
Using Visual Dataflow Programming for
Interactive Model Comparison

Rainer Lutz and Stephan Diehl
Computer Science Department

University of Trier
Trier, Germany

{lutzr, diehl}@uni-trier.de

ABSTRACT
In software engineering the comparison of graph-based mod-
els is a well-known problem. Although different comparison
metrics have been proposed, there are situations in which
automatic or pre-configured approaches do not provide rea-
sonable results. Especially when models contain semantic
similarities or differences, additional human knowledge is of-
ten required. However, only few approaches tackle the prob-
lem of how to support humans when comparing models.

In this paper, we propose a tool for interactive model com-
parison. Its design was informed by a set of guidelines that
we identified in previous work. In particular, our prototype
leverages visual dataflow programming to allow users to im-
plement custom comparison strategies. To this end, they
can combine metrics and graph operations to compute sim-
ilarities and differences, and use color coding to visualize
the gained results. Additionally, a qualitative user study al-
lowed to assess whether and how our tool facilitates iterative
exploration of similarities and differences between models.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

Keywords
graphs; models; comparison; human-centered; visual dataflow
programming; tools

1. INTRODUCTION
The comparison of graphs or graph-based models is of im-

portance for different application scenarios. In software en-
gineering, where models are often used during early phases
of the development process or to provide an overview of an
existing system, there is also a need for graph comparison.
Software designers, for example, would like to find similar
components of a system that might be replaced or even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE’14, September 15-19, 2014, Vasteras, Sweden.
Copyright 2014 ACM 978-1-4503-3013-8/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642937.2642984.

merged into a single one. Research in this area often fo-
cuses on the algorithmic challenge posed by sophisticated
comparison metrics, which are supposed to compute a rea-
sonable set of corresponding model elements. However, there
are situations when automatic or pre-configured approaches
do not provide satisfying results such that human interac-
tion is required. For instance, when semantic aspects of
models are compared, it becomes increasingly important to
involve developers instead of entirely relying on the results
of an automatic approach. While some works present visu-
alizations to show similarities or differences between models,
only few cover the issue of how those may support develop-
ers when manually comparing software models. Especially
in the field of model-driven software development several au-
thors (cf. [1, 4, 7, 30]) discuss the need for suitable visual
representations of similarities or differences and the evalua-
tion of such visualizations. Also, there seems to be a trend
towards adaptable comparison metrics (cf. [2, 16]).

When designing interactive software it is of particular im-
portance to project the work habits of potential users to
the graphical user interface and the corresponding interac-
tions. In order to learn more about practices and strategies
for model comparison, in a recent study [21] we observed
humans comparing UML class diagrams in the context of
model merging. In summary, we found the entire process
of comparing (and merging) these models to be iterative
and exploratory. Our participants were often adjusting or
alternating their comparison strategies in order to find dif-
ferent types of similarities, which could, for instance, help
them to verify a previous observation. Based on the results
of our study, we formulated design guidelines for tools that
are intended to support users when comparing UML class
diagrams with respect to a subsequent merging.

In this paper we present a tool that was informed by these
guidelines. Thus, we formulate the following contributions:

• We provide a tool that follows a visual dataflow pro-
gramming approach in order to allow users to visually
configure and combine model comparison strategies.
In addition, users may explore the results of their com-
parison strategies by using different visualizations.

• By conducting a qualitative user study we were able to
find out if and how our tool facilitates iterative explo-
ration of similarities and differences between two UML
class diagrams and to assess whether it conforms to the
guidelines from our previous work.

In the subsequent section we summarize our previous study,
where humans compared UML class diagrams without tool-

© {The authors | ACM} 2014. This is the author's version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record was
published in the proceedings of ASE 2014, http://dx.doi.org/10.1145/2642937.2642984

Table 1: Guidelines for tool design in the context of model comparison.
G1 Support individual workflow: In [21] we found that there have been many individual differences in the way humans compare

UML class diagrams. Therefore, a tool that allows users to interactively compare two models must not restrict users to a certain
workflow. In particular, it should not only support them when comparing models, it might also enable to explore individual ideas
by, for instance, adapting available comparison metrics.

G2 Allow model extensions: In the first place, extending models becomes increasingly important to produce valid results during
merging (e.g., resolving inheritance cycles). However, changing the layout of a model may also be considered as an extension and,
moreover, can support the comparison process (e.g., moving similar model elements next to each other). Thus, a tool should at
least allow to modify the layout of the compared models or even provide a model editor that temporarily accepts invalid models.

G3 Support annotations: During our study we discovered that humans may resort to a variety of different visualizations and
annotation techniques, which should be preserved by a tool for model comparison. For instance, they used color coding to
distinguish between several matches, but also to mark different types of similarities. Furthermore, a tool should allow to write
additional comments such that users are able to capture ideas (e.g., hints on how they found a certain similarity) for later use.

G4 Support grouping: According to [21] grouping is an adequate means for different reasons. For instance, grouping may reduce
the complexity of UML class diagrams and enables users to work more efficiently [34]. It also allows humans to find model elements
that share a certain property (e.g., have been matched by the same metric). Thus, grouping does not necessarily mean that all
elements a rendered in a single box. In a broader sense, elements that share the same color may also be seen as a group.

G5 Raise awareness: Especially when humans tended to focus on one of the models, they sometimes overlooked or ignored important
differences. Therefore, in order to raise their awareness for possible alternatives, a tool should not only allow users to access the
best matches, but also those of lower similarity.

G6 Provide algorithmic support: Our participants often applied straightforward comparison strategies (e.g., name or layout
matching) to identify similarities between the UML class diagrams. Thus, a repertory of comprehensible comparison metrics
could already help to simplify the problem. Also, we found that humans tend to explore and combine such simple metrics; often
in an iterative process from a coarse- (overview of all similarities) to a fine-grained level (differences between a particular match).

G7 Help to keep track: During our study the participants used various gestures and annotations to keep track of the current
state of their analysis. Although they often followed a certain strategy, this was not always a strict process. Thus, a tool should,
besides allowing users to browse an interaction history, also enable them to interrupt their workflow and explore alternative ways
for comparing both models.

support, and introduce the resulting guidelines. In Section 3
we describe our prototype implementation in detail and show
how users can create and execute comparison strategies.
Section 4 analyzes how the participants of our study per-
ceived and applied our tool while Section 5 summarizes im-
portant related work. Section 6 concludes this paper.

2. REQUIREMENTS
When developing interactive software systems it is crucial

to involve potential users to gather requirements for the de-
sign of such systems. Common strategies for requirements
elicitation are interviews and questionnaires, brainstorming
sessions, use cases and role playing, or user observation.

To find requirements for an interactive tool that allows to
compare models and especially UML class diagrams for a
subsequent merging, we resorted to the last method—user
observation. To this end, we explored how humans accom-
plish such a task without any tool-support by conducting
a Think Aloud study [21] following the approach of Boren
and Ramey [6]. In particular, we recruited 13 participants
and asked them to manually compare and merge two pairs
of printed UML class diagrams by using only colored pens
and a sheet of paper. As the participants verbalized their
thoughts, we could videotape each session for later analysis.

In a subsequent step, the Grounded Theory method, as
described by Strauss and Corbin [33], allowed us to system-
atically analyze the videotaped experiments in an iterative
procedure. The result of this analysis comprises a network of
six top level categories and about 75 subcategories, their de-
scriptions, and dependencies among each other. Details on
this network can be retrieved from [21]. In general, it reflects
both the behavior of the participants as well as the strate-
gies they developed when manually comparing and merg-
ing UML class diagrams (e.g., dividing a problem into sev-

eral subproblems or handling conflicts). Although the entire
information captured by this network provides a detailed
source for user-defined comparison metrics, visualizations,
or interactions, which might be included into a prototype
implementation, these details are difficult to communicate
in the first place. Thus, in order to provide important ideas
and observations from our study, in [21] we formulated seven
guidelines for tool design. However, as these are related
to observations described in our previous work, one may
not entirely understand them without this information. To
overcome this problem, we rephrased the guidelines in the
context of model comparison such that readers are able to
understand them without knowing our previous work in de-
tail. Table 1 presents these adapted guidelines. Although
they provide important insights on the problem of manual
model comparison, not every single design decision can be
motivated by them. In other words, when developing our
tool we also included results from the more fine-grained net-
work of categories and their descriptions.

3. TIGAM
Based on the guidelines presented above, we were able to

develop a first prototype, which is introduced in this section
in detail. TIGAM—a Tool for Interactive Graph Analy-
sis and Matching—allows to iteratively discover similarities
and differences between two graphs by applying user-defined
comparison strategies and related visualizations. Moreover,
it supports users when merging both graphs into a single
one. In this paper, however, we focus on the comparison of
two graphs with user-defined strategies and visualizations,
which in the following are referred to as analysis programs.

Besides UML class diagrams our tool also allows to im-
port other types of graphs like mindmaps or social networks.
For the sake of simplicity, we use the term model for the re-

Mode tabs

Synchronize zooming
or panning

Choose predefined
analysis programs

Figure 1: The Compare Mode allows to load two source models, which can be compared with a predefined
analysis programs. Both models are read-only such that users may always view their initial layout.

mainder of the paper. Also, a model element may be either
a node or an edge. Finally, we denote the models that are
supposed to be compared as source models and the result of
an analysis as result model.

In [21] we observed that the process of manually compar-
ing and merging two models involves several different tasks
like getting an overview and navigating through the models,
comparing them by developing adapted comparison strate-
gies, and finally merging them into a single model while solv-
ing possible conflicts. In TIGAM we support these top level
tasks by introducing different modes that are accessible via
the tabs at the top of the main component (cf. Fig. 1). We
distinguish four modes, which are briefly described below:

Edit Mode: In this mode a single model can be created or
modified. Basically, it resembles a full featured graph
editor due to the underlying JGraphX [14] library. In
particular, it allows to add or remove nodes and edges,
alternate their appearances, apply layout algorithms
to automatically place nodes and edges of the model
on the screen, and also provides an undo history. We
extended the JGraphX library such that users are able
to create UML class diagrams. The finished model can
be compared with another model in a subsequent step.

Compare Mode: As shown in Figure 1, this mode allows
to load two source models in a side-by-side view in or-
der to compare them. To this end, both subviews may
be panned and zoomed individually or even synchro-
nized. However, it is not possible to modify the models
in this mode because in [21] we observed that it can
be important to examine the content and the layout

of the initial source models which is why both of them
should stay untouched. The Compare Mode also allows
to choose from a list of predefined or previously saved
analysis programs that may be used for a quick com-
parison. A simple description of the chosen program
can be obtained by opening the panel at the right.

Analyze Mode: This mode allows to develop custom com-
parison strategies and their visualizations. In order to
facilitate the creation of such a strategy, we chose a vi-
sual programming approach, in particular, this mode
is based on the idea of dataflow programming [15, 28].
Users may choose from a variety of high level program-
ming blocks that enable them to compare the elements
(or an arbitrary subset) of both models with each other
and visualize the computed result. Figure 2 shows an
example of such an analysis program. A detailed de-
scription of this program is given in Section 3.1.

Merge Mode: As depicted in Figure 3, this mode shows
the results of an analysis program. In particular, when
a valid program is executed, copies of both source mod-
els are transfered to the Merge Mode and placed next to
each other on a single canvas. This allows users to re-
arrange nodes and edges freely such that the layouts of
both models may also intersect and are not restricted
to a certain area. All visualizations included in such
a program are displayed (some of them only on de-
mand) and may help users to explore similarities and
differences of the compared models. Moreover, this
mode allows to combine both source models into a sin-
gle one. Therefore, it provides semi-automatic features

Different types of programming blocks

Settings of upper
UML Metric Block:

Settings of lower
UML Metric Block:

Execute analysis program

Splits a similarity map into
two element sets; one from
the first and one from the
second model.

Port descriptions display
which model elements
are currently connected.
This particular port, e.g.,
provides only nodes of
the first graph.

Figure 2: The Analyze Mode allows to develop custom comparison strategies and visualizations by combining
different visual programming blocks.

This class has been
colored three times

Results of the upper
UML metric block
are colored green

Results of the lower
UML metric block
are colored blue

Results of both
UML metric blocks
are colored red

Currently selected class

Similarity edges show
similar classes on demand

Browse similarities

Figure 3: The Merge Mode displays the results of a custom comparison strategy, allows to browse the
discovered similarities, and enables users to merge both models into a single one.

to merge overlapping parts of both models and to re-
solve common conflicts that might occur during that
process. For more complex merge operations or exten-
sions to the result model, users may resort to common
graph editor features as described earlier.

In the following we focus on the last two modes as these
contain the most interesting and novel features of our tool.
To this end, we assume that two source models have already
been opened like shown in Figure 1. As a next step, an
appropriate comparison metric is required. This is where
the Analyze Mode comes into play.

3.1 Creating Analysis Programs
The Analyze Mode allows to create custom analysis pro-

grams. Therefore, users may switch to this mode, which
initially displays an empty canvas, and create a new pro-
gram from scratch. As an alternative, they can also load an
existing analysis program, use it as a starting point or even
integrate it into another one. In any case, users can access
a repertory of visual programming blocks through the menu
beneath the tab bar and add them to their program. A sin-
gle programming block usually consists of a short name, a
number of input and output ports, which allow to connect
blocks to each other, and, depending on its purpose, a list
of settings that may be used to adjust the outcome of a
block. Several types of blocks are available which are listed
in Table 2 and introduced below.

Directed links denote a dataflow from a source to a tar-
get block. In general, we distinguish two types of data that
flow along these links: model-based data and configuration
data. The first type comprises element sets and similarity
maps. Element sets, on the one hand, flow along thick yel-
low links (cf. Fig. 2) and may contain any combination of
nodes and edges from a source model. Similarity maps, on
the other hand, flow along thick green links and store discov-
ered similarities between two element sets. In particular, for
each element from one set, which is stored in a hash map, a
separate priority queue collects matches from the other set
ordered by their similarity. The latter type, configuration
data, is used to modify the settings of a particular block
and flows along thin blue or purple links like depicted for
the Value block in Figure 2. Cycles in the data flow are not
allowed and thus rejected by our tool.

Table 2: Available visual programming blocks
Category Blocks

Input Graph, Normalized Value

Metric String Metric, UML Metric, Node Degree, Simi-
larity Coverage

Operator Set Operator, Split Set, Find Neighbors, Split
Map, Merge Maps, Filter Map, String Normal-
izer, String Tokenizer

Output Colorize, Hide, Colorize Map, Similarity Edges,
Graph Layout, Comparison Layout, Text Output

The visual programming blocks included in our tool are
organized into four categories: Input, Metrics, Operators,
and Output. Due to space limitations, we cannot provide
particular examples for all blocks. However, Table 2 gives
an overview of all currently available blocks.

Input blocks, which are also called sources in visual pro-
gramming, are supposed to provide certain data from the

underlying data model. With Graph blocks, for instance,
users may access different aspects of a chosen source model.
In Figure 2 the orange Graph blocks and their connected
”Nodes” output ports indicate that the user decided to con-
sider only nodes for her custom analysis program.

Metric blocks: One can also see that both Graph blocks
are connected to gray UML Metric blocks, which allow to
compare model elements from the provided element sets.
Furthermore, the settings of each UML Metric block may
be adjusted such that different aspects of the source models
can be observed (cf. Fig. 2). TIGAM also provides other
metric blocks, e.g., for label-based comparison of other graph
types like mindmaps or a simple structural analysis. All of
these metric blocks have in common that they accept two
element sets and produce a similarity map that captures all
discovered similarities between the given sets. Individual
settings allow users to find different types of similarities and
may help them to make a decision on how to combine similar
parts of both source models (cf. [21]).

Operator blocks: A variety of different operator blocks
allow to split, combine, filter, or preprocess arbitrary ele-
ment sets. In Figure 2, for example, the resulting similarity
maps of both metric blocks have been split such that the
matched nodes from each source model are separately avail-
able. In a next step, the computed node sets are pairwise
intersected by using two Set Operator blocks in order to get
only those nodes that where found by both UML Metric
blocks. Other blocks, for instance, enable to combine simi-
larity maps, inspect the neighborhood of nodes, or allow to
preprocess labels by removing blanks or special characters.

Output blocks: In order to view the results of custom
comparison strategies in Merge Mode, users have to include
visualization blocks into their analysis program. Figure 2
shows the usage of so called Colorize blocks, which allow to
style incoming model elements by changing their colors or
adjusting their opacity. Besides element sets, these blocks
can also handle similarity maps. In this case, all elements
contained in a given similarity map are colored. Although
this visualization seems to be rather simple, it may be used
in several situations. For instance, to color both models
differently such that they can be told apart during a subse-
quent analysis. Or, like in the program depicted in Figure 2,
to highlight several types of similarity with separate colors.
The result of this program is shown in Figure 3. In gen-
eral, visualization blocks are often useful to get an overview
of which model elements have been found to be similar by
a certain metric block or still remain after a certain filter-
ing. However, such a visualization does not tell us which
elements in the first model correspond to one or more ele-
ments in the second one or vice versa. To this end, we in-
cluded two additional blocks that allow to visualize matched
elements. While the Colorize Map block assigns equal col-
ors to matched elements of a connected similarity map, the
Similarity Edges block enables to display additional lines
between similar model elements on demand such that users
may browse the discovered matches one by one. The latter
block also allows to select an arbitrary number of elements
in Merge Mode and examine their matches like shown in
Figure 3 for the Guest class on the left side.

Finally, we also want to explore whether certain layouts
facilitate the comparison of two models. To this end, users
may include Graph Layout blocks into their analysis pro-
gram. For instance, we implemented a layout that bene-

fits the comparison of mindmaps, which in general follow
a tree-like structure, by facing their leave nodes to each
other. In [20] we used a similar approach to compare di-
rectory structures. Furthermore, it could also be interesting
to investigate whether it is suitable to contrast class or even
package hierarchies in UML class diagrams.

3.2 Executing Analysis Programs
In [21] we observed that two UML class diagrams are often

compared iteratively, i.e., new insights about the similarity
of two diagrams are collected step-by-step. Such an iterative
analysis is also supported by TIGAM as it allows users to
modify and re-execute their analysis programs at any time.

After the execution of an analysis program, the Merge
Mode displays those visualizations that have been integrated
into this program. For instance, nodes or edges contained
in a set that has been plugged into a Colorize block are
rendered in the chosen color, while the remaining model el-
ements keep their default style (cf. Fig 3).

If two or more colors have been assigned to an element, it
primarily shows that color which has been applied last. In
other words, the visualization block with the highest topo-
logical order provides the main color for a node. Here, we
simply assume that users consider this visualization block
the most important one. The remaining colors, however,
are not discarded, they are displayed in a small overlay at
the bottom right of a model element. Users may click it in
order to swap the main color of a node.

In addition, users are able to browse and examine the
discovered matches one by one via the single arrow but-
tons beneath the tab bar or the assigned keyboard short-
cuts. In order to highlight the currently selected match,
TIGAM draws temporary lines between the particular el-
ements, which we call similarity edges. Figure 3 includes
two of those edges. There, one can also see that their labels
show the similarity that has been computed by a particu-
lar metric block. If more than a single metric block is used
in an analysis program, users may directly switch between
their results (similarity maps) by clicking the double arrow
buttons. Moreover, when users browse corresponding UML
classes, matched fields and methods are also highlighted in
order to indicate which parts of the classes are similar.

In addition to browsing the discovered similarities one by
one, users may also view all of them at once, or restrict
the displayed similarities to the currently selected elements.
This way, users can focus on a certain part of a model.

3.3 Example
The analysis program shown in Figure 2 was extracted

from a program created by a participant of our user study.
In general, it was designed to explore different types of sim-
ilarities between the source models and was developed in an
iterative manner. First, a program using only a single UML
Metric has been created and executed. Then, an additional
metric block with different settings was added and a second
execution was triggered in order to uncover new similarities.
Finally, the user wanted to observe which matches have been
detected by both metrics as this may suggest more reliable
candidates, added a few more programming blocks and ex-
ecuted the analysis program a third time.

In particular, the final program uses two separate Graph
blocks to access the nodes of each particular source model.
These node sets are then connected with two UML Metric

blocks such that each metric block compares the nodes of
the first model with those of the second one. By configuring
the UML Metric blocks individually (cf. Fig. 2), different
similarities between both models can be detected. The first
metric block only searches for nodes that share the exact
same class name. The second one allows to find fields that
have been named like classes, i.e., for two classes the metric
compares the class name of the first one to all field names
of the second and vice versa. In addition, the Ignore Case
option produces better results as classes (at least in Java)
typically begin with a capital letter.

The similarity maps of both metric blocks are then plugged
into separate Colorize blocks such that the found matches
can be distinguish in Merge Mode. Furthermore, both maps
are also split into two sets of nodes, one from each model.
While the upper set contains those nodes that only belong
to the first model and have been matched by the particu-
lar UML Metric block, the lower set only includes matched
nodes from the second model. This way, one can create sub-
sets which may be analyzed in subsequent steps. In Figure 2
this is done by using intersections in order to get only such
nodes that where found by both UML Metric blocks. To this
end, the resulting sets are intersected by connecting them
with two Set Operator blocks, one for each model. In order
to distinguish nodes that are produced by this intersection,
the gained sets are plugged into a third Colorize block.

Figure 3 depicts the visualized similarities after executing
the last iteration of this analysis program. There, nodes with
a green color share the same class name. Blue nodes, on the
other hand, show a match between a class name and a field.
Finally, nodes that have been detected by both metrics are
colored red. The red Guest class from the left diagram, for
instance, was matched with two classes of the right diagram.
In order to access this information the user selected the red
class and demanded to display all similarity edges. The
upper edge shows that there exists a class with the name
Guest in the right diagram. The lower one indicates that a
field named mood was matched with the Mood class of the
right diagram. As the Ignore case checkbox was selected
for the metric block (cf. Fig. 2), even this edge depicts a
similarity of 100%. In addition, the field itself and the class
name are highlighted with the same color such that the user
is directly able to recall the type of the similarity.

Although this example shows how to distinguish different
types of similarities, out tool is not limited to this visualiza-
tion. For instance, it is also possible to use individual colors
for each particular match (cf. Sec. 3.1).

4. EVALUATION
In order to find out whether our prototype implementa-

tion is suitable for an iterative analysis and comparison of
two source models and whether it complies with the guide-
lines presented in Section 2, we conducted a qualitative user
study. Also, we wanted to observe how people work with
TIGAM, i.e., which features they use, which workflow they
follow, and where they could imagine improvements and ex-
tensions to our tool.

4.1 Experimental Design
For our study we chose the hallway testing method, where

you randomly invite four to six non-expert participants in or-
der to find usability flaws. Nielson and Landauer [24] showed
that this number of subjects is sufficient to discover most of

these flaws. Thus, we asked two students (S), two academic
researchers (R), and two software developers (D) to partici-
pate in our study. Detailed information about our subjects
is shown in Table 3 including their general experience and
the time that they have spent working with our tool. We
tested the version of TIGAM that is described in Section 3
on a Windows 7 computer with a 23 inch widescreen monitor
and full HD resolution. Besides audio and screen capturing,
we also logged all user interactions with our prototype.

Table 3: Participants’ occupation (see above), expe-
rience (1=none to 5=expert), and time spent with
our tool for briefing, training, and free exploration.

P1 P2 P3 P4 P5 P6 Avg

Occupation S S R R D D

E
x
p

er
ie

n
ce

Object-orientation 3 4 5 4 5 4 4.17

UML modeling 2 3 4 3 3 3 3

Textual diff tools 3 3 5 4 4 4 3.83

Graph or tree comp. 3 2 5 2 4 1 2.83

TIGAM 3 1 2 2 2 1 1.83

Time spent (in min) 74 72 79 53 59 78 67

Briefing 9 14 9 8 9 11 10

Training 28 32 32 25 29 37 30

Free exploration 37 26 38 20 21 30 28

After a short briefing, where we explained the general pro-
cedure of our experiment and introduced basic features of
our tool, the training phase began. There, the participants
were asked to solve six well-defined analysis tasks, in which
they learned common controls of TIGAM and were intro-
duced to the most important visual programming blocks.
Due to time constraints and as we wanted to allow the par-
ticipants to explore the possibilities of our tool, we did not
include all programming blocks into this training phase. We
also decided to use non-UML models during the first phase
of the experiment, which represented a small portion of two
partly similar social networks. This way, the participants
could rather focus on their analysis programs than on the
complexity of the graphs. Moreover, the programs created
during the training phase are not directly applicable to UML
class diagrams such that the participants were required to
develop their own analysis programs.

When all six tasks had been solved, we moved to the sec-
ond phase where our participants got a short introduction
to the UML-specific features of our tool. Then, we provided
two UML class diagrams (excerpts of them are shown in
Figure 1 and 3) together with the task to implement custom
comparison strategies and visualizations that would allow
them to merge both diagrams in a later step. Otherwise, our
participants were free to explore the tool and combine visual
programming blocks to obtain information on the similarity
of the provided UML class diagrams.

After each experiment we asked our participants to answer
a questionnaire, which was designed to assess the overall us-
ability of our tool, to discover missing features and oppor-
tunities for improvement, and to evaluate whether and how
our tool conforms to the guidelines presented in Section 2.

4.2 Findings
When analyzing the results of our study, we had to han-

dle three different types of data sources: screen captures
along with audio recordings, logged interactions with our

prototype, and the post-study questionnaire. As the first
two data sources are strong interrelated, we discuss both of
them in the following subsection. The results of the ques-
tionnaire are described afterwards.

4.2.1 Interactions and Strategies
By analyzing the screen captures and audio recordings as

well as the logged interactions with our tool, we wanted to
uncover how users work with our prototype, which strate-
gies they follow, and which features they use and appreciate.
To this end, we watched all screen captures and transcribed
important activities and statements to text files along with
their individual timestamps. These text files allowed us to
quickly browse the according videos in case we wanted to
inspect a certain activity in detail. Moreover, we used the
recorded log files to generate an overview of the interactions
with TIGAM for each particular experiment. These visual-
izations are shown in Figure 4 and allowed us to search for
interesting patterns on a higher level of abstraction. In a
next step, we went back to the screen captures in order to
inspect these particular patterns in detail.

Before generating the log file visualizations shown in Fig-
ure 4, we classified all possible interactions into five cate-
gories. Next, we provided these categories to our data anal-
ysis tool, which divided each experiment into time spans of
30 seconds1 and counted the number of interactions for each
category during a given time span. While blue bars show
the amount of modifications to an analysis program, red
ones occur every time a participant executed it. The green
category comprises interactions that helped our participants
to compare nodes like browsing the discovered matches or
displaying similarity edges for a certain selection of nodes.
Yellow bars show those situations in which our participants
modified the result model (e.g., when they changed its layout
or even applied a merging operation). Finally, the naviga-
tion category includes selection as well as zooming and pan-
ning interactions. For referencing purposes, we numbered
the time spans and assigned a letter to each category such
that, e.g., P2.C4 refers to the second participant and there
to the fourth time span of the comparison category while
P2.4 and P2.E refer to the entire fourth time span and the
entire execution category, respectively.

In general, Figure 4 shows that, although all participants
got the same briefing, solved the same tasks during the train-
ing phase, and were asked to compare the same UML class
diagrams, they developed individual comparison strategies
and freely explored the possibilities of our tool. For instance,
finding an initial metric was accomplished differently. While
some participants customized their metric already before
the first execution of their analysis program (e.g., P1.P0 to
P1.P7), others simply kept the default settings (e.g., P4.P0
to P4.P1) assuming that these have been chosen well. An-
other example is the frequency of the program executions.
Although all participants compared both UML class dia-
grams in a iterative process, which can be seen in Figure 4 by
alternating blue and red bars, some of them executed their
program less frequently (P2.E, P3.E, or P4.E). Sometimes
due to a more detailed inspection of the obtained results
(e.g., P3.C14 to P3.C20) or even initial merging operations
(e.g., P4.G5 to P4.G17). Others like P2.P12 to P2.P23 spent
their time on creating a more complex analysis program.

1We experimented with different time spans, but found that
a length of 30 sec. produces the most comprehensible results.

Nevertheless, we could also identify similarities between
the workflows of our participants. For all of them, we ob-
served the Visual Information Seeking Mantra introduced
by Shneiderman [32] when examining the result model for
similarities and differences: Overview first, zoom and filter,
then details-on-demand.

Overview: After executing an analysis program, our par-
ticipants first examined the result model from a zoomed out
perspective. Through different color codings they were able
to distinguish multiple metrics. In addition, some partici-
pants quickly browsed the discovered matches (e.g., Fig. 4,
P1.C47) or displayed similarity edges once in order to get a
first idea of how both models are related to each other.

Zoom and Filter: In a subsequent step, our participants
focused on a certain part of the model by zooming and pan-
ning the viewport or displaying particular similarity edges to
view only a subset of the discovered matches. These inter-
actions were often closely related to each other which can be
seen in Figure 4 where green and gray bars have a similar dis-
tribution. Three of the participants also used Hide blocks or
the opacity settings of Colorize blocks in order to temporar-
ily filter from uninteresting classes. For instance, classes, for
which an exact match was found, seemed to be less interest-
ing than those that are only similar but not equal.

Details-on-Demand: Finally, the participants investi-
gated interesting classes in detail, for instance, by explor-
ing alternative matches, comparing their fields and meth-
ods, or inspecting the similarity value of a specific similarity
edge. During this process some participants also found weak
matches or mismatched classes that helped them to refine
or improve on their comparison strategy. Also, one partici-
pant tended to spatially separate matched classes from their
neighbors before inspecting them in detail.

4.2.2 Questionnaire
After having worked with our tool for about an hour, each

participant was asked to answer a questionnaire, which was
designed to gain insights on the usability of TIGAM. Our
main goal was to find out whether our prototype conforms
to the guidelines shown in Table 1. As these provide a high-
level view on the requirements of our tool, they were suit-
able to derive questions for our survey. In particular, we
asked each participant if and why our tool corresponds to
these guidelines. To this end, we formulated statements that
should be rated on a 5-point Likert scale (1=strongly dis-
agree to 5=strongly agree). The statement for G1, e.g.,
reads as follows: “I have not been restricted in my individ-
ual workflow”. In addition, we allowed the participants to
comment on these statements. In case of G1, they should
explain where they felt restricted in their workflow.

Table 4 provides the scores for all guidelines. One can
quickly see that all of their means are above average, which
suggests that our tool generally conforms to the guidelines
presented in Table 1. However, there are some guidelines
(namely G1, G2, and G7) that got lower scores than others.
By browsing the comments related to the guidelines as well
as the screen captures of each experiment, we were able to
find explanations for these scores.

In particular, Participants 1 and 2 stated with respect to
G1 that a certain training with our tool is required in order
to manage all of its features and that new users can be slowed
down in their individual workflow. Participant 1 added that
this might also be due to his lack of experience in comparing

Table 4: Participants’ opinion on the conformance
of our prototype to the guidelines from Table 1.

P1 P2 P3 P4 P5 P6 Avg

G1 Support individual workflow 3 2 3 4 4 4 3.33

G2 Allow model extensions 2 4 3 3 5 3 3.33

G3 Support annotations 4 4 4 5 5 4 4.33

G4 Support grouping 4 5 3 4 4 5 4.17

G5 Raise awareness 4 4 5 4 4 2 3.83

G6 Provide algorithmic support 4 5 3 5 5 4 4.33

G7 Help to keep track 2 4 2 4 5 4 3.5

UML class diagrams. As our tool also allows to merge two
models, Participant 3 would have normally integrated such
activities into his workflow.

As extensions to the UML class diagrams were not explic-
itly mentioned in our task description, our participants did
not have the intention to improve the result model. This
is why most scores for G2 are around average. Solely Par-
ticipant 5 explicitly investigated at the end of his session
how UML class diagrams can be modified and extended in
Merge Mode (cf. Fig. 4, P5.G36 to P5.G38) and found these
features to be of decent quality.

Scores for the seventh guideline are twofold: While some
participants reported that they lost the overview of the con-
sidered classes at times, others actively tried to keep the
Merge Mode organized. This was done by either using addi-
tional Hide blocks or lowering the opacity of a specific Col-
orize block in order to filter from already observed classes.

In addition to the questions about the guidelines, we also
asked our participants to assess whether a stepwise explo-
ration facilitated the process of comparing the given UML
class diagrams. Four out of six participants answered this
question and stated that an iterative or stepwise exploration
is a crucial technique when comparing UML class diagrams.
It allowed them to begin on a coarse-grained level using sim-
ple comparison strategies and refine them iteratively. Also,
one participant stated that a stepwise exploration helped
him to keep track of those classes he had already visited.
Moreover, we wanted to know whether our participants could
imagine further scenarios in which TIGAM may be applied.
The participants’ suggestions show that the application of
TIGAM is not limited to UML class diagrams. For instance,
due to his background in code clone detection, Participant 3
found that our tool could be used to find and especially
present code clones to developers. Participant 4, on the other
hand, could imagine to use an adapted version of our tool in
his every day workflow to compare XML files or hierarchical
directory structures. Other ideas were to compare business
process models or to detect plagiarism in student exercises.

4.2.3 Ideas for Improvement
During the course of our user study as well as by evaluat-

ing our questionnaire, we found several interesting sugges-
tions to improve TIGAM.

In Analyze Mode, for instance, our tool could allow users
to define and reuse their own programming blocks by group-
ing existing ones. Also, Participant 5 suggested to introduce
switches such that different subprograms can be turned on
or off. Although most of our participants have been satisfied
with the metrics provided by our tool (cf. Table 4, G6), we

Program editing (P)

Program execution (E)

Comparison (C)

Graph editing (G)

Navigation (N)

P1 P2

P3 P4

P5 P6

Figure 4: Visualization of logged interactions with our prototype for each participant (P1-P6).

plan to add more sophisticated ones, which allow to discover
elaborate structural or semantic matches. However, a chal-
lenge is to find intuitive metrics that can be parameterized
or customized to be applicable in different scenarios while
they are still comprehensible.

In Merge Mode, Participant 6 reported that it sometimes
became tedious to compare such nodes in detail that are
spatially distributed as a lot of panning and zooming might
be required. Thus, we plan to extend the similarity brows-
ing feature such that users may instruct TIGAM to pan
and zoom to the next corresponding node automatically.
Furthermore, Participant 3 suggested that, in Merge Mode,
users should be able to manually define nodes that are treated
as matches or that will not be matched independently of
which result a particular metric computes. Such manually
defined data could also be made available in Analyze Mode
via a specific input block.

4.2.4 Validity and Limitations
The qualitative nature of our evaluation allowed us to ex-

plore which strategies users develop when working with our
prototype. However, due to the low number of participants,
we cannot draw any quantifiable conclusions from our exper-
iments. Moreover, the interpretation of the observed user
behavior could be biased by the authors as well as the re-
sults of our previous work. Also, people that work in the
field of model-driven software development could have per-
ceived our tool differently. Nevertheless, the exploratory
character of our evaluation allowed us to investigate differ-
ent aspects of computer-supported model comparison and
provides preliminary evidence of the usability of our tool.

5. RELATED WORK
In general, works related to our approach are originated

in two areas of research: graph comparison and visual pro-
gramming. In the following we present a brief overview of
these areas. However, we do not attempt to cover all existing
works, but rather want to show a broad field of application.

5.1 Graph Comparison
The comparison of graphs or graph-based models is of

importance for different application scenarios. In informa-
tion visualization, for example, several approaches have been
proposed [10]. For instance, the evolution of software is vi-
sualized by computing differences between consecutive ver-
sions of the system or genomic sequences are aligned next to
each other. Also, the comparison of social networks seems to
be of increasing importance. Users probably want to know
which friends they share among several networks in order to
store them as a single contact. In [19] Ley describes similar
problems on how to find homonyms and synonyms for au-
thors included in the DBLP computer science bibliography.
In software engineering and especially in model-driven soft-
ware development it is of particular importance to find dif-
ferences between versions of UML or domain-specific mod-
els. But, whenever users have to decide or verify whether
certain parts of two or more models are similar, an appro-
priate representation of similarities or differences is required.

Although several approaches for various applications have
been proposed, to the best of our knowledge, non of these
allows users to iteratively explore the similarities and dif-
ference between models and visually configure comparison
strategies and the according visualizations. Nevertheless,
the proposed approaches may coarsely be categorized into
those that explicitly show differences and those that point
users to similarities between graphs. To this end, some ap-
proaches use additional space, views, or even files to show
or store the results of a comparison. Others augment the
models themselves with additional information about their
similarity. In the latter case, one may also distinguish be-
tween so called unified views where a precomputed combined
graph is used to show differences or similarities and so called
side-by-side views that display graphs next to each other.

5.1.1 Visualization of Differences
Approaches in this category are supposed to find differ-

ences between graphs or models. Thus, similarities are not
highlighted explicitly. In order to visualize such differences,

for instance, Girschick [9], Selonen und Kettunen [31], or
Kelter et al. [17] first compute a difference model based on
their individual comparison metrics. Besides equal elements,
which are only represented once, it contains all other ele-
ments of both source models (unified view). Then, they use
colors to highlight those elements that were added to the
second, removed from the first, or changed in between both
source models. Such approaches are often designed for the
application in model-based version control systems. There,
developers may derive two variants from a common base
model which need to be compared and merged in order to
integrate the changes of both variants into the latest version
of a model. However, these visualizations often depend on a
small number of differences between both variants. In case
this number grows, such a visualization might become con-
fusing. This is why users should be able to adjust or limit
the visualization to areas that are currently of interest. For
instance, Ohst et al. [25] observed how they could define in-
teresting areas of a difference model. Moreover, besides color
coding, which is often used to show differences between two
models, further graphical elements may provide additional
information. Scharf and Zündorf [27] augment differences
in a unified view with additional markers that allow to ac-
cess details of the detected difference and provide a way to
interact with the unified model.

Side-by-side views are another approach to compare graphs
or models. For example, KIELER [29] displays two UML
models next to each other and uses colors to show addi-
tions, deletions, or changes. Through sophisticated inter-
action techniques like automatic panning or zooming, users
may browse both models and explore the detected differ-
ences. An additional hierarchical representation helps users
to get an overview of the displayed results. DARLS [35]
follows a hybrid approach to compare not only UML class
diagrams, but also other types of graphs. On the one hand,
it displays two graphs in a side-by-side view, on the other
hand, it augments each graph such that it shows all dif-
ferences to its counterpart by using semi-transparent nodes
and edges. In addition, it uses colors or strikethrough text
to highlight differences between fields and methods of UML
classes. A timeline visualization above the models allows to
browse different versions and open them in the side-by-side
view. The approach of Hascoët und Dragicevic [12, 13] ren-
ders each graph in a semi-transparent layer such that they
may also be laid on top of each other. By applying cer-
tain layout algorithms and zooming technique users are able
to visually compare the stacked graphs. Finally, Andrews
et al. [3] present an approach that integrate three views in
order to compare common graphs. Two for displaying the
source graphs and the third one to show a combined graph,
which is based on the results of a precomputed comparison.

5.1.2 Visualization of Similarities
In contrast, users may also explicitly be made aware of

similarities instead of differences. However, only a few tools
follow this approach. Rondo [22], e.g., uses colors and ad-
ditional lines to show similarities between two graphs that
were laid out next to each other. Dadgari and Stuerzlinger [8]
present a tool that allows users to explore both similarities
and differences. To this end, each graph is displayed in a
separate layer. Further layers may be created by intersect-
ing two graphs to display only common nodes and edges or
differencing them to show nodes or edges that are unique.

These kinds of set operations can be applied based on the
pure structure of the source graphs or even their layout.

Unified views are also used to find similarities between
graphs. Koop et al. [18], e.g., recently presented an approach
that compares multiple graphs and computes a so called
summary graph. To this end, similar nodes are merged vir-
tually such that users can explore a unified graph. Partic-
ular parts of this graph may also be interactively separated
in order examine the original structure of the source graphs.

5.2 Visual Dataflow Programming
According to Johnston et al. [15] visual dataflow program-

ming has its origins in the mid 1980s and experienced a
growth in the following years. LabVIEW [23] was one of the
early adopters of visual dataflow programming in the indus-
try and is still of importance today. It is among others used
for instrument control and industrial automation and allows
engineers to create applications for these purposes.

In general, visual programming or visual scripting lan-
guages are nowadays often applied in the domain of end-
user programming in order to abstract from text-based lan-
guages. For instance, in 3D software suites and game devel-
opment visual programming approaches allow users to create
custom materials and shaders for three-dimensional objects
and facilitate the compositing and post-precessing of ren-
dered images or movies. The Analyze Mode of TIGAM, e.g.,
was inspired by the visual programming system of Blender [5],
an open-source 3D computer graphics software. Also, visual
programming has been applied in educational settings in or-
der to facilitate teaching of programming languages to kids
and teenagers. For example, the MIT App Inventor [26] has
been successfully used in computer science education [11].

6. CONCLUSION
In this paper we presented TIGAM, a tool for interactive

graph analysis and matching. The design of this tool was
informed by a set of guidelines we derived from previous
work and which we put in the context of model comparison.
TIGAM allows users to compare models in an iterative pro-
cedure by visually configuring and combining custom com-
parison strategies. To this end, it leverages visual dataflow
programming and, additionally, provides different visualiza-
tions that may be used to explore the results of a created
comparison strategy.

The findings of a qualitative user study provide prelimi-
nary evidence that our tool facilitates iterative exploration
of similarities and differences between UML class diagrams
and, moreover, that its design conforms to the guidelines
from our previous work. Furthermore, our evaluation sug-
gests that TIGAM already provides a decent set of program-
ming blocks for model comparison and that users are able to
combine these blocks in order to create convenient compari-
son strategies and appropriate visualizations. Nevertheless,
our evaluation also revealed interesting ideas to extend and
improve on the current prototype.

7. ACKNOWLEDGMENTS
We want to thank Marco Schuh, Xin Zhou and Marc

Gelhausen who implemented parts of the tool. This work
was partially supported by the German Research Founda-
tion DFG Grant No. DI 728/12-1.

8. REFERENCES
[1] K. Altmanninger, P. Brosch, G. Kappel, P. Langer,

M. Seidl, K. Wieland, and M. Wimmer. Why Model
Versioning Research is Needed!? An Experience
Report. In Proceedings of the Joint Workshop on
Model-Driven Software Evolution (MoDSE) and Model
Co-Evolution and Consistency Management (MCCM),
Denver, CO, USA, October 4. Springer, 2009.

[2] K. Altmanninger, G. Kappel, A. Kusel, W. R.
Martina, Seidl, W. Schwinger, and M. Wimmer.
AMOR - Towards Adaptable Model Versioning. In
Proceedings of the International Workshop on Model
Co-Evolution and Consistency Management, in
conjunction with Models, 2008.

[3] K. Andrews, M. Wohlfahrt, and G. Wurzinger. Visual
Graph Comparison. In Proceedings of the
International Conference on Information
Visualisation, Barcelona, Spain, July 15-17, pages
62–67. IEEE Computer Society, 2009.

[4] L. Bendix and P. Emanuelsson. Requirements for
Practical Model Merge - An Industrial Perspective. In
Proceedings of the Internationl Conference on Model
Driven Engineering Languages and Systems, Denver,
CO, USA, October 4-9, pages 167–180. Springer, 2009.

[5] Blender Foundation. Blender - Free and Open 3D
Creation Software. http://www.blender.org/.
(accessed April 2014).

[6] M. Boren and J. Ramey. Thinking aloud: Reconciling
theory and practice. IEEE Transactions on
Professional Communication, 43(3):261–278, 2000.

[7] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. A
Metamodel Independent Approach to Difference
Representation. Journal of Object Technology,
6(9):165–185, 2007.

[8] D. Dadgari and W. Stuerzlinger. Novel User Interfaces
for Diagram Versioning and Differencing. In
Proceedings of the British Computer Society
Conference on Human-Computer Interaction, Dundee,
UK, September 6-10, 2010.

[9] M. Girschick. Difference Detection and Visualization
in UML Class Diagrams. Technical report, TU
Darmstadt, 2006.

[10] M. Gleicher, D. Albers, R. Walker, I. Jusufi, C. D.
Hansen, and J. C. Roberts. Visual comparison for
information visualization. Information Visualization,
10(4):289–309, Sept. 2011.

[11] J. Gray, H. Abelson, D. Wolber, and M. Friend.
Teaching CS Principles with App Inventor. In
Proceedings of the Annual Southeast Regional
Conference, Tuscaloosa, AL, USA, March 29-31,
pages 405–406. ACM, 2012.

[12] M. Hascoët and P. Dragicevic. Visual Comparison of
Document Collections Using Multi-Layered Graphs.
Technical report, Laboratoire d’Informatique de
Robotique et de Microélectronique de Montpellier
(LIRMM), AVIZ (INRIA Saclay - Ile de France), 2011.

[13] M. Hascoët and P. Dragicevic. Interactive graph
matching and visual comparison of graphs and
clustered graphs. In Proceedings of the International
Working Conference on Advanced Visual Interfaces,
Capri Island, Naples, Italy, May 22-25, pages
522–529. ACM, 2012.

[14] JGraph Ltd. JGraphX.
https://github.com/jgraph/jgraphx. (accessed April
2014).

[15] W. M. Johnston, J. R. P. Hanna, and R. J. Millar.
Advances in Dataflow Programming Languages. ACM
Computing Surveys, 36(1):1–34, Mar. 2004.

[16] T. Kehrer, U. Kelter, P. Pietsch, and M. Schmidt.
Adaptability of Model Comparison Tools. In
Proceedings of the International Conference on
Automated Software Engineering, Essen, Germany,
September 3-7, pages 306–309. ACM, 2012.

[17] U. Kelter, J. Wehren, and J. Niere. A Generic
Difference Algorithm for UML Models. In Software
Engineering, Fachtagung des GI-Fachbereichs
Softwaretechnik, Essen, Germany, March 8-11, pages
105–116, 2005.

[18] D. Koop, J. Freire, and C. T. Silva. Visual Summaries
for Graph Collections. In Proceedings of the Pacific
Visualization Symposium, Songdo, South Korea,
February 28 - March 2. IEEE Computer Society, 2012.

[19] M. Ley. DBLP - Some Lessons Learned. In
Proceedings of the International Conference on Very
Large Data Bases, Lyon, France, August 24-28,
volume 2, pages 1493–1500. ACM, 2009.

[20] R. Lutz, D. Rausch, F. Beck, and S. Diehl. Get Your
Directories Right: From Hierarchy Visualization to
Hierarchy Manipulation. In Proceedings of the
Symposium on Visual Languages and Human-Centric
Computing, Melbourne, Australia, July 28 - August 1.
IEEE Computer Society, 2014.

[21] R. Lutz, D. Würfel, and S. Diehl. How Humans merge
UML-Models. In Proceedings of the International
Symposium on Empirical Software Engineering and
Measurement, Banff, AB, Canada, September 22-23.
IEEE Computer Society, 2011.

[22] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A
Programming Platform for Generic Model
Management. In Proceedings of the International
Conference on Management of Data, San Diego, CA,
USA, June 9-12, pages 193–204. ACM, 2003.

[23] National Instruments. LabVIEW System Design
Software. http://www.ni.com/labview/. (accessed
April 2014).

[24] J. Nielsen and T. K. Landauer. A Mathematical
Model of the Finding of Usability Problems. In
Proceedings of the Conference on Human Factors in
Computing Systems, Amsterdam, The Netherlands
April 24-29, pages 206–213. ACM, 1993.

[25] D. Ohst, M. Welle, and U. Kelter. Differences between
versions of UML diagrams. In Proceedings of the
Symposium on Foundations of Software Engineering,
Helsinki, Finland, September 1-5, pages 227–236.
ACM, 2003.

[26] S. C. Pokress and J. J. D. Veiga. MIT App Inventor:
Enabling Personal Mobile Computing. In Proceedings
of the Workshop on Programming for Mobile and
Touch, Indianapolis, IN, USA, October 27, 2013.

[27] A. Scharf and A. Zündorf. Difference Visualization for
Models (DVM) - Visualizing model changes directly
within diagrams. In Proceedings of the International
Fujaba Days, May 11-13, Tartu, Estonia, 2011.

[28] S. Schiffer. Visual Programming - Foundations and
Applications. Addison-Wesley-Longman, 1998. (in
German).

[29] A. Schipper, H. Fuhrmann, and R. von Hanxleden.
Visual Comparison of Graphical Models. In
Proceedings of the International Conference on
Engineering of Complex Computer Systems, Potsdam,
Germany, June 2-4, pages 335–340. IEEE Computer
Society, 2009.

[30] P. Selonen. A Review of UML Model Comparison
Approaches. In Proceedings of the Nordic Workshop
on Model Driven Engineering, Ronneby, Sweden,
August 27-29, pages 37–51, 2007.

[31] P. Selonen and M. Kettunen. Metamodel-Based
Inference of Inter-Model Correspondence. In
Proceedings of the European Conference on Software
Maintenance and Reengineering, Amsterdam, The
Netherlands, March 21-23, pages 71–80. IEEE
Computer Society, 2007.

[32] B. Shneiderman. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations. In
Proceedings of the Symposium on Visual Languages,
Boulder, CO, USA, September 3-6,, pages 336–344.
IEEE Computer Society, 1996.

[33] A. L. Strauss and J. Corbin. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications, 2008.

[34] S. Yusuf, H. H. Kagdi, and J. I. Maletic. Assessing the
Comprehension of UML Class Diagrams via Eye
Tracking. In Proceedings of the International
Conference on Program Comprehension, Banff, AB,
Canada, June 26-29, pages 113–122. IEEE Computer
Society, 2007.

[35] L. Zaman, A. Kalra, and W. Stuerzlinger. DARLS:
Differencing and Merging Diagrams Using Dual View,
Animation, Re-Layout, Layers and a Storyboard. In
Extended Abstracts on Human Factors in Computing
Systems, Vancouver, BC, Canada, May 07-12, pages
1657–1662. ACM, 2011.

