
What Dynamic Network Metrics Can Tell Us About
Developer Roles

Mathias Pohl
Dept. for Software Engineering

University of Trier, Germany
pohlm@uni-trier.de

Stephan Diehl
Dept. for Software Engineering

University of Trier, Germany
diehl@uni-trier.de

ABSTRACT
Software development is heavily dependent on the partici-
pants of the process and their roles within the process. Each
developer has his specific skills and interests and hence con-
tributes to the project in a different way. While some pro-
grammers work on separate modules, others developers in-
tegrate these modules towards the final product. To identify
such different groups of people one approach is to work with
methods taken from social network analysis. To this end, a
social network has to be defined in a suitable way, and ap-
propriate analysis strategies have to be chosen. This paper
shows how a network of software developers could be defined
based on information in a software repository, and what it
can possibly tell about roles of developers (and what not) in
the process of the application server Tomcat.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Human Factors, Measurement

Keywords
Social Network Analysis, Identifying Roles

1. INTRODUCTION
Development of software is a highly collaborative task.

Modern software systems are too complex to be built by a
single person. Even the programming of a single module
usually is done by several people. In particular, there are
two common ways of collaboration among developers. On
the one hand developers can work together on purpose. Two
people knowing each other personally or sharing the same
interests will try to find a solution for their task together.
In terms of open source software this can be achieved by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE’08, May 13, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-039-5/08/05 ...$5.00.

communication via email or instant messaging in addition
to mailing lists or the bug reporting forums. Unfortunately,
this information (if it can be retrieved at all) usually is quite
incomplete. On the other hand, there is also unintentional
collaboration. This can be a result of working on the same
resources, i.e. on the same files in the project. For example,
a programmer who wants to fix a certain bug can change
several files that have been edited by others before. If the
bug was a simple coding error, then there would be no need
for further collaboration. However, if it was a result of design
flaws then the redesign of the module will be put on the
agenda which again results in more collaborative activities,
and further changes to the same files by these developers.
Our research goal is to detect these and similar collaboration
patterns based on archived information, including software
repositories, mailing lists, and bug-databases.

This paper presents an initial case study based on the in-
formation from the Tomcat-project [1]. In this first case
study the co-author relationship is interpreted as a network
that is analyzed in a very basic way. To identify changes in
this network it is separated in several time-slices to allow dy-
namic analysis. Although the basic information is not very
reliable and only few analytic effort is done the results give
an impression what dynamic collaboration networks could
tell about the development process of software. In particu-
lar, the dynamic aspect distinguishes our work from previ-
ous work on analyzing static co-author networks [6] or static
email networks [2].

2. DYNAMIC DEVELOPER NETWORK
As already mentioned, the co-author relationship can pos-

sibly provide interesting insights into developer roles. To al-
low the analysis of these relationships with methods known
from social network analysis a developer network has to be
created. The definition of the network is straight-forward as
all information is simply merged. To allow dynamic analy-
sis the network is sliced into several distinct networks that
may or may not have different structures. More formally a
(static) developer network can be defined as follows:

Let V be the set of all programmers committing to a
project and let t be a period of time. Then the developer
network N t is an ordered pair N t = (V, E) where

E := {{p, q} ∈ P2(V) | p and q contributed

to the same file during period t} .

The term P2(V) denotes the set of all subsets of V with size
2. Figure 1 shows a developer network for Tomcat.

81

Figure 1: The developer network for Tomcat at Jan-
uary 4th, 2000. In this network only transactions on
Java-files are considered.

A dynamic developer network N is a sequence of devel-
oper networks where each network is restricted to a different
period of time. More formally:

N :=
`
N t1 , . . . , N tn

´
The periods t1, . . . , tn can be obtained using different al-

gorithms. The simplest one is to divide the overall develop-
ment time in equally sized intervals.

After obtaining a dynamic developer network a whole
bunch of properties can be computed for all elements of each
network in the sequence [4]. However, so far it is not quite
clear which property can really give useful insight into the
collaboration of developers.

In the following study the dynamic network is analyzed
with respect to the so-called betweenness [5] of selected de-
velopers within the Tomcat-project. The betweenness cen-
trality of a node indicates how many shortest paths between
different actors in the network contain this node. The ratio-
nale of this measure is that actors routing many connections
in the network possibly have a much higher influence within
the community.

Formally this centrality measure is computed as follows:
If N t = (V, E) is a network then the betweenness centrality
CB(v) for a node v ∈ V is defined as

CB(v) =
X

s∈V,t∈V,s6=ts6=v 6=t

ds,t(v)

ds,t

where

ds,t is the set of all shortest paths between s and t

and

ds,t(v) is the set of all shortest paths

between s and t containing v.

To obtain relative values CB(v) can be normalized to
C′B(v) by dividing CB(v) by the number of node pairs that
do not contain v, i.e.

C′B(v) :=
CB(v)

(|V | − 1)(|V | − 2)
.

The betweenness centrality for the nodes in a network can
be computed in time O(|V |2 + |V ||E|) [3].

In context of software development, the betweenness mea-
sure can be used to reveal programmers that are “putting
things together” and hence have a crucial role in the devel-
opment process.

3. THE NETWORKS BEHIND TOMCAT
The analyzed networks are taken from version 3 of Tom-

cat. This project has already been analyzed previously with
respect to collaboration and developer roles [7]. The re-
searched time period starts in October 1999 and ends in
November 2004. For the definition of the dynamic devel-
oper network this period is equally divided into 128 slices
(which results in an equal distance of around 14 days be-
tween each consecutive slice). To smooth the computed be-
tweenness centrality values each slice contains the informa-
tion of 90 days of development (and not just the correspon-
dent 14 days). The smoothness then is based on the fact
that this definition makes relational information from trans-
actions present in several slices.

For the purpose of this paper, we restricted the analysis
to four selected developers of the project. In Figure 2 the
betweenness values for these four developers is shown. It
reveals that the developer depicted by yellow color is one of
the most “integrating” person throughout the development
cycle. At the beginning of the inspected period many people
were contributing which resulted in a very dense network.
In such networks there exist no nodes with outstanding be-
tweenness centrality which explains why yellow is not that
high at the left side. When the development of the product
came to an end (version 4 of Tomcat was to be appear-
ing) only a few changes are committed to the repository
and hence the network’s connectivity decayed. This explains
why the centrality values fall down to zero during the period.

In addition to identifying programmers that play a central
role it is interesting how their role really looks like. When re-
stricting the network to co-author relationship of Java-files
(Fig. 3) then there is only a small difference to the complete
network. Still yellow has one of the highest betweenness
values during the period and the curve looks also similar to
that from Fig. 2.

However, inspecting only documentation files (identified
by their filename extension .html and .txt) the image looks
different (Fig. 4). At the beginning of the development two
developers worked on these files together but this pattern
disappears relatively fast. During a long period those work-
ing together in the source code seem to collaborate only at
a few points in time. This artifact might indicate differ-
ent efforts towards code quality and documentation quality
and hence should be analyzed in more detail. It should be
noted that a co-author network for documentation files is
always pretty small in Tomcat (see Fig. 7). Although be-
tweenness centrality can heavily vary in small networks for
different nodes a higher similarity could be expected.

The curves in Fig. 5 show the values for the network re-
stricted to commits to source code in the C-programming

82

Figure 2: The betweenness centrality values based on all transactions for the selected programmers. As in
all other figures each curve consists of 128 distinct points.

Figure 3: The betweenness centrality values based on all transactions containing changes of .java-files for the
selected programmers. The plotted curves look similar to those in Fig. 2.

Figure 4: The betweenness centrality values based on all transactions affecting documentation files
(.html and .txt) for the selected programmers.

Figure 5: The betweenness centrality values based on all transactions related to source files written in the
C programming language for the selected programmers.

Figure 6: The betweenness centrality values based on all transactions concerning build scripts for the selected
programmers.

83

Figure 7: The developer network for Tomcat at Jan-
uary 4th, 2000 considering transactions on docu-
mentation files only.

language (identified by the filename extension .c and .h).
Although this part of the software is supposed to be writ-
ten once and for all (this is the connecting module for the
Apache webserver) there is some development going on. Fi-
nally build scripts (Ant- and makefiles) are edited in a sim-
ilar way than the source code files (see Fig. 6). This simi-
larity indicates that those programmers editing source code
are also aware of the build scripts which is usually done by
the integrated development environment. Since this result
is not surprising it suggests that the betweenness values of
the described developer network is not a random value but
a possible metric to work with in the analysis of software
development processes.

4. DISCUSSION
Developers of a software system in some sense form a so-

cial network. As illustrated in this paper such a network can
give answers to important questions towards quality man-
agement of software. As an example those people working
together on a specific module should also work together on
the module’s documentation. In the illustrating example of
Tomcat this property does not completely hold true at least
not according to the computed centrality value.

However, since the data basis is not very large this ap-
proach is not sufficiently reliable. To obtain a more powerful
tool for this kind of analysis we want to combine informa-
tion from several data sources (e.g. email, bug reports, etc.)
as part of our future work. Furthermore there exist many
more network characterization measures that could be indi-
cating interesting facts. Many of these may turn out useful
for gain insights into software development processes based
on the above mentioned data sources.

Acknowledgement
Mathias Pohl is partially supported by Deutsche Forschungs-
gemeinschaft (DFG), grant no. DI 728/6-2.

5. REFERENCES
[1] The Tomcat-project. http://tomcat.apache.org, last

visited on 24th of January, 2008.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 2006 international workshop on
Mining software repositories MSR06, pages 137–143,
New York, NY, USA, 2006. ACM.

[3] U. Brandes. A Faster Algorithm for Betweenness
Centrality. J. of Math. Society, 25(2):163–177, 2001.

[4] U. Brandes and T. Erlebach, editors. Network Analysis:
Methodological Foundations, volume 3418 of Lecture
Notes in Computer Science. Springer, 2005.

[5] L. C. Freeman. Centrality in Social Networks.
Conceptual Clarification. Social Networks,
1(3):215–239, 1979.

[6] L. Lopez, J. M. Gonzalez-Barahona, and G. Robles.
Applying Social Network Analysis to the Information in
CVS repositories. In First International Workshop on
Mining Software Repositories, MSR 2004 (ICSE
Workshop), Proceedings, 2004.

[7] P. Weißgerber, M. Pohl, and M. Burch. Visual Data
Mining in Software Archives to Detect How Developers
Work Together. In Fourth International Workshop on
Mining Software Repositories, MSR 2007 (ICSE
Workshop), Proceedings, page 9, 2007.

84

