
Future Generation Computer Systems 16 (2000) 831–839

Visualizing principles of abstract machines by generating
interactive animations

Stephan Diehl∗, Thomas Kunze
FB-14 Informatik, Universität des Saarlandes, Postfach 15 11 50, 66041 Saarbrücken, Germany

Accepted 24 May 1999

Abstract

In this paper we describe the design rationale of GANIMAM, a web-based system which generates interactive animations
of abstract machines from specifications. Common principles of abstract machines come into play at three levels: the design
of the specification language, the choice of graphical annotations to visualize higher-level abstractions and the use of the
system to explore and better understand known and detect new principles. © 2000 Elsevier Science B.V. All rights reserved.

Keywords:Abstract machines; Software visualization; Animation

1. Introduction

In the GANIMAL project we develop learning
software for compiler design. Conceptually the com-
putations performed by a compiler can be divided
into several phases. For most of these phases there
exist specification languages to define such a phase
and generators which given the specification generate
an implementation of the phase (e.g. LEX for lexi-
cal analysis, YACC for syntax analysis and PAG for
semantical analysis [2]). As a part of our project we
develop generators, which do not only generate im-
plementations, but also visualizations of the compiler
phase from a standard specification. In this paper
we describe the design rationale of GANIMAM, our
web-based generator for interactive animations of
abstract machines. Fig. 1. shows a snapshot of such
an animation. GANIMAM was designed to help stu-

∗ Corresponding author. Tel.:+49-681-302-3915.
E-mail address:diehl@cs.uni-sb.de (S. Diehl)

dents to learn about and experiment with abstract
machines.

Abstract machines provide intermediate target lan-
guages for compilation. First the compiler generates
code for the abstract machine, then this code can
be interpreted or further compiled into real machine
code. By dividing compilation into two stages, ab-
stract machines increase portability and maintain-
ability of compilers. The instructions of an abstract
machine are tailored to specific operations required
to implement operations of a source language or
even better for languages of the same language
paradigm.

In the following sections we describe how to use
GANIMAM and what is generated by the system.
Then we discuss the design of the specification lan-
guage. Next we explain how we enhance animations
by introducing annotations. Finally we discuss the
benefits of using GANIMAM and its generated inter-
active animations both as a development tool and as a
part of a learning software.

0167-739X/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(99)00093-X

832 S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839

Fig. 1. Screenshot of an animated P-machine.

2. GANIMAM

GANIMAM is a web-based system which gener-
ates visualization of abstract machines from specifica-
tions, and animates the execution of abstract machine
programs on these machines.

In the GANIMAM Java applet the user can select or
edit a previously defined specification of an abstract
machine or write a new one. Then this specification is
sent to the server. A CGI script on the server generates
Java code and using a Java compiler it translates this
code into new class files. These files are then dynam-
ically loaded into the running applet. In combination
with the GANIMAM base package classes these class
files form an interactive Java applet. The interaction
of the system components is shown in Fig. 2. The user
can enter machine programs, modify the layout of the
different parts of the visualized abstract machines and
control the animation of the execution of her abstract
machine programs.

The automatic layout groups the different memories
around the accumulator (the golfball in the middle).
Source code and stacks are placed to the left, stacks
to the right, local variables above and registers below
the accumulator. Associated with the accumulator is
an accumulator window, which shows the expressions

which are currently evaluated and the definitions of
the instructions or functions which are currently ex-
ecuted. Double clicking with the right mouse button
at an instruction in the source code window, loads its
definition into the accumulator window. Double click-
ing with the left mouse button at an instruction sets
the value of the program counter to the address of that
instruction, i.e. the execution of the abstract machine
program continues at that address. Clicking at a cell
of a stack, heap or register opens a window. In this
window the user can change the value and type of that
cell. For registers only the value can be changed.

3. Implementation

GANIMAM is a complex web application and
combines many technologies. On the server, the com-
piler for the specification language was implemented
with C, Lex and Yacc. Several CGI scripts had to be
implemented, e.g. to access an existing compiler from
Pascal to P-Code. Client/Server communication was
implemented with the help of the Java Networking
API. The AWT was used to implement the graphical
user interface of the client and a new layout manager
was implemented for the automatic and customizable
layout of the abstract machine components. To save

S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839 833

Fig. 2. Interaction of system components.

the customized layout locally on the client computer
we use object serialization, certificates and privilege
management. Garbage collection was implemented
on the heaps of the generated machines. Last but
not least, the Java Reflection API enabled us to load
classes generated at runtime into the running applet.

4. Specification language

Finding low-level principles and casting them into
language constructs is the first step towards a specifica-
tion language. A well-designed specification language
enables us to generate implemenations and visualiza-
tions. A crucial point of our specification language is
that it applies to abstract machines for programming
languages of different paradigms. Our specification
language is based on the notation used in the compiler
design text book by Wilhelm and Maurer [10] to de-
fine abstract machines for imperative, logical and func-
tional programming languages. Recently the notation

was also used to describe the Java Virtual Machine
[5]. The core of our specification language is a control
flow language with assignments, expressions, condi-
tionals and loops. Control flow languages are a stan-
dard specification method for imperative, functional
and logical programming languages, e.g. [10,1,8]. For
the specification of abstract machines for functional
languages sometimes rewriting rules have been used,
e.g. for the CAM [7], but usually they can be easily
reformulated in a control flow language [6].

At the heart of our specification language is a gen-
eral machine model. An abstract machine consists of
a set of instructions, a program store, heaps, stacks1

and registers. The machine runs in a loop executing
the instruction currently pointed at by a special regis-
ter, the program counter (PC).

1 In some abstract machines there are several stacks, e.g. in the
WAM we have the environment stack, the trail and the PDL for
recursive implementations of unification.

834 S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839

Fig. 3. Syntax of abstract machine specification language.

while(true) {
PC:= PC+1;
execute instruction at CODE[PC-1]
}

In this model an abstract machine can be specified
by declaring its heaps, stacks and registers and defin-
ing its instructions.

In Fig. 3 the syntax of our specification language
is given. A specification starts with declarations of
stacks, heaps and registers. Then auxiliary functions
(with fun) and machine instructions (withdef)
are defined. Functions must be defined before they
are used. The predefined datatypes currently include

integers, booleans, reals, addresses and pointers.
Addresses refer to positions in the program code,
whereas pointers point to cells in the stacks or heaps.
One could imagine to have pointers to registers, but
we have not found an abstract machine which needs
this. There is also a constructOBJECT to declare
structured data types:

OBJECT CLOSURE (cp,gp) ,
VECTOR [] (v) ;

It was heavily used in the specification of the
MAMA, a variant of the G-machine, which is used
as a target architecture for functional programming

S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839 835

Fig. 4. Screenshot of the animated MAMA.

languages. In Fig. 4 instances of these structured data
types are visualized in the heap window. The above
example defines two structured data types:CLOSURE
with the componentscp and gp and VECTORwith
a componentv which is an array of values. With the
functionnew() a new object is allocated and initial-
ized on the heap and a tagged pointer to this object is
returned. The tag is the name of the data type used.

def mkvec (int n) =
S[SP-n +1] :=

new (CLOSURE: S[SP], S[SP-1]);
SP:= SP-1 ;

fed

def eval =
if H[S[SP]].tag =CLOSURE then

S[SP+3] := S[SP] ;
S[SP] := PC;
S[SP+1] := FP;
S[SP+2] := GP;
SP:= SP+3;
FP := SP-1 ;
GP:= H[S[SP]].gp ;
PC:= H[S[SP]].cp ;

fi
fed

The careful reader will notice, that labels are not
part of the specification language, but that they occur
in abstract machine programs (see source code win-
dow in Fig. 1). Labels are used instead of concrete
addresses and a preprocessor contained in the runtime
system of GANIMAM maps these labels onto con-
crete addresses.

As an alternative to initializing the state of an ab-
stract machine by a sequence of abstract machine
instructions, we allow more compact initialization
sequences in the abstract machine code:

.init prog
#
source: S
offsetregister: MP
0: 3.14 Real
1: −3 Int
2:true Boolean
#

In the above example the stackS is initialized
as follows: S[MP+0] is set to 3.14 and its tag to
Real , S[MP+1] is set to−3 and its tag toInt and
S[MP+2] is set totrue and its tag toBoolean .
This means, that an abstract machine starts with all
registers set to the default values given in the abstract

836 S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839

Fig. 5. Example specification

machine specification and stacks and heaps are empty
and then the initialization sequence is executed to
set the values of registers, stack and heap cells. But
in addition such initialization sequences can occur
throughout a machine program to put the machine
into certain state. This feature is helpful for inspection
and debugging of abstract machines.

4.1. An example specification

In Fig. 5 we show an excerpt of the specification
of an abstract machine for imperative languages [10],
a variant of the P-machine. In this example the in-
structionmst (mark stack) is defined which pushes a
frame for a procedure on top of the stack. In the spec-
ification a stackS, a heapH and the registerPC, MP
andEP are declared. The stack and heap declarations
also the special purpose registersSP andHP are de-
clared, which point to the top of the currently used
memory area. The special purpose registerPCis auto-
matically defined by GANIMAM and its declaration
is optional. Next auxiliary functions are defined. Here
it is a function, which computes the static predeces-
sor of the current procedure, in the WAM for example
such functions includeunify() or deref() .

5. Visualizing principles

Similar principles are known by different names
in different communities, e.g. stack frames are also
known as activation records or choice points de-
pending on the language paradigm, and programmed
graph-reduction and programmed unification are two
instances of the same, more general principle of
implementing the execution of a binary operation
by having one argument on the heap and the other
argument encoded by the machine instructions.

One has to distinguish principles of the program-
ming language, e.g. inheritance of methods in Java,
and principles to implement these in an abstract ma-
chine, e.g. chains of method tables.

In the abstract machine we can only visualize the
implementation principles. In addition, textual com-
ments can explain the relation to the programming
language principles. When visualizing a principle, we
can visualize its different aspects:
• Show the information used and produced by the

principle.
• Animate operations performed by the principle, e.g.

dereferencing of variables in the WAM.
• Visualize properties and invariants enforced by the

S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839 837

Fig. 6. Example of animation annotation in an instruction definition.

Fig. 7. Example of a runtime comment in an instruction definition.

principle, e.g. in the WAM variables of higher ad-
dresses always reference that of lower addresses.
Some of the principles of an abstract machine are

not explicit at the abstraction level of our specification
language. For example stack frames are common to all
abstract machines we considered. Stack frames are a
means to implement recursion. Usually the stack cells
of a stack frame are allocated by a sequence of one
or more instructions, which push values on top of the
stack.

Other instructions access information relative to the
beginning of the stack frame or release the stack frame
as a whole.2 There is no single construct in our speci-
fication language to allocate a stack frame. When visu-
alizing an abstract machine it is important that we do
not only draw low-level abstractions captured by our
specification language constructs, but also higher-level
abstractions. In order to do this we added visualization
annotations to our specification language. These are
implemented as calls to a methodie() , see example
in Fig. 6. These annotations can be compared to in-

2 In the WAM stack frames are called environments and a special
optimization called environment trimming decreases the number
of stack cells of an environment during its live span.

teresting events in some algorithm animation systems
[3].

A very general and useful annotation is a runtime
comment, see example in Fig. 7. It produces a textual
output which is shown in a console window. Using
runtime comments the output in the console window
can be used as a trace of the execution of the abstract
machine, see Fig. 8.

6. The benefits of interactive animations

GANIMAM provides several ways of user inter-
action. First the user can enter or modify the speci-
fication of an abstract machine. After generating an

Fig. 8. Screenshot of console window.

838 S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839

implemenation of the abstract machine, the user can
input an abstract machine program, execute it step
by step and inspect the contents of each register or
memory cell. When executing an instruction anima-
tions show the flow of information from registers or
memory cells to a conceptual operation unit, called
accumulator, and from the accumulator back to reg-
isters or memory cells. The evaluation done in the
accumulator is shown in a special window, see Fig. 9.

Annotations only help to visualize principles which
we know upfront. GANIMAM can also be used to de-
tect new principles by experimenting with specifica-
tions and abstract machine programs. Such an exper-
imental approach can be used for two purposes:
• As part of an explorative learning software it en-

ables students to formulate hypotheses and validate
or invalidate them by changing specifications or ab-

Fig. 9. Screenshot of the accumulator window.

stract machine programs. Additional text guides the
learner, to make sure she does not miss the important
issues. Such issues could be caller-save-registers vs.
callee-save-registers, finding the frame of the static
predecessor or lazy vs. eager evaluation.

• As a development tool it can help to detect errors
and optimizations. As an example of such an op-
timization consider tail recursion optimization. By
tracing the execution of example programs it might
become apparent that the information stored in a
frame is not needed after certain recursive calls.
GANIMAM is not meant to replace classical teach-

ing or development approaches, but to supplement and
enhance these. GANIMAM can also be used by re-
searchers to present their new implementation tech-
niques or for rapid prototyping.

7. Current and future work

In the GANIMAL project3 we will also develop
generators for interactive animations of other compiler
phases. We are currently looking into how to evalu-
ate the software produced in the GANIMAL project.
Those evaluations of algorithm animations we are
aware of [4,9] lack a serious approach both for collect-
ing and evaluating the data. To avoid these problems
we plan to cooperate with cognitive psychologists.

In the current version of GANIMAM structured
datatypes like records, objects or ML datatypes can
be built with the help of pointers but a coherent vi-
sualization does not yet exist. In a later version we
will use the graph layouter which is currently under
development in the GANIMAL project to visualize
structured data types. It should also be very easy to
extend GANIMAM to visualize concurrent (one ma-
chine scheduling different tasks) and parallel execu-
tion (several machines running at the same time) and
their communication behavior.

8. Conclusion

We introduced GANIMAM, a web-based system to
generate interactive animations of abstract machines

3 This project is funded by the Deutsche Forschungsgemeinschaft
and started in summer 1998.

S. Diehl, T. Kunze / Future Generation Computer Systems 16 (2000) 831–839 839

from specifications. During the development of GAN-
IMAM common principles of abstract machines have
been considered at three levels: the design of the spec-
ification language, the choice of graphical annotations
to visualize higher-level abstractions and the use of the
system to explore and better understand known and de-
tect new principles. Our final goal is to integrate GAN-
IMAM into a learning software for compiler design
and thus enabling students to solve exercises related to
abstract machines by an experimental and explorative
approach. GANIMAM can be accessed from the web
page of the GANIMAL Project at the University of
Saarland: http://www.cs.uni-sb.de/GANIMAL/.

Acknowledgements

The authors thank Andreas Placzek, who helped to
implement a first prototype of GANIMAM.

References

[1] H. Aït-Kaci, Warren’s Abstract Machine — A Tutorial
Reconstruction, MIT Press, Cambridge, MA, 1991.

[2] A. Martin, F. Martin, Generation of Efficient Interprocedural
Analyzers with PAG, in: A. Mycroft (Ed.), SAS’95, Static
Analysis Symposium, Lecture Notes in Computer Science,
vol. 983, Springer, Berlin, 1995, pp. 33–50.

[3] M.H. Brown, Algorithm Animation, MIT Press, Cambridge,
MA, 1987.

[4] M.D. Byrne, R. Catrambone, J.T. Stasko, Do algorithm
animations aid learning, Technical Report GIT-GVU-96-18,
Georgia Institute of Technology, 1996.

[5] S. Diehl, A Formal Introduction to the Compilation of Java,
ractice and Experience 28 (3) (1998) 297–327.

[6] J. Hannan, Making abstract machines less abstract,
Proceedings of FPCA’91, Lecture Notes in Computer Science,
vol. 523, Springer, Berlin, 1991, pp. 618–635.

[7] M. Mauny, A. Suarez, Implementing functional languages in
the categorial abstract machine, International Conference on
LISP and Functional Programming, 1986.

[8] St. Pemberton, M. Daniels, Pascal Implementation, The P4
Compiler, Ellis Horwood, Chichester, UK, 1982.

[9] J.T. Stasko, Using student-built algorithm animations as
learning aids, Technical Report GIT-GVU-96-19, Georgia
Institute of Technology, 1996.

[10] R. Wilhelm, D. Maurer, Compiler Design: Theory, Cons-
truction, Generation, Addison-Wesley, Reading, MA, 1995.

Thomas Kunze is a student of computer
science and economics at Saarland Univer-
sity, Germany. He is member of the GAN-
IMAL team at the research group of Prof.
Reinhard Wilhelm and has implemented
the abstract machine visualization as part
of his master thesis. Thomas Kunze is in-
terested in Java programming and software
engineering in general.

Stephan Diehl received his M.S. in
computer science as a Fulbright scholar
at Worcester Polytechnic Institute, Mas-
sachusetts, in 1993, and his Ph.D. as
a DFG scholar at Saarland University,
Germany, in 1996. He is currently as-
sistant professor at Saarland University
and works in the research group of Prof.
Reinhard Wilhelm. Stephan Diehl is au-
thor of two books with Addison-Wesley

and in the last three years he has published over 20 scientific
papers about programming language theory, internet technology,
visualisation, Java and VRML. He teaches courses and seminars
at university and in industry about these topics. Since summer
1998 he is project leader of the project GANIMAL sponsored by
DFG (German Research Council).

