
JCCD: A Flexible and Extensible API for Implementing
Custom Code Clone Detectors

Benjamin Biegel
University of Trier

Department of Computer Science
54286 Trier, Germany
biegel@uni-trier.de

Stephan Diehl
University of Trier

Department of Computer Science
54286 Trier, Germany
diehl@uni-trier.de

ABSTRACT
Code clone detection is an enabling technology for plenty of
applications, each having different requirements for a code
clone detector. In the tool demonstration we present JCCD,
a code clone detection API, which is based on a pipeline
model. By combining and parameterizing predefined API
components as well as by adding new components, the pipe-
line model does not only facilitate to build new custom code
clone detectors, but also to parallelize the detection process.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Algorithms

1. INTRODUCTION
A code clone is a code fragment in source code which is

identical or similar to another code fragment—this descrip-
tion is likely to be the most popular text clone in code clone
literature. Nevertheless, it is still an open issue to find a
more accurate definition for this fundamental term. By now,
over 40 approaches [10] have been introduced to detect code
clones—without having a consistent notion of what a code
clone actually is.

Due to the ambiguity of the term code clone, our main idea
is to put the user in control. To this end, we introduced a
generic pipeline model that coordinates the interplay of all
required steps in a code clone detection process. Based on
this model, we developed the Java Code Clone Detection
API (JCCD). It allows to adapt code clone detectors to the
requirements of higher-level analyses. In other words, de-
tectors for different notions of code clones can be developed.
Code clone detectors implemented with JCCD can be eas-
ily integrated into other Java applications. JCCD allows to
re-implement state-of-the-art techniques as well as to real-
ize new ideas and concepts. In particular, the open-closed
principle [7] guided the design of the API. Thus, without
changing the overall pipeline architecture, whole parts of
the detection process can be replaced and extended. Addi-
tionaly, each phase can be adjusted through user settings.

Copyright is held by the author/owner(s).
ASE’10, September 20–24, 2010, Antwerp, Belgium.
ACM 978-1-4503-0116-9/10/09.

Despite the overhead caused by the various mechanisms for
customizing and extending JCCD, the performance of JCCD
can compete with other code clone detection tools.

2. THE JCCD PIPELINE
An overview of the pipeline which serves as a basis for

JCCD is given in Figure 1. By splitting the analysis into sev-
eral intermediate steps, JCCD achieves a flexible and easily
extensible architecture. Without exception, every step of the
pipeline implementation can be supplemented or replaced by
alternative approaches.

Parsing: The pipeline gets plain source code as an in-
put. The task of the parsing step is to make this source
code suitable for further steps of the analysis. The pars-
ing divides the input into a set of source units. A source
unit might be a subtree of an abstract syntax tree (AST),
a line, a subgraph of a program dependence graph, or the
like. The representation of a source unit depends on the
used approach (e. g. text-based, token-based, AST-based, or
metric-based). Every approach requires different techniques
like a line extractor, a lexer, or a parser.

Preprocessing: Normalization of a set of source units
or an AST in JCCD turns them into a regular form and
thus makes different source units more similar. The goal of
the preprocessing is twofold: to normalize a set of source
units and to add additional annotations. Preprocessing in
JCCD is actually implemented by several cascaded prepro-
cessors. Every preprocessor gets an (preprocessed) AST as
input and returns a preprocessed AST as output. The user
is free to select which preprocessors are to be used. A pre-
processor is able to annotate, remove, collapse, and group
AST-nodes. Some preprocessors normalize the AST with
the above-mentioned operations, such as removing modi-
fiers, generalizing variable names, or simplifying fully qual-
ified identifiers. Preprocessors can also compute new anno-
tations based on the annotations set by previous preproces-
sors. These annotations can either be important for both
subsequent steps or further preprocessors. For example, an-
notations can enable to remove getter and setter methods,
to remove redundant parentheses, to mark the scope of vari-
ables, or to parameterize variable names consistent within a
subtree.

Pooling: The pooling step enables a preselection of can-
didates which might form a code clone. Preprocessed source
units are grouped into different sets, called pools, based on
user-defined criteria. Usually, these criteria are character-
istics that can be directly read from the source unit and
its annotations without comparing it to another one. For

25th IEEE/ACM International Conference on Automated Software Engineering, ASE 2010



Figure 1: Proposed Generic Code Clone Detection Pipeline.

example, source units might be put into the same pool if
they have the same variable name, the same numeric value,
the same syntactical function within the source code, or the
same annotations (computed in the preprocessing). Source
units which are not in the same pool are not considered as
candidates for clone pairs.

Comparing: The division of source units into pools al-
lows the comparing step to apply a divide-and-conquer strat-
egy. All of the given pools will be processed sequentially by
comparing all contained source units recursively. In JCCD
the comparison is realized by using a user-defined set of com-
parators. Each comparator decides if two subtrees satisfy
particular characteristics. Two subtrees are called similar-
ity pair only if the combination of all comparators is true.

Filtering: At the end, the filtering step is responsible for
removing non-relevant similarity pairs out of the result set.
As before, the filter criteria are selected by the user. We
consider these final similarity pairs as code clones.

The user is free to control the behaviour of the pipeline by
removing, replacing, or adding components. For the current
version of JCCD we implemented more than 30 comparators,
over 40 preprocessors, and three different pooling strategies.

Due to the pipeline model, code clone detectors imple-
mented with JCCD can easily exploit parallel processing on
a multi-core computer. For example, the comparing step
may process all pools one after another. By splitting this
task into multiple threads a multi-core system is able to
process a set of pools simultaneously. During the evaluation
of JCCD we have adapted the comparing step to this func-
tionality. Multiple test runs show that the parallelization
has a significant impact on the total runtime.

3. RELATED WORK
In a recent survey [11] Roy and Cordy found more than

40 different approaches to code clone detection. They can
be roughly categorized by the kinds of information they pro-
cess: strings [2], tokens [5], trees [1], program dependence
graphs [6], metrics [8], or hybrid approaches [3].

CloneDetective implements a pipelined approach for
extensible token-based code clone detection [4]. In their ap-
proach the actual detector is a single component. In con-
trast, JCCD is AST-based and the detection process is fur-
ther subdivided into phases.

4. CONCLUSIONS
JCCD is a versatile API for implementing code clone de-

tectors. It was originally developed to provide a customiz-
able code clone detector for our refactoring identification
framework [12], recently it has also been used to enable de-
tection of more complex refactorings [9].

We are currently writing and translating the JCCD user
documentation and have released JCCD into open source
(see http://jccd.sourceforge.net) under the new BSD
license—placing almost no restrictions on the users of the
API and its source code. JCCD may enable other researchers
to easily implement their own code clone detection approach
or to realize more high-level analyses on top of JCCD.

5. REFERENCES
[1] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and

L. Bier. Clone detection using abstract syntax trees. In
International Conference on Software Maintenance
(ICSM’98), pages 368–377. IEEE Computer Society, 1998.

[2] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code. In
Proceedings of the Frontiers of Software Maintenance, 25th
IEEE International Conference in Software Maintenance
(ICSM’09), pages 109–118, 1999.

[3] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic
clones. In Proceedings of the 30th International Conference on
Software Engineering (ICSE 2008), pages 321–330. ACM,
2008.

[4] E. Jürgens, F. Deissenboeck, and B. Hummel. CloneDetective -
a workbench for clone detection research. In Proceedings of the
31st International Conference on Software Engineering
(ICSE 2009), pages 603–606. IEEE Computer Society, 2009.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[6] J. Krinke. Identifying similar code with program dependence
graphs. In Proceedings of the Eighth Working Conference on
Reverse Engineering (WCRE’01), pages 301–309. IEEE
Computer Society, 2001.

[7] R. C. Martin. The open-closed principle. C++ Report, 1996.

[8] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the 12th International
Conference on Software Maintenance (ICSM’96), pages
244–253, 1996.

[9] D. Neu. AST-basierte Erkennung von komplexen Refactorings.
Diploma thesis (in German), University of Trier, Germany,
2009.

[10] C. K. Roy and J. R. Cordy. Scenario-based comparison of clone
detection techniques. In Proceedings of the 16th IEEE
International Conference on Program Comprehension
(ICPC’2008), pages 153–162. IEEE Computer Society, 2008.

[11] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Science of Computer Programming,
74(7):470–495, 2009.

[12] P. Weißgerber and S. Diehl. Identifying refactorings from
source-code changes. In Proceedings of 21st IEEE/ACM
International Conference on Automated Software Engineering
(ASE 2006), pages 231–240. IEEE Computer Society, 2006.


