robson, Smalltalk-80, The Language and
Its Implementation, Addison-Wesley, Reading, MA, 1989.

[53] R.E. Griswold, The Macro Implementation of SNOLBOL4,
Freeman, New York, 1972.

[54] R.E. Griswold, J.F. Poage, I.P. Polonsky, The SNOLBOL4
programming language, Prentice-Hall, Englewood Cliffs, New
Jersey, 1971.

[55] G. Gupta, B. Jayaraman, A model for AND-OR parallel
execution of logic programs, Proceedings of the 18th
International Conference on Parallel Processing, 1989.

[56] J. Hannan, Operational semantics-directed compilers and
machine architectures, ACM Transactions on Programming
Languages and Systems 16 (4) (1994) 1215–1247.



S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751 749

[57] M. Hanus, Compiling logic programs with equality,
Proceedings of Second International Workshop on Pro-
gramming Language Implementation and Logic Programming
(PLILP’90), Lecture Notes in Computer Science, vol. 456,
Springer, Berlin, 1990, pp. 387–401.

[58] P.H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann,
M. Beemster, E. Chailloux, C.H. Flood, W. Grieskamp, J.H.G,
van Groningen, K. Hammond, B. Hausman, M.Y. Ivory,
R.E. Jones, J. Kamperman, P. Lee, X. Leroy, R.D. Lins, S.
Loosemore, N. Röjemo, M. Serrano, J.-P. Talpin, J. Thackray,
S. Thomas, P. Walters, P. Weis, P. Wentworth, Benchmarking
implementations of functional languages with “pseudoknot”,
a Float-Intensive benchmark, J. Funct. Programming
6 (4) (1996) 621–655, ftp.wins.uva.nl pub computer-systems
functional reports JFP pseudoknotI.ps.Z.

[59] M.V. Hermenegildo, An abstract machine based execution
model for parallel execution of logic programs, Ph.D. Thesis,
University of Texas at Austin, Austin, 1986.

[60] C.A.R. Hoare, Communicating Sequential Processes,
Prentice-Hall, Englewood Cliffs, NJ, 1985.

[61] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, MA,
1979.

[62] R.J.M. Hughes, Super-combinators: A new implementation
method for applicative languages, ACM Symposium on
Lisp and Functional Programming, Pittsburgh, Pennsylvania,
ACM, August 1982, pp. 1–10.

[63] J. Hugunin, Python and Java – the best of both worlds,
Proceedings of the Sixth International Python Conference,
San Jose, California, October 1997, Corporation for National
Research Initiatives, Reston, Virginia.

[64] Adobe Systems, Inc., PostScript Language Reference Manual,
Addison-Wesley, Reading, MA, 1990.

[65] J. Jaffar, P.J. Stuckey, S. Michaylov, R.H.C. Yap, An Abstract
Machine for CLP(R), in: PLDI’92, San Francisco, SIGPLAN
Notices, 1992.

[66] G. Janssens, B. Demoen, A. Mariën, Improving the register
allocation in WAM by reordering unificiation, Proceedings
of the Fifth International Conference and Symposium on
Logic Programming, MIT Press, Cambridge, MA, 1988, pp.
1388–1402.

[67] R. Johnson, K. Shen, M. Fisher, J. Keane, A. Nisbet, An
abstract machine for prototyping parallel proof mechanisms,
in: M. Kara, J.R. Davy, D. Goodeve, J. Nash (Eds.), Abstract
Machine Model for Parallel and Distributed Computing, IOS
Press, Amsterdam, 1996.

[68] T. Johnsson, Efficient compilation of lazy evaluation,
Proceedings of the ACM SIGPLAN’84 Symposium on
Compiler Construction, SIGPLAN Notices 19 (6) (1984)
58–69.

[69] R. Jones, R. Lins, Garbage Collection – Algorithms for
Automatic Dynamic Memory Management, Wiley, New York,
1996.

[70] U. Jørring, W.L. Scherlis, Compilers and staging
transformations, Proceedings of the 13th ACM Symposium
on Principles of Programming Languages, 1986.

[71] P. Kacsuk, Execution Models of Prolog for Parallel
Computers, MIT Press, Cambridge, MA, 1990.

[72] J.F.T. Kamperman, H.R. Walters, ARM – Abstract rewriting
machine, in: H.A. Wijshoff (Ed.), Computing Science in the
Netherlands, 1993.

[73] M. Kara, J.R. Davy, D. Goodeve, J. Nash (Eds.), Abstract
Machine Model for Parallel and Distributed Computing, IOS
Press, Amsterdam, 1996.

[74] B.W. Kernighan, C.J. Van Wyk, Timing trials, or the trials
of timing: experiments with scripting and user-interface
languages, Software – practice and experience 28 (8) (1998)
819–843.

[75] R.B. Kieburtz, The G-machine: A fast, graph-reduction
evaluator, in: J.-P. Jouannaud (Ed.), Function Programming
Languages and Computer Architecture, Nancy, France,
September 1985, Lecture Notes in Computer Science, vol.
201. Springer, Berlin, 1985.

[76] D.E. Knuth, TeX: The Program, Addison-Wesley, Reading,
MA, 1986.

[77] P. Koopman, Stack Computers: the new wave, Ellis Horwood,
Chichester, UK, 1989, URL: http://www.cs.cmu.edu/
koopman/stack/computers/.

[78] D.G. Korn, KSH – an extensible high level language, Very
High Level Languages (VHLL), Santa Fe, New Mexico,
Usenix Association, Berkely, CA, 1994, pp. 129–146.

[79] H. Kuchen, R. Loogen, J.J. Moreno-Navarro, M.
Rodríguez-Artalejo, Graph-based implementation of a
functional logic language, Proceedings of European
Symposium on Programming Languages (ESOP’90), Lecture
Notes in Computer Science, vol. 432, Springer, Berlin, 1990,
pp. 271–290.

[80] P. Kursawe, How to invent a Prolog machine, Proceedings of
the Third International Conference on Logic Programming,
Lecture Notes in Computer Science, vol. 225, Springer,
Berlin, 1986, pp. 134–148.

[81] P.J. Landin, The mechanical evaluation of expressions,
Comput. J. 6 (4) (1964).

[82] X. Leroy, The Zinc experiment: An economical
implementation of the ML language, Rapport Technique 117,
INRIA Rocquencourt, France 1990.

[83] INMOS Limited, Occam 2 Reference Manual, Prentice-Hall,
London, 1988, ISBN 0-13-629312-3.

[84] INMOS Limited, Transputer Instruction Set – A Compiler
Writer’s Guide, Prentice-Hall, London, 1988, ISBN
0-13-929100-8.

[85] Y.-J. Lin, V. Kumar, AND-parallel execution of logic
programs on a shared memory multiprocessor: a summary of
results, Proceedings of the Fifth International Conference and
Symposium on Logic Programming, MIT Press, Cambridge,
MA, 1988, pp. 1123–1141.

[86] T. Lindholm, F. Yellin, The Java Virtual Machine
Specification, Addison-Wesley, Reading, MA, 1996.

[87] M. Lutz, Programming Python, O’Reilly, Sebastopol,
California, October 1996.

[88] L. Matyska, A. Jergova, D. Toman, Register allocation, in
WAM, Proceedings of the Eighth International Conference
on Logic Programming, MIT Press, Cambridge, MA, 1991.

[89] S. McKeever, A framework for generating compilers from
natural semantics specifications, in: P.D. Mosses (Ed.),



750 S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751

Proceedings of the First Workshop on Action Semantics,
BRICS-NS-94-1, University of Aarhus, Denmark, 1994.

[90] M. Mehl, R. Scheidhauer, C. Schulte, An abstract machine for
Oz, in: M. Hermenegildo, S.D. Swierstra (Eds.), Proceedings
of the Seventh International Symposium, PLILP’95, vol.
LNCS 982, Springer, Berlin, 1995.

[91] J. Meyer, T. Downing, Java Virtual Machine, O’Reilly,
Sebastopol, California, 1997.

[92] The Microengine Company, Newport Beach, California, USA,
Pascal Microengine Computer User’s Manual, 1979.

[93] Sun Microsystems, Microjava-701 java processor, Sun
Microsystems Data Sheet, January 1998, URL: http://
www.sun.com/microelectronics/microJava-701.

[94] C. Moore, Forth: A new way to program a mini-computer,
Astron. Astrophys. (Suppl.) 15 (1974) 497-511.

[95] C. Moore, C.H. Ting, MuP21 – a high performance
MISC processor, Forth Dimensions, January 1995. URL:
http://www.UltraTechnology, com/mup21.html.

[96] L. Moreau, The PCKS-machine: An abstract machine
for sound evaluation of parallel functional programs
with first-class continuations, Proceedings of the European
Symposium on Programming Languages (ESOP’94), Lecture
Notes in Computer Science, vol. 788, Springer, Berlin, 1994,
pp. 424–438.

[97] A. Mück, Camel: An extension of the categorial abstract
machine to compile functional logic programs, PLILP’92,
Lecture Notes in Computer Science, vol. 631, Springer,
Berlin, 1992.

[98] U. Nilsson, Towards a methodology for the design of abstract
machines for logic programming, J. Logic Programming 16
(1993) 163–188.

[99] K. Ogata, K. Ohhara, K. Futatsugi, TRAM: An abstract
machine for order-sorted conditional term rewriting systems,
Proceedings of the Eighth International Conference on
Rewriting Techniques and Applications (RTA’97), Lecture
Notes in Computer Science, vol. 1232, Springer, Berlin, 1997,
pp. 335–338.

[100] J.K. Ousterhout, Tcl and the Tk tookit, Addison-Wesley,
Reading, MA, 1994.

[101] J.K. Ousterhout, Scripting: Higher level programming for
the 21st century, IEEE Computer 31 (3) (1998) 23–30.

[102] S. Pemberton, M. Daniels, Pascal Implementation: The P4
Compiler and Interpreter, Ellis Horwood, Chichester, UK,
1983, ISBN 0-13-653-0311.

[103] S.L. Peyton Jones, C.V. Hall, K. Hammond, W.D. Partain,
P.L. Wadler, The Glasgow Haskell compiler: a technical
overview, Joint Framework for Information Technology
(JFIT) Technical Conference, Keele, England, March 1993,
DTI/SERC, pp. 249–257.

[104] S.L. Peyton Jones, The Implementation of Functional
Programming Languages, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

[105] S.L. Peyton Jones, Implementing lazy functional languages
on stock hardware, the spineless tagless G-machine, J. Funct.
Programming 2 (2) (1992) 127–202.

[106] S.L. Peyton Jones, C. Clark, J. Salkild, M. Hardie, GRIP: a
high-performance architecture for parallel graph reduction, in:

T.J. Fountain, M.J. Shute (Eds.), Multi-Processor Computer
Architectures, North-Holland, Amsterdam, 1990.

[107] G.D. Plotkin, A structural approach to operational semantics,
Technical Report FN-19, DAIMI, Aarhus University,
Denmark, 1981.

[108] I.V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, D.S.
Warren, Efficient tabling mechanisms for logic programs,
in: L. Sterling (Ed.), Proceedings of the 12th International
Conference on Logic Programming ,Tokyo, MIT Press,
Cambridge, MA, 1995.

[109] B. Randell, L.J. Russel, Algol60 Implementation, Academic
Press, New York, 1964.

[110] T.H. Romer, D. Lee, G.M. Voelker, A. Wolman, W.A. Wong,
J.-L. Baer, B.N. Bershad, H.M. Levy, The structure and
performance of interpreters, Proceedings of the 7th Int. Conf.
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Cambridge, MA, September
1996, ACM, New York, 1996, pp. 150–159.

[111] D.M. Russinoff, A verified Prolog compiler for the Warren
abstract machine, J. Logic Programming 13 (1992) 367–412.

[112] P.M. Sansom, S.L. Peyton Jones, Formally based
profiling for higher-order functional languages, ACM Trans.
Programming Languages Systems 19 (2) (1997) 334–385.

[113] M. Schönfinkel, Über die Bausteine der mathematischen
Logik, Mathematische Annalen 92 (6) (1924) 305–316.

[114] H. Seidl, R. Wilhelm, Probabilistic load balancing for
parallel graph reduction, Proceedings IEEE Region 10
Conference, IEEE Press, New York, 1989.

[115] P. Sestoft, Analysis and efficient implementation of
functional programs, Ph.D. Thesis, DIKU, University of
Copenhagen, Denmark, 1991, DIKU Research Report 92/6.

[116] P. Sestoft, Deriving a lazy abstract machine, J. Programming
7 (3) (1997).

[117] P. Sestoft, Moscow, ML, Web Page, 1999, URL:
http://www.dina.kvl.dk/ sestoft/mosml.html.

[118] S. Srinivasan, Advanced Perl Programming, O’Reilly,
Sebastopol, California, August 1997.

[119] T.B. Steel Jr., A first version of UNCOL, Western Joint
Comp. Conf., pp. 371–378. IRE and AIEE and ACM and
AFIPS, New York, May 1961.

[120] V.S. Sunderam, PVM: a framework for parallel distributed
computing, Software – Practice and Experience 2 (4) (1990)
315–339.

[121] A.S. Tanenbaum, Modern Operating Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[122] P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S.
Patridge, GUM: a portable parallel implementation of
Haskell, Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI’96), Philadelphia, 1996.

[123] D.A. Turner, A new implementation technique for applicative
languages, Software – Practice and Experience 9 (1979) 31–
49.

[124] P. van Roy, 1983–1993: The wonder years of sequential
Prolog implementation, J. Logic Programming (1994).

[125] P. van Roy, A.M. Despain, The benefits of global dataflow
analysis for an optimizing Prolog compiler, Proceedings of



S. Diehl et al. / Future Generation Computer Systems 16 (2000) 739–751 751

the 1990 North American Conference on Logic Programming,
MIT Press, Cambridge, MA, 1990.

[126] P. van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl,
R. Scheidhauer, Mobile objects in distributed Oz, ACM
Trans. Programming Languages Systems 19 (5) (1997) 804–
851.

[127] P.L. van Roy, Can logic programming execute as fast
as imperative programming, Ph.D. Thesis, University of
California at Berkley, Berkley, 1990.

[128] L. Wall, T. Christiansen, R.L. Schwartz, Programming Perl,
2nd ed., O’Reilly, Sebastopol, California, September 1996.

[129] H.R. Walters, J.F.Th. Kamperman, EPIC: an equational
language – abstract machine and supporting tools,
Proceedings of the Seventh Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer
Science, vol. 1103, Springer, Berlin, 1996, pp. 424–427.

[130] M. Wand, Semantics-directed machine architecture,
Proceedings of POPL 82, 1982.

[131] M. Wand, From interpreter to compiler: a representational
derivation, in: H. Ganzinger, N.D. Jones (Eds.), Programs as
Data Objects, Lecture Notes in Computer Science, vol. 217,
Springer, Berlin, 1986.

[132] D.H.D. Warren, Implementing Prolog – compiling predicate
logic programs, D.A.I Research Report No. 40, Edinburgh,
1977.

[133] D.H.D. Warren, An abstract Prolog instruction set, Technical
Note 309, SRI International, Menlo Park, CA, 1983.

[134] D.H.D. Warren, The SRI-Model for OR-Parallel Execution
of Prolog – Abstract Design and Implementation Issues, IEEE
Symposium on Logic Programming, San Francisco, 1987, pp.
125–133.

[135] Pierre Weis, The Caml Language, Web Page, 1999, URL:
http://pauillac.inria.fr/caml/.

[136] B. Weissman, B. Gomes, J.W. Quittek, M. Holtkamp,
Efficient fine-grain thread migration with active threads,
Proceedings of 12th International Parallel Processing
Symposium and 9th Symposium on Parallel and Distributed
Processing, Orlando, Florida, 1996.

[137] R. Wilhelm, M. Alt, F. Martin, M. Raber, Parallel
implementation of functional languages, in: M. Dam (Ed.),
Fifth LOMAPS Workshop, Analysis and Verification of
Multiple-Agent Languages, Lecture Notes in Computer
Science, vol. 1192, Springer, Berlin, June 1997.

[138] R. Wilhelm, D. Maurer, Compiler Design: Theory,
Construction, Generation, Addison-Wesley, Reading, MA,
1995.

[139] S. Wintner, E. Gabrilovich, N. Francez, Amalia —a unified
platform for parsing and generation, Proceedings of Recent
Advances in Natural Language Processing, Tzigov Chark,
Bulgaria, 1997.

Stephan Diehl received his M.S. in
computer science as a Fulbright scholar
at Worcester Polytechnic Institute, Mas-
sachusetts, in 1993, and his Ph.D. as
a DFG scholar at Saarland University,
Germany, in 1996. He is currently as-
sistant professor at Saarland University
and works in the research group of Prof.
Reinhard Wilhelm. Stephan Diehl is the
author of two books with Addison-Wesley

and in the last three years he has published over 20 scientific
papers about programming language theory, internet technology,
visualization, Java and VRML. He teaches courses and seminars
at the university and in the industry about these topics. Since
summer 1998 he is project leader of the project GANIMAL
sponsored by DFG (German Research Council).

Dr. Pieter Hartel received his Ph.D. de-
gree in Computer Science from the Univer-
sity of Amsterdam in 1989. He has worked
at CERN in Geneva and the Universities
of Nijmegen and Amsterdam. He is cur-
rently a Senior Lecturer at the University
of Southampton. Dr. Hartel has consulted
for IT companies in the USA and in Eu-
rope. He has written a text book on pro-
gramming, and over 75 publications in the

areas of computer architecture, programming language design and
formal methods. He is secretary and founding member of IFIP
working group 8.8 on smart cards, and he is general secretary of
the European Association for Programming Languages and Sys-
tems (EAPLS).

Peter Sestoftreceived his Ph.D. in com-
puter science from DIKU at the University
of Copenhagen in 1991. He has worked
at the Technical University of Denmark
and spent a sabbatical at AT&T Bell
Labs in New Jersey. Currently he is asso-
ciate professor in computer science at the
Royal Veterinary and Agricultural Univer-
sity and a part-time associate of the new
IT University in Copenhagen. Peter Ses-

toft co-pioneered self-applicable partial evaluation (with Jones and
Sondergaard), and co-authored a book on partial evaluation (with
Jones and Gomard). He has developed program analyses, trans-
formations and abstract machines for functional languages. With
Sergei Romanenko he developed and now maintains the Moscow
ML implementation.


