
Identifying Refactorings from Source-Code Changes

Peter Weißgerber
Computer Science
University of Trier

54286 Trier, Germany
cs@p-weissgerber.de

Stephan Diehl
Computer Science
University of Trier

54286 Trier, Germany
diehl@acm.org

Abstract

Software has been and is still mostly refactored without
tool support. Moreover, as we found in our case studies,
programmers tend not to document these changes as refac-
torings, or even worse label changes as refactorings, al-
though they are not. In this paper we present a technique
to detect changes that are likely to be refactorings and rank
them according to the likelihood. The evaluation shows that
the method has both a high recall and a high precision — it
finds most of the refactorings, and most of the found refac-
toring candidates are really refactorings.

1. Introduction

Having been absent from a software project for a while, pro-
grammers sometimes have a hard time to find their previous
contributions to the source code. Wouldn’t it be nice, if
someone told them, that all what happened to their code
were just a few refactorings.

Although various tools have been developed to automat-
ically apply refactorings and even to record these, most sys-
tems have been and are still refactored without such tools
and often without the developer even knowing that what she
is doing is a refactoring.

Extracting refactorings from software archives is a pre-
requisite for many applications:

Detecting Possible Sources of Errors To preserve the
program behavior refactorings often require changes at sev-
eral locations in the source code. As shown in a previous pa-
per [9] extracted refactoring candidates can be checked for
completeness, i.e., whether all related locations have been
changed. Incomplete refactorings can lead to compilable
programs with wrong behavior.

Based on the information in bug databases one can also
relate fixes to program parts that have been refactored be-
fore and thus assess the error-proneness of different kinds
of refactorings. Tool support should focus on error-prone

refactorings.
In a first case study [17] we used the techniques pre-

sented here together with information from bug repositories
to investigate the error-proneness of transactions with a high
refactoring ratio.

Capturing Intent of Changes Changes can be classified
in various ways, e.g., feature extensions or bug fixes. An
important class of changes are refactorings. A refactoring
is a high-level description of a change that emphasizes its
intent. The change history of a piece of code could thus be
described as a sequence of higher-level changes.

Complex program changes like platform migrations,
adding of concerns like logging, or networking could be
described in this way and compared between different sys-
tems, versions or parts of a system.

The information can also be useful when several devel-
opers work independently on the same part of a system and
have to integrate their changes, or if a programmer has been
absent from a project for a while.

Capturing and Replaying of Changes If the changes of
a particular part of code are purely refactorings, then these
refactorings might be applicable to similar or related pro-
gram code. An Eclipse plugin called CatchUp! [10] cap-
tures refactorings performed with the refactoring tool in-
cluded in Eclipse. The recorded refactorings of an API
can thus be used to help users of the API to change their
code, e.g., if a parameter was added to an API method, then
method invocations in program code using the API have to
be adapted. The same holds for frameworks.

In a similar way changes to the core system could be
propagated to the various product lines or from one product
line to others.

Relating to other Changes If the structure of the pro-
gram code is changed by a refactoring, related documents
like architectural designs or API documentations have to
be kept consistent with the refactored version of the code.
Combining refactorings extraction with evolutionary cou-
pling (co-change information) can identify documents that

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

are typically changed when a refactoring is applied.
In the ROSE [19] system we used information about evo-

lutionary coupling to recommend program changes. Based
on extracted refactorings the system could be improved: for
move and rename refactorings the evolutionary coupling in-
formation of the previous instance and the new instance can
be combined.

Relation to Software Metrics Software quality metrics
can be computed for subsequent versions of a software sys-
tem where the newer version mostly results by refactorings
from its predecessor. This information could be used to as-
sess what kinds of refactorings increase what kinds of qual-
ity metrics.

In this paper we present a novel technique to detect and rank
refactoring candidates. In contrast to the state of the art (see
Section 4) and our first attempts [8], this new technique has
been thoroughly evaluated, and has demonstrated to have
both a high recall and a high precision.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our technique to detect refactoring candi-
dates in a software archive and to rank them. In Section 3
we present an evaluation of the approach based on the soft-
ware archives of two open source projects; we estimate the
total number of refactorings and show the distribution of
refactorings over the project’s lifetime. Finally, Section 4
discusses related work and Section 5 summarizes and con-
cludes the paper.

2. Identifying Refactorings

To detect refactorings in software archives, we first pre-
process the repository and store the most important data in a
relational database to get fast access to it. Then, we recon-
struct transactions—that means which versions have been
checked-in to the repository by the same commit operation.
These transactions have to be analyzed for refactorings. For
this, we first look for added, changed or removed entities
(that are classes, fields, methods) to get refactoring candi-
dates. Using clone detection we rank these candidates to
indicate which are more likely to not have changed the be-
havior and thus are more likely to be real refactorings.

Currently, our technique is able to find refactorings of
the following two general kinds (for many other refactoring
kinds our signature-based approach should work as well):

Structural Refactorings include refactorings that change
the class structure of the software. Our current prototype de-
tects structural refactorings of the kinds Move Class, Move
Interface, Move Field, Move Method, and Rename Class.

Local Refactorings are refactorings that are performed
within a class. They include Rename Method, Hide Method,
Unhide Method, Add Parameter, and Remove Parameter.

Most of these refactoring kinds are self-explanatory.
Hide method means that the visibility of a method within a
class has been changed to a more restrictive one, e.g. from
public to protected. In contrast, making the visibility
less restrictive is covered by the unhide method refactoring.

2.1. Pre-processing

Our approach to pre-process version data, i.e., data extrac-
tion and data cleansing, is described in detail in our earlier
work [18] exemplarily for archives managed with CVS [3].
As a result of this step we gain the following information:

Versions. A version describes one revision of a file in
the CVS repository (e.g., file org/epos/epos.java in
revision 1.4). For each version in the repository we also
store information about the committer, the log message, the
branches the version belongs to, the timestamp of the check-
in, the state (e.g., “dead” for actually deleted revisions), and
the predecessor revision if one exists. The text, i.e. for pro-
gram files the source code, of a version can be retrieved on
demand.

Transactions. A transaction is the set of versions that
have been committed to the repository at the same time
by the same developer. Unfortunately, CVS splits commits
that contain more than one file into single check-ins for each
file and does not store which of these check-ins have been
issued together. Thus, we use a sliding time window heuris-
tic to recover transactions quite precisely. For every transac-
tion we additionally store the timestamps of the transaction
start and end.

CVS offers the feature to develop software in several par-
allel branches that live simultaneously to the main line of
development which is often called trunk. In our work, we
consider every transaction, no matter to which branch it be-
longs to, but we omit so-called merge transactions that in-
corporate all changes done in a branch into the parent de-
velopment line. For our application it is reasonable to omit
these merge transactions because they repeat refactorings
that are actually done earlier in the respective branch. There
exist few techniques to identify merge transactions [6, 20],
but they are cumbersome to implement and their usefulness
heavily depends on the merging policy of the project. Thus,
we use the simple heuristic to classify all transactions that
contain more than 50 versions as a merge.

2.2. Syntactical Analysis

Next we identify those software artifacts, e.g., packages,
classes, or methods, that have actually been changed in a
transaction. The actual change of such an artifact may be a
refactoring.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

We use a regular expression based on a light-weight
parser that computes for each version v ∈ V of a JAVA
file the following sets:

The set Cv of classes: Its elements are pairs (p, n) where
p is the name of the package the class belongs to, and n is
the class name.

The set Iv of interfaces: Its elements are pairs (p, n)
where p is the name of the package the interface belongs
to, and n is the interface name.

The set Mv of methods: Its elements are tuples
(c, m, p, r, w) where c is the fully-qualified name of the
method’s class, m is the method name, p is the parame-
ter list, r is the return type, and w is the visibility of the
method. The parameter list p = [t1, . . . , tk] enumerates
the types of the k parameters of the method in the order as
the parameters are defined. The visibility of a method can
either be public, protected (visible to the package it
belongs to, and to its subclasses), default (visible only to the
package it belongs to), or private.

The set F of fields: Its elements are triples (c, f, t) where
c is the fully-qualified name of the field’s class, f is the
name of the field, and t is the type of the field.

We call the elements in the above sets entities. Entities
represent actual versions of software artifacts. The set Ev =
Cv ∪ Iv ∪Mv ∪ Fv is the set of all entities in version v and
the set of all entities is E =

⋃
v∈V Ev.

2.3. Signature-based Analysis

By definition, a refactoring may change the structure of
a software system, but not its external behavior. In the
next step of our process, we search for changes in the pro-
gram code that correspond to refactorings. For example,
for a refactoring of kind add parameter the code has to be
changed as follows: To the signature of a method one or
more parameters are added, but its name and its return type
remain the same. If a method has been changed this way,
it is a refactoring candidate because the above criteria does
not suffice to determine whether its external behavior did or
did not change.

Next, we formally describe the criteria of the signature-
based analysis to find refactoring candidates for local as
well as for structural refactorings.

Local refactorings

Local refactorings are refactorings that occur within one
class, and thus, within the same file. To detect local refac-
torings that have been done in a transaction t, such as re-
name method, or add/remove parameter, we identify for
each newer version v′ ∈ t its predecessor version v. This is

Table 1. Conditions for Local Refactorings
Let (c′, m′, p′, r′, w′) ∈ M ′ be a method in the newer ver-
sion. It consists of a class, a method name, a list of param-
eter types, a return type, and a visibility level. The method
results from its previous version by one of the following
refactorings, if the corresponding condition in the right col-
umn holds.

Add Parameter �(c′, m′, p′, r′, ∗) ∈ M , but
∃(c′, m′, p, r′, ∗) ∈ M and p � p′

Remove Param-
eter

�(c′, m′, p′, r′, ∗) ∈ M , but
∃(c′, m′, p, r′, ∗) ∈ M and p � p′

Hide Method ∃ (c′, m′, p′, r′, w) ∈ M and w′ ≺ w

Unhide Method ∃ (c′, m′, p′, r′, w) ∈ M and w ≺ w′

Rename
Method

�(c′, m′, p′, r′, ∗) ∈ M , but
∃(c′, m, p′, r′, ∗) ∈ M and m �= m′

We define the order � on lists of types and the order ≺
on visibility levels as follows:
· [t1, ..., tp] � [t′1, ..., t′q] ⇔ q > p and ∀ti∃j : ti = t′j
· private ≺ default ≺ protected ≺ public

simply done by looking which version has the same fully-
qualified filename as v′ and a version number that indi-
cates that it is the predecessor version (e.g., for the file
A.java:1.4 the file A.java:1.3 is the predecessor
version).

Next, separately for each version v′ and its predecessor
version v we apply our light-weight parser on both v and
v′ to get the set M = Mv which contains the methods in
the predecessor version, and M ′ = Mv′ which contains the
methods in the newer version. Then, we look for entities
e′ ∈ M ′ and e ∈ M which satisfy the conditions1 in Table 1
and thus indicate that the corresponding method may have
been refactored. In this case we call the tuple (v′, e′, v, e)
a refactoring candidate, i.e., entity e′ in version v′ possibly
results by refactoring from entity e in version v.

So far, we have not taken into account changes to the
body of a method. We have two extreme options here. First,
we could require that no changes to the body are allowed.
In this case, our signature-based analysis would only find
few refactorings and this strong restriction would not even
be sufficient to preserve the external behavior, e.g., due to
method overloading. On the other hand we could simply
ignore changes to the body of the method. In this case, we
would get too many refactoring candidates. Thus we need a
better way to take changes to the method body into account
and in Section 2.4 we will use clone detection to this end.

1For some of the comparisons, not all elements of the tuples are rele-
vant. We use the value “*” in the tuple to indicate that the value of this part
of the tuple does not matter.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Table 2. Conditions for Structural Refactorings

Move Method ∃ (c, m, p, r, ∗) ∈ MR and
∃ (c′, m, p, r, ∗) ∈ MA

Move Field ∃ (c, f, t) ∈ FR and ∃ (c′, f, t) ∈ FA

Move Class ∃ (p, n) ∈ CR and ∃ (p′, n) ∈ CA

Move Interface ∃ (p, n) ∈ IR and ∃ (p′, n) ∈ IA

Rename Class ∃ (p, n) ∈ CR and ∃ (p, m) ∈ CA

where n �= m

MR resp. MA is the set of all methods removed resp. added
in the current transaction. FR resp. FA is the set of all
fields removed resp. added in the current transaction. CR

resp. CA is the set of all classes removed resp. added in the
current transaction. IR resp. IA is the set of all interfaces
removed resp. added in the current transaction.

Structural refactorings

In contrast to local refactorings, structural refactorings can
involve multiple files because entities may have been moved
around between files. Thus, it is no longer sufficient to only
compare entities of a version of a file and its predecessor
version. Instead, for each transaction t we consider all ver-
sions v′1, . . . , v′m of JAVA files in that transaction and com-
pute the set C′ of all classes in this transaction as the union
C′ = Cv′

1
∪ · · · ∪ Cv′

m
. After that, we identify the prede-

cessor versions v1, . . . , vm for the versions in t, such that vi

is the predecessor of v′i. Note, that the predecessors of two
different versions in t are usually not checked in as part of
the same transaction. The set of all predecessor classes is
C = Cv1∪· · ·∪Cvm . From these two sets we can now com-
pute the set of added classes CA = C′ − C and the set of
removed classes CR = C − C′. Analogously we compute
the sets IA, IR, MA, MR, FA, and FR.

Finally, we compare these sets as described in Table 2 to
identify which entities are candidates for refactorings: Let
e be the predecessor entity of the entity e′ and v′ and v are
the versions containing these entities. If e′ and e satisfy one
of the conditions in Table 2, then the tuple (v′, e′, v, e) is a
refactoring candidate.

Thus, for each transaction t we get a set RCt of refac-
toring candidates that have been detected in this transaction
and for the whole software archive the set RC =

⋃
t RCt

that contains all release candidates found in the transactions
of the software archive.

2.4. Ranking the Refactoring Candidates

The analysis step described in the previous section yields
candidates for refactorings. As it is in general undecidable,

whether a change preserves the external behavior of the pro-
gram or not, we need an approach to estimate how good a
refactoring candidate is. We rank the candidates depend-
ing on the results of a test for equality and of a code-clone
detection algorithm.

In the following we assume that the function body : E×
V → String yields the body of an entity in a certain version,
i.e., the code fragment contained in that entity. For entities
that do not have a body, for example entities of type field,
the function yields an empty string.

Code-clone detection

For each refactoring candidate (v′, e′, v, e) we compare
b′ = body(e′, v′) and b = body(e, v). If they are equal,
the body of the refactored entity has not been changed.

If the bodies b′ and b are not equal, we use code-clone de-
tection to determine whether the bodies are similar in a way
that it is likely that the external behavior did not change.

Currently, we use the tool CCFINDER [12, 16] for code-
clone detection: for each refactoring candidate (v′, e′, v, e)
we run CCFINDER to compare b′ = body(e′, v′) and b =
body(e, v).

For two JAVA code fragments j1, j2 we define that j2 is
a code-clone of j1, short j1 ⇀ j2, if j1 is equal to j2 or if j1
can be transformed into j2 by only performing the follow-
ing operations (to achieve the described behavior we call
CCFINDER with the following JAVA-language options: -
rabcd-fr-kmnop-r-s-u-v):

Adding or deleting white spaces. Generally, a sequence
of white spaces is interpreted as one single white space by
the clone detection because the number of white spaces has
no effect on the behavior of the program code.

Adding/deleting/changing comments. As comments do
not have any effect on the execution of a JAVA program,
they are ignored in the clone detection.

Changing visibility. Although changing the visibility of
a method or a field may change external behavior, we ig-
nore visibility keywords in the clone detection. This is
meaningful when we consider candidates for refactorings of
kinds move class, rename class, and move interface because
in the same transaction within the affected class/interface
hide/unhide method refactorings could have taken place.

Adding/removing package name. In JAVA references
to classes can be written fully qualified, i.e. including
the package, or short by the class name (if the referenced
class is visible or imported). Adding or removing the lead-
ing package name to/from class references, thus, does not
change the functionality. However, as we do not test if the
affected class is imported or anyway visible, it may happen
that a class with the same name but in another package is
referenced after the change.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Consistently renaming variables. Consistently renam-
ing local variables does not change functionality of the
code. However we also accept consistent renaming of vari-
ables that are defined somewhere else. This can cause us
to identify code fragments as code-clones that have differ-
ent external behavior, but it is nevertheless useful because
in the same transaction another refactoring could have taken
place that has renamed the affected variables at the location
where they are defined.

Consistently renaming method names. For candidates
of refactorings of kinds move class, rename class, and move
interface this allows us to find code-clones even if meth-
ods in the affected class/interface have been renamed in the
same transaction. However, there is a chance that we iden-
tify code-clones for code fragments with different external
behavior.

Consistently renaming references to member names.
Members (e.g., fields or methods) of classes are called in
JAVA using the syntax classname.membername. We
identify two code fragments as clones even if in these calls
member names are consistently renamed. This approach
has one big advantage: If we look at a candidate for a refac-
toring, we can identify the newer version of the affected
entity as a code-clone even if in the same transaction other
methods or fields that are called within the refactoring can-
didate have been renamed.

Consistently renaming types. When a type (e.g., a class
or an interface) has been renamed, all references to this class
have to be renamed, too. Thus, allowing consistent renam-
ing of types allows us to find code-clones between older and
newer versions of bodies for refactoring candidates even if
in the same transaction refactorings of kind rename class
have occurred for classes that are referenced in the body of
the refactoring candidate under view.

Code similarity categories

Depending on the results of the equality test and of the
code-clone detection, we classify each refactoring candi-
date (v′, e′, v, e) to belong into one of the following code
similarity categories: Let codesim : RC → {EQUAL,
CLONE, NOCLONE} be a function that yields the following
values for a refactoring candidate (v′, e′, v, e):

Code Similarity: EQUAL. The bodies of both entities are
equal, thus body(e′, v′) = body(e, v). This means the body
of the possibly refactored entity has not been changed by the
transformation from e to e′.

Code Similarity: CLONE. The bodies of both entities are
clones: body(e′, v′) ⇀ body(e, v), but body(e′, v′) �=
body(e, v).

Code Similarity: NOCLONE. The bodies of both entities
are neither equal nor clones of each other.

The above categories can be ordered according to the risk
or likelihood that the contained refactoring candidates are
no refactorings, but change the external behavior. EQUAL

has the smallest risk, CLONE still has a low risk, whereas
NOCLONE has a high risk. Thus, the code similarity helps
to identify refactoring candidates that probably are no refac-
torings. For the evaluation (see Section 3) we chose two
category sets: LOW = {EQUAL, CLONE} and HIGH =
{NOCLONE}.

3. Evaluation

In the previous section we have presented a technique to
find candidates for refactorings and described how code-
cloning helps to rank these candidates. In this section we
present an evaluation of our technique concerning two as-
pects — its recall and precision:

• How many of the overall refactorings in a project are
automatically detected?

• How correct are the computed refactoring candidates?

Let RC be the set of refactoring candidates found, DR
be the set of documented refactorings, and R be the set of all
refactorings in the archive. Then the recall is defined as the
number of correct answers found divided by all correct an-
swers, i.e., recall = |RC∩R|

|R| , and the precision is the number
of correctly found answers divided by all found answers,
i.e., precision = |RC∩R|

|RC| . Unfortunately, with manual in-
spection it would probably take months to find all undocu-
mented refactorings R − DR, and it would require expert
knowledge of all modules of the inspected software project.
So, we actually look at two cases:

Documented refactorings. For documented refactorings
we compute the recall as drecall = |RC∩DR|

|DR| , i.e., how
many of the documented refactorings do we find. Comput-
ing the precision dprecision = |RC∩DR|

|RC| does not provide
much insight, as the set RC also contains candidates for
undocumented refactorings.

Undocumented refactorings. For undocumented refac-
torings we use random sampling to estimate the precision.
For the small number of samples, we manually check the
correctness. In the sequel we will denote the estimated pre-

cision by ˜precision.

3.1. Recall: Documented Refactorings
Evaluation Setup To evaluate how many of the actually
performed refactorings our technique can detect, we manu-
ally inspected the log messages of two open-source projects,

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

CVS Module jakarta-tomcat jEdit

First transaction 1999-10-08 2001-09-02
Last transaction 2004-11-21 2004-11-01
Transactions 5096 2141
Committers 40 6

Table 3. Key data for the evaluated projects

JEDIT and TOMCAT, and searched for documented refac-
torings in these. The key data for these projects is shown
in Table 3. For JEDIT we considered the CVS module
jEdit which contains the complete version history for
this project. For TOMCAT we have analyzed the module
jakarta-tomcatwhich contains the version history for
the TOMCAT 3.x series. The latest production quality re-
lease was 3.3 in April 2002, since then only bug fixes have
been made in this module.

The manual extraction of the documented refactorings
works as follows: If the developer who has checked-in a
set of new versions into the repository, has described her
changes as being a refactoring in the log message and we
have been able to manually identify the actual refactorings
in the code, we consider these refactorings as documented.

Manual inspection is very tedious, as the descriptions in
the log messages are typically very vague, e.g., the devel-
oper just writes that she has ”done a refactoring”, or she is
a bit more precise and states the kind of refactoring, e.g.,
“moved classes”.

In both cases, it is not explicit which entities have been
refactored and how exactly. For example, we know that
some classes have been moved, but we do not know ex-
actly which classes, neither do we know the exact source
package and the exact target package. This means, that we
have to examine the differences between the previous and
the checked-in version of the source code to identify which
refactoring has actually been documented here.

Sometimes log messages are misleading. For example,
9 log messages in the TOMCAT archive indicated refactor-
ings of kind move class, 2 of kind rename class, and 9 of
kind move method, but in all these cases it turned out that
the programmers created new classes or methods, but did
not delete the old ones. Another misleading log message in
TOMCAT starts with the words “moved code out of facade
into the real classes”. One could think that this log message
indicates several move method refactorings, but in fact code
has been moved, but the old methods have been preserved
to delegate method calls to the new implementation.

The result of the manual inspection for the transactions
t1, . . . , tn is a set of documented refactorings for each of
the transactions: DRt1 , . . . , DRtn . And the set of all doc-
umented refactorings is simply DR =

⋃
ti

DRti .
For each documented refactoring (v′, e′, v, e,) ∈ DRti

we look if we have found this refactoring also as a refac-
toring candidate in our analysis, i.e., if (v′, e′, v, e) ∈ RCti

and, in case, what its code similarity category is. This gives
us an overview of which documented refactorings have been
detected and how they were ranked. The results are shown
in Tables 4 and 5 and are discussed in more detail below.

Results for TOMCAT and JEDIT: Table 4 shows the re-
sults of our evaluation for the project TOMCAT and Table 5
for JEDIT, each broken down by the kinds of refactoring,
e.g. RCk is the set of refactoring candidates found of kind
k. The first number in each line is the absolute number
of refactoring candidates of that kind found in the project.
The next three columns are breakdowns of these numbers
for each code similarity category. Columns 6 to 10 contain
the number of documented refactorings, the number of how
many of those have been actually found broken down to the
code similarity categories (Columns 7-9), and the overall
number of found documented refactorings. The right-most
two columns contain the percentage of found documented
refactorings using all code similarity categories (Column
11) respectively using only the code similarity categories
EQUAL and CLONE (Column 12).

In the log messages of TOMCAT 222 refactorings2 have
been documented. We found 206 of these. In other words,
we found 93% of the documented refactorings. For JEDIT,
less refactorings have been documented, exactly 37, from
which we found 32 or 86%.

The evaluation shows the highest recall for structural
refactorings, here we found 97% of all documented refac-
torings for TOMCAT and 92% for JEDIT. Note, that for the
latter no refactorings of the kinds move interface and move
field have been documented.

The results for local refactoring are also good: For TOM-
CAT we found more than half and for JEDIT even 83% of
the documented local refactorings. Only few hide/unhide
method refactorings have been documented. We found the
one hide method refactoring from the TOMCAT logs and
both unhide methods from the JEDIT logs. Rename method
seems to be the most problematic refactoring kind for our
current technique: None of the two documented rename
method refactorings in JEDIT and only slightly more than
half for TOMCAT have been detected.

While for local refactorings code-clone detection does
not increase the recall, it seems to be quite useful for struc-
tural refactorings: for TOMCAT 10% and for JEDIT 17%
of all detected documented structural refactorings have a
code similarity of CLONE.

In total, the recall of our refactoring reconstruction is
93% for the documented refactorings in TOMCAT respec-
tively 86% for JEDIT. Taking refactoring candidates with
a high risk into account was especially useful for JEDIT:

2There have been more documented refactorings, but we only consider
here the kinds of refactorings currently covered by our analysis.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

all documented

Refactoring Kind |R
C

k
|

|R
C

E
Q

U
A

L
k

|

|R
C

C
L

O
N

E
k

|

|R
C

N
O

C
L

O
N

E
k

|

|D
R

k
|

|R
C

E
Q

U
A

L
k

∩
D

R
k
|

|R
C

C
L

O
N

E
k

∩
D

R
k
|

|R
C

N
O

C
L

O
N

E
k

∩
D

R
k
|

|R
C

k
∩

D
R

k
|

d
re

ca
ll

k

d
re

ca
ll

L
O

W
k

Local Refactorings
Rename Method 104 48 32 24 13 7 0 0 7 54% 54%

Hide Method 42 21 4 17 1 0 0 1 1 100% 0%
Unhide Method 106 82 3 21 0 0 0 0 0 – –
Add Parameter 136 30 6 100 7 3 0 0 3 43% 43%

Remove Parameter 34 3 2 29 3 3 0 0 3 100% 100%
Total 422 184 47 191 24 13 0 1 14 58% 54%

Structural Refactorings
Move Class 540 100 12 428 37 19 4 14 37 100% 62%

Rename Class 511 6 16 489 4 1 2 1 4 100% 75%
Move Interface 21 21 0 0 21 21 0 0 21 100% 100%

Move Field 1915 – – – 46 45 0 0 45 98% 98%
Move Method 3283 2112 199 972 90 53 14 18 85 94% 74%

Total 6270 2239 227 1889 198 139 20 33 192 97% 80%

Overall Total 6692 2423 274 2080 222 152 20 34 206 93% 77%

Table 4. Refactoring candidates found in the TOMCAT archive

Without these candidates the recall decreases to about 38%
(14 out of 37 documented refactorings found). For TOM-
CAT, however, omitting high-risk candidates causes only to
lose 34 refactorings. Thus, the recall is still 77% without
these high-risk candidates.

An interesting question is, why some of the documented
refactorings have not been found by our analysis. Thus, we
have looked in the source code again for each documented
refactoring that has not been found. It turned out that
many of these refactorings were not found for the same
reason—the application of multiple refactorings to the same
software artifact. For example, in Transaction 1269 in the
TOMCAT archive the method processServlets(),
which has one parameter of type Enumeration
has been moved from the class org.apa-
che.tomcat.core.Context to org.apa-
che.tomcat. context.WebXmlInterceptor. In
the same change, a second parameter of type Context has
been added to the method definition. According of the defi-
nition of entities this has the following consequences: The
entity (c, m, p, r, v) has been changed to (c′, m, p′, r, v)
with c �= c′ ∧ p �= p′. So, according to Tables 1 and 2, this
change is neither a candidate for move method, nor for add
parameter. Thus, multiple refactorings performed on the
same entity are a major problem for our analysis technique.
While no multiple refactorings have been documented for

JEDIT, in TOMCAT we found out that 13 documented
refactorings (8 of kind move method, 3 of kind add parame-
ter, 2 of kind rename method) have not been found because
of this problem. In other words, multiple refactorings
are responsible for most of the cases, where we did not
find the refactoring. One approach to solve this problem
is to add new conditions to the signature-based analysis
for frequent combinations of refactorings. For example,
the combination of move class and rename class can be
captured if we add the following condition to Table 2:
∃ (p, n) ∈ CR and ∃ (p′, m) ∈ CA where n �= m∧p �= p′

3.2. Precision: Undocumented Refactorings

As our analysis will also yield correct refactoring candi-
dates, that are just not documented, computing the preci-
sion for documented refactorings does not help. Instead, we
would like to know how many of all refactoring candidates
we found are really refactorings. As there are for example
6692 refactoring candidates in the TOMCAT archive and
only 206 of these can be automatically matched with docu-
mented refactorings, we would have to manually check the
remaining 6486 candidates. Instead we chose a sampling
approach to estimate the precision.

Evaluation Setup In this evaluation, we took the set
RC −DR of all refactoring candidates found by our analy-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

all documented

Refactoring Kind |R
C

k
|

|R
C

E
Q

U
A

L
k

|

|R
C

C
L

O
N

E
k

|

|R
C

N
O

C
L

O
N

E
k

|

|D
R

k
|

|R
C

E
Q

U
A

L
k

∩
D

R
k
|

|R
C

C
L

O
N

E
k

∩
D

R
k
|

|R
C

N
O

C
L

O
N

E
k

∩
D

R
k
|

|R
C

k
∩

D
R

k
|

d
re

ca
ll

k

d
re

ca
ll

L
O

W
k

Local Refactorings
Rename Method 46 15 19 12 2 0 0 0 0 0% 0%

Hide Method 42 24 1 17 0 0 0 0 0 – –
Unhide Method 41 29 0 12 2 2 0 0 2 100% 100%
Add Parameter 260 24 1 235 3 0 0 3 3 100% 0%

Remove Parameter 84 12 1 71 5 2 0 3 5 100% 40%
Total 473 104 22 347 12 4 0 6 10 83% 33%

Structural Refactorings
Move Class 226 7 1 218 8 3 1 4 8 100% 50%

Rename Class 862 18 7 837 2 1 1 0 2 100% 100%
Move Interface 3 1 0 2 0 0 0 0 0 – –

Move Field 373 – – – 0 – – – 0 – –
Move Method 382 188 53 141 15 2 2 9 13 87% 27%

Total 1846 214 61 1198 25 6 4 13 23 92% 40%

Overall Total 2319 318 83 1545 37 10 4 19 32 86% 38%

Table 5. Refactoring candidates found in the JEDIT archive

sis in the TOMCAT archive minus the candidates found for
documented refactorings. From this set we randomly chose
a number of candidates and manually checked whether they
are actual refactorings. Once we realized that the preci-
sion depends on the code similarity category, we decided
to actually perform two different samplings. One where
we only considered candidates of categories EQUAL and
CLONE (category set LOW), i.e. where there have been
only modest changes in the body of the code, and one con-
sidering only those of the category NOCLONE (category set
HIGH), i.e., with more differences and a higher risk, that
the candidates are no actual refactorings. More precisely, a
sample set SM

k,s ⊆ RCk of size s contains only candidates
of kind k which belong to one of the categories in M , i.e.,
|SM

k,s| = s and ∀r ∈ SM
k,s : codesim(r) ∈ M . For the

evaluation we chose a sample size s = 5.
For each of these refactoring candidates we manually

look in the source code, if the described refactoring has ac-
tually taken place. Thus, we find out how precise our can-
didates are for the particular refactoring kinds and how the
precision is influenced by the code similarity of the refac-
toring candidate.

Results for TOMCAT: Table 6 shows the results of our
sampling approach applied to the TOMCAT archive. For
refactorings of kind Move Interface we did not find any
undocumented candidates, and for Remove Parameter only

two undocumented candidates to take samples.
For estimating the average precision on all refactoring

kinds from the estimated precisions for each refactoring
kind we have to take the ratio of candidates for each refac-
toring kind compared to the number of all refactoring can-
didates into account, thus we get

˜precision
LOW

=
1

|RC − DR|
X

k∈K

˜precision
LOW

k |RCk −DCk|

where K is the set of all refactoring kinds. To estimate

the precision ˜precision
LOW

local for local refactorings we use the
set Klocal of local refactorings instead of K . Analogously

we estimate ˜precision
LOW

struct. As we take separate samples
for low-risk and high-risk candidates, we additionally com-

pute ˜precision
HIGH

struct and ˜precision
HIGH

local analogously.
Using these formulas, for similarity categories EQUAL

and CLONE we get a precision of 92% for local refactorings
and of 72% for structural refactorings. In total, about 73%
of all low-risk refactoring candidates are correct.

Taking candidates with a high risk into account seems
to be only meaningful for local refactorings: nearly half of
the high-risk candidates for local refactorings in our sample
turned out to be correct. However, for structural refactor-

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Refactoring Kind |S
L

O
W

k
,5

∩
R
|

˜
p
re

ci
si
o
n

L
O

W

k
,5

|S
H

I
G

H
k

,5
∩

R
|

˜
p
re

ci
si
o
n

H
I
G

H

k
,5

Local Refactorings
Rename Method 5 100% 0 0%

Hide Method 5 100% 3 60%
Unhide Method 4 80% 3 60%
Add Parameter 5 100% 2 40%

Remove Parameter 2 100% 5 100%

Average 92% 48%

Structural Refactorings
Move Class 5 100% 0 0%

Move Interface – –
Move Field 3 60% –

Rename Class 4 80% 0 0%
Move Method 4 80% 0 0%

Average 72% 0%

Overall Average 73% 4%

Table 6. Precision of the refactoring candi-
dates in the random samples (TOMCAT only)

ings none of the detected candidates with code similarity
NOCLONE were correct.

3.3. Estimating the number of refactorings

As mentioned before, for a project like TOMCAT the to-
tal number of refactorings can not be exactly determined
with acceptable effort. On the other hand, this number could
be very interesting, as it tells us how many refactorings of
the kinds covered by our analysis have actually occurred.
Nowadays there exist tools to support all of these kinds of
refactorings. If we know that the number of refactorings in
a project is high, the effort to introduce such a tool will soon
pay off.

Assuming that the recall for undocumented refactorings
would be the same as for documented ones, we can make a
very rough guess, on how many refactorings have actually
been performed in the archive, i.e, |R|. From the defini-
tions of precision and recall, we immediately get the for-

mula to compute |R| = precision · |RC|
recall . Using ˜precision

LOW

instead of precision and drecallLOW instead of recall we ap-
proximate the total number of refactorings in the TOMCAT
archive using |R| = 73% · 6692

57% ≈ 8570. Admittedly, this
calculation is statistically not valid, because of the small
sample size and the assumption that documented and un-
documented refactorings have the same statistical distribu-
tion. But at least, we think, that is a good guess and that the

real number is between 7000 and 10000. Before the evalu-
ation, when we asked ourselves, what the real value of |R|
might be, we didn’t have a clue whether it was in the order
of hundreds, thousands, or ten thousands.

3.4. Threats to Validity

We have studied two open source projects. Although they
are very different, we cannot claim that their version his-
tories would be representative for all kinds of software
projects — in particular closed-source projects.

Although we have very carefully inspected the source
code to determine the documented refactorings, we are not
experts involved in the development of one of these sys-
tems, and may have misclassified some of the changes.

To decide if a change is really a refactoring, i.e., it just
changes the code structure but not the code behavior, it is
not sufficient to look at the signature change of the maybe
refactored entity and the code similarity. E.g., if new pa-
rameters are added to a method, these parameters have to
be used in the respective method calls. But they have to be
set to a value that does not change the behavior. Although
our technique does not test this, nor use any other semantic
information, its recall and precision are surprisingly high.

Finally, for the estimation of the precision we used 10
samples per kind of refactoring (5 for low and 5 for high
risk categories). This sample size may be too small to yield
statistically significant results.

4. Related Work

One of the first publications about refactorings was William
Opdyke’s PhD thesis [13] which contains general informa-
tion on refactoring and many examples for various refac-
toring kinds. Fowler’s book [7] presents a large refactoring
catalog which also includes the refactorings identified by
our analysis.

The differencing approach that we use to detect changed
code blocks is very similar to the technique used by Api-
wattanapong’s JDIFF tool [2] when operating on method-
level (it can also work on node-level, which is not useful for
our current analysis). In contrast, Horwitz [11] and Ragha-
van [14] represent versions as graphs that take semantic in-
formation like control and data flow into account, and use
graph differencing algorithms to identify the changes be-
tween different versions of the program.

Demeyer et al. [4] looked for changes in software met-
rics like method size, class size, or number of inherited
or overwritten methods to detect refactorings. The preci-
sion of their analysis seems to be rather low, for example,
for move method refactorings (restricted to sub, super and
sibling classes) the average precision over all projects they
evaluated is 23% (see Table 5 in [4]).

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Recently, Dig et al. [5] presented a method that is very
similar to our signature-based analysis. While we use the
transactions to prevent us from comparing whole versions
to find initial candidates for refactorings, they apply a hash-
ing technique to identify similar methods. As they did not
provide any evaluation results, we cannot make a quantita-
tive comparison to our approach.

Antoniol et al. [1] used a vector space technique to com-
pare identifiers in different classes to detect renaming and
splitting of classes. However the approach does not perform
very well, if many changes have been performed within the
classes.

Van Rysselberghe and Demeyer [15] use a visualization
technique called dotplots to identify possible refactorings.
Each dot indicates that two lines of code match. Moved
code is visible as diagonal lines in this visualization. Unfor-
tunately, the paper does not contain any evaluation results.

5. Conclusions

Refactoring reconstruction is a prerequisite for many appli-
cations. In this paper we presented a technique that com-
bines signature-based analysis to detect and clone-detection
to rank refactoring candidates. As expected the evaluation
shows that we can trade recall for precision by choosing
high-risk or low-risk similarity categories. For TOMCAT
using low-risk categories we got a recall of 77% and a pre-
cision of 73% for all refactoring kinds. Considering only
structural refactorings recall and precision increased even
to 80% respectively 92%.

In our future work we want to investigate some of those
applications briefly discussed in the introduction, in particu-
lar applying refactoring reconstruction to relate refactorings
to other changes and to software metrics. We also intend to
improve the technique, experiment with other code-clone
detection methods, and cover more kinds of refactorings.

Acknowledgments Michael Burch gave helpful comments on
a draft of this paper. Carsten Görg was involved in the develop-
ment of the early versions of our analysis. Johanna Vomfei helped
with the manual inspection of the documented refactorings.

References

[1] G. Antoniol, M. D. Penta, and E. Merlo. An automatic ap-
proach to identify class evolution discontinuities. In Proc.
International Workshop on Principles of Software Evolution
(IWPSE 2004).

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. A differ-
encing algorithm for object-oriented programs. In Proc. In-
ternational Conference on Automated Software Engineering
(ASE 2004).

[3] P. Cederqvist. Version Management with CVS, 2003.
http://www.cvshome.org/docs/manual/.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proc. Conference on Object-
Oriented Programming Systems, Languages & Applications
(OOPSLA 2000).

[5] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Auto-
matic detection of refactorings for libraries and frameworks.
In Proc. of ECOOP Workshop on Object-Oriented Reengi-
neering (WOOR 2005).

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proc. International Conference on Software Main-
tenance (ICSM 2003).

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2001.

[8] C. Görg and P. Weißgerber. Detecting and visualizing refac-
torings from software archives. In Proc. International Work-
shop on Program Comprehension (IWPC 2005).

[9] C. Görg and P. Weißgerber. Error Detection by Refactoring
Reconstruction. In Proc. International Workshop on Mining
Software Repositories (MSR 2005).

[10] J. Henkel and A. Diwan. Catchup!: capturing and replaying
refactorings to support api evolution. In Proc. International
Conference on Software Engineering (ICSE 2005).

[11] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. In Proc. ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, 1990.

[12] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions On Software Engi-
neering, 28(7), 2002.

[13] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, 1992.

[14] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Au-
gustine. Dex: A semantic-graph differencing tool for study-
ing changes in large code bases. In Proc. International Con-
ference on Software Maintenance (ICSM 2004).

[15] F. V. Rysselberghe and S. Demeyer. Reconstruction of suc-
cessful software evolution using clone detection. In Proc.
International Workshop on Principles of Software Evolution
(IWPSE 2003).

[16] Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. In-
oue. Gemini: Code clone analysis tool. In Proc. Interna-
tional Symposium on Empirical Software Engineering (IS-
ESE 2002).

[17] P. Weißgerber and S. Diehl. Are Refactorings less error-
prone than other changes? In Proc. International Workshop
on Mining Software Repositories (MSR 2006).

[18] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In Proc. International Workshop
on Mining Software Repositories (MSR 2004).

[19] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Proc.
International Conference on Software Engineering (ICSE
2004).

[20] L. Zou and M. W. Godfrey. Detecting merging and split-
ting using origin analysis. In Proc. Working Conference on
Reverse Engineering (WCRE 2003).

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

	hinweis: in Proceedings of 21st IEEE/ACM International Conference on Automated Software Engineering (ASE 2006) ,
Tokyo, Japan, 2006 (received best paper award).

