
U Can Touch This: Touchifying an IDE

Benjamin Biegel, Julien Hoffmann, Artur Lipinski, Stephan Diehl
University of Trier, Germany

{biegel,diehl}@uni-trier.de

ABSTRACT
Touch gestures are not only often very intuitive, but their
direct manipulation characteristics also help to reduce the
cognitive load. Since software development poses complex
cognitive demands, our goal is to exploit the advantages of
direct manipulation to support professional software engi-
neering processes. In this paper, we demonstrate how touch
gestures can be used within a professional integrated de-
velopment environment. As for that, we have enriched the
Eclipse IDE with common and invertible multi-touch ges-
tures which can be used for both controlling the graphical
user interface and triggering built-in refactoring tools. The
design of our extensions was informed by an early user study
revealing problems of using the Eclipse IDE with the default
touch support provided by the operating system. By using
the emerging prototype during its implementation, we were
able to iteratively improve the prototype based on our own
experience and gain first insights into the potential of using
direct manipulation methods within the IDE. First results
suggest that using an additional touch device within the
classical desktop setup enables a precise and fast work flow.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments;
H.5.2. [User Interfaces]: Interaction styles

General Terms
Human Factors, Design

Keywords
Touch gestures, refactoring, IDE, radial menus, usability

1. INTRODUCTION
As touch devices are frequently used in our everyday life,

common touch gestures are widely known and a basal vocab-
ulary for direct manipulation has evolved, which is shared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHASE ’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2860-9/14/06 ...$15.00.

across operating systems, applications and touch devices.
Developers spend more of their time reading and navigating
code than writing it [8]. As for that, the classical desktop
setup, consisting of a keyboard and a mouse, holds several
inconveniences for developers. As described by Shneiderman
and Plaisant [17], the mouse only provides an indirect inter-
action, thus, the coordination of the eyes, the hand and the
elements on the screen ends up in a high cognitive load. In
contrast, (multi-)touch gestures offer a direct user interac-
tion without losing the focus on the screen. Hence, it is not
surprising that there are first efforts in software engineering
research to explore and leverage this direct manipulation
technology (cp. Section 5). Nevertheless, touch interactions
are only rarely used in software development, especially in
IDEs. Modern IDEs are feature-rich, making it more and
more difficult for the developer to navigate through the soft-
ware project, to reorder views, or to use functionality that
is hidden in complex menu structures or shortcuts. That is
why touch devices could be well-suited for IDEs, especially
for reading tasks. Thus, in this paper we present the follow-
ing two main contributions in order to touchify an IDE.

Contribution 1: Touchifying the GUI of an IDE.
We assume that developers prefer using their well-known

programming environment. Thus, despite creating a com-
pletely new graphical user interface, which is tailored for
touch interactions, we decided to follow a different strategy:
We use a common IDE as a starting point and extend it
with touch gestures step-by-step. In order to lower the bar-
rier for developers to make use of a touchified IDE, we adopt
the following main design goals:

• Keep the bento box design: The original user interface
should be modified as little as possible. In most IDEs the
user interface is split into several views. The challenge is
to keep this so called bento box design [3] unaffected while
adding new direct manipulation interactions.

• Maintain existing user interactions: The developer
should still have access to all the functions of the IDE,
including the familiar keyboard and mouse interactions.
That is why the touch gestures have to be applied as an
additional layer without disturbing the existing interac-
tion opportunities.

• Meet developer’s expectations: By using specific touch
gestures, it is very likely that developers will have a clear
expectation of the behavior of the user interface. Hence,
the challenge is not only to find new intuitive gestures but
also to adapt the user interface as expected.

© {The authors | ACM} 2014. This is the author's version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record was
published in the proceedings of CHASE 2014, http://dx.doi.org/10.1145/2593702.2593726

This first contribution mainly affects elements of the graph-
ical user interface but not the source code editor itself. Hence,
with our second contribution we also make first steps in
using touch gestures for manipulating source code on the
example of refactorings. Refactoring is an essential soft-
ware development process in order to maintain the structure
and the design of a software system [6]. Since refactorings
are performed frequently by developers, many IDEs provide
tools to apply structural changes (semi-)automatically to a
code base without changing its behavior. Nevertheless, most
of these refactoring tools are rarely used by developers and
most refactorings are performed manually instead [14]. Pre-
vious research has shown that the use of refactoring tools
comes with two main problems [13]: First, the application
and context menus in conventional IDEs are too long and
confusing. This turns the search for a specific refactoring
into a time-consuming and annoying task. Second, before
performing a specific refactoring, developers have to recall
the mapped shortcut or, in order to find the corresponding
menu entry, its name. Thus, for a novice it is a tedious task
to become a heavy user of refactoring tools.

We claim that the use of touch gestures facilitates restruc-
turing code. This task also requires reading, navigating, and
in particular, pointing to a source code element to trigger
the automated refactoring. Thus, In this paper we also in-
troduce a new approach that adopts context-sensitive direct
user interactions for performing refactorings.

Contribution 2: Mapping Common and Invertible Multi-
Touch Gestures to Refactoring Tools.

We have enriched the Eclipse IDE with intuitive and com-
mon multi-touch gestures that trigger built-in refactoring
tools. In order to encourage developers to use our proposed
gesture-to-refactoring mapping, we adopted the following
design goals in addition to the ones previously mentioned:

• Map multiple refactorings to a single gesture: The
developer should be able to create a natural association
from the desired refactorings to the required gestures.
Thus, similar refactorings have to be mapped to a single
gesture, and further, the selection of the desired refactor-
ing depends on the particular context.

• Use common touch gestures: To provide a quick and
easy start, only common touch gestures should be used
that are mainly known from smartphones or tablets. We
assume that most developers are familiar with these ges-
tures.

Overall, in our vision, the developer is mainly using a
touch screen and keyboard setup. We claim that the devel-
oper is capable of performing most mouse interactions with a
touch-screen display or on a tablet computer. Additionally,
the touch gestures enable a wider interaction vocabulary for
intuitive direct manipulation, which may help reducing the
cognitive load during the software development process.

2. STATE-OF-THE-ART INTERACTION
Since one cannot simply assume that all problems that

have been identified in general HCI studies, also occur within
a more restricted application scenario, we based our guide-
lines on observations made in a small user study. Thus, we
were first of all interested in the touch features that come

with the operating system (here: Microsoft Windows 7) by
default and how they work in the Eclipse IDE. The operating
system basically turns touch gestures into mouse gestures,
e.g., taps are simply turned into mouse clicks.

For a preliminary user study we asked two right-handed
graduate students who are experienced developers with eclipse
and make heavy use of mobile touch devices. Within a 45-
minute think-aloud session they had to solve small program-
ming exercises by using a keyboard, a touch-screen display,
and the original implementation of Eclipse IDE. No mouse
was used. The results of this study were used to determine
the following guidelines (G) for better touch support in the
Eclipse IDE.

Small Elements. The height of the elements in menus and
trees depends on the text or image they contain. Thus, in
most cases the height is too small to hit these elements with
the finger tip. This issue is known as the fat finger problem
[19]. In order to manage multiple source code files at once,
tabs are used in the editor view to switch between the files.
While the size of these tabs is sufficient, the symbols for
closing the tabs are too small. The same holds for the sym-
bols for minimizing, maximizing, and restoring the Eclipse
window and the icons in the toolbar.

G1: Some components can be optimized for touch just by
enlarging them.

Reordering and Resizing Views. Sashes are optical sepa-
rators for adjacent views. The size of these adjacent views
can be changed by dragging these sashes. Since a sash only
has the width of a few pixels, it is quite hard to hit it with
the mouse; by only touching the sash, it is nearly impossible
to hit it. Enlarging the sash is not a solution, because it is
only a separator and should not waste too much space.

G2: In order to keep the visual aspects of a sash, for
touch interaction, a new visual interface element has to be
developed in order to also adapt its resizing functionality.

Occlusion. The occlusion of content by user’s hand is a se-
rious problem[2, 10]. In order to read the occluded content,
the user is forced to move the hand aside, which leads to a
disruption of a fluent interaction. In particular, when us-
ing menus that open in the direction of the dominant hand
(e.g. bottom right for right-handed users), the occlusion
was noticed in a negative manner by the test persons. An-
other often occluded component is the status bar, which is
typically placed at the bottom of the IDE.

G3: New visual interface elements have to be developed
for the main and context menu.

G4: Important read-only content has to be moved to areas
with less frequent user interaction.

Source Code Transformations. The selection of several
lines of code is possible in a reasonable way. However, in
order to select single words, our test persons had to have a
lot of patience. Since source code elements are represented
as a sequence of characters and not as hierarchical nested
objects, it is necessary to select every single character. The
precision of the interaction must be on such a level that a
rectangle with a width and height of one single character
can be hit. Thus, it is very hard to place the cursor exactly
beneath a particular character. Furthermore, when select-

ing a certain source code fragment, it is also very difficult
to stop on a target, because the finger occludes some char-
acters. In particular these issues, combined with the use of
complex menu structures, make it hard to trigger automated
refactoring tools.

G5: For source code selection and transformation, new
interaction techniques have to be developed.

Ergonomic Problems. Both participants felt uncomfort-
able moving their right (dominant) hand to the left side, es-
pecially, to the upper left corner. This is due to the fact that
they had to overstretch their arm by rotating their upper
body. In these situations they used their left hand instead,
which results in slower and less precise interactions. Thus,
one of the participants used the middle finger as a guide at
the edge of the screen. As already described in literature
[12, ?], interacting with arms in the air is very exhausting
and sometimes inaccurate. That is why from time to time
both participants laid their elbows on the table.

G6: Heavily used controls have to be on the bottom and
on user’s dominant side.

3. DESIGN AND IMPLEMENTATION
Based on the results of the above user study, we were able

to elaborate concepts with the aim of reducing the occur-
ring problems. Our solutions are threefold: First, concepts
that can be realized just by adjusting existing components.
Second, concepts that require the introduction of additional
components with a novel appearance and interaction design.
Third, as an example for interacting directly with the source
code (G5), a concept that provides a mapping from touch
gestures to refactorings. Further concepts for selecting or
transforming source code by touch gestures are left for fu-
ture work.

3.1 Adjusting Existing GUI Elements
In a first step we tried to touchify Eclipse by reconfiguring

and modifying existing components.

Adjusting Component Sizes. The size is a major problem
for most components to hit them with a finger. Thus, a sim-
ple idea is to resize specific components. But in practice it
is not that easy. Some components would waste too much
space after resizing (e.g. sashes) or could not be displayed
completely (e.g. the main menu). Thus, we carefully se-
lected a small set of components for resizing. This includes
tree structures (e.g. the package explorer), lists, tables, tabs,
icons, and the toolbar.

Ergonomic Optimizations. In the default layout of Eclipse
the active components (toolbar and perspective switcher)
are at the top and the passive components, which display in-
formation with less or even without interaction (status line,
heap status and progress bar), are at the bottom. However,
when using a multi-touch screen, the inverted ordering is
preferable. Thus, we swapped the upper and the lower part.
An overview of the new order is shown in Figure 1.

This new ordering enables shorter paths for hand move-
ments and allows that the user can place the elbow on the
desk. Furthermore, during the interaction, read-only com-
ponents stay visible at the top and are not occluded by the
hand. In the default Java perspective of Eclipse, the editor

Figure 1: Reordered components: toolbar (A), per-
spective switcher (B), fast view (C), status line (D),
heap status (E), and progress bar (F).

is placed in the center, the package explorer can be found on
the left side, the outline view on the right, and the console
view is placed under the editor. We reordered the editor and
its surrounding views based on the interaction frequency of
our test users also shown in Figure 1. Thus, the most fre-
quently used view, the editor, is placed at the user’s dom-
inant side (right half), navigation views (package explorer
and outline view) are placed at the bottom left, and the
console view can be found in the upper left part. The final
ordering can be seen in Figure 3. Finally, we changed the
opening behavior of tree elements such that subtrees can be
unfold by a single tap instead of a double-tap. This should
enable a more precise user interaction.

3.2 Implementing New GUI Elements
Some functionality has to be replaced by new components

with completely different interaction techniques and appear-
ance. Our prototype provides the following extensions:

Radial Main Menu. The main menu in the Eclipse IDE
has a lot of items, and thus, resizing the menu items would
not work in practice. The menu would become too large and
parts of it could not be displayed on the screen. Thus, our
goal was to find a solution that makes the menu sufficiently
large without removing any menu item. To achieve this we
use a radial menu structure [4, 16]. As shown in Figure 2(a)
the radial layout of the main menu covers a larger area of
the screen, and thus, allows to use a larger design for the
menu items. In our implementation the position is fixed to
the center of the screen and can be triggered by a button on
the top. Furthermore, this layout can easily be optimized for
right-handed as well as for left-handed users just by changing
the starting point and angle. To reduce occlusion effects
the lower quarter at the user’s dominant side is omitted.
The menu items are arranged clockwise starting at this gap.
Submenus are also placed radially in outer circles. To ensure
readability none of the menu captions has an angle greater
than 90◦ and all menu items have a uniform size.

Similar to our radial approach are hierarchical marking
menus, e.g. flower menus that were introduced by Bailly et
al. [1]. They note that an advantage of radial layouts lies
in the human declarative memory. Because of the spatial
arrangement of the menu items, the user is able to memorize
their position just by performing the touch gesture.

Convert Line
Delim

iters To

Task

Java Working

Set

Menu

JUnit Test
Case

RefreshRenameMove ...

Revert

Save All

Save As...

Save

Close All

Close

Op
en

 Fi
le

...

Ne
w

File

Edit

Source

Re
fac

to
r

Navi
ga

te
Search

Project Run

Window
Help

Java Project

Project...

Package

Class

Interface

So
ur

ce
 Fo

lde
r

En
um

Ann
ota

tio
n Pr

int
 ...

Sw
itch

Work
space

Resta
rt

Properties

Exit

UntitledText File
Folder

File

Example...
Other...

(a) Radial Main Menu

Oc
cu

ren
ces

 in
 Fil

e

Project Run Window Help

Re
�e

rin
g T

est
s ..

.

SearchFile Edit Source Refactor Navigate

Work
ing

 Se
t ..

.

Fil
e

Pro
jec

t

Work
sp

ace

Se
arc

h

Fil
e .

..

Jav
a .

..

Re
fer

en
ces

De
cla

rat
ion

s
Im

ple
men

tor
s

Re
ad

 Ac
ces

s

Write
 Ac

ces
s

Tex
t

(b) Italic Main Menu

Open DeclarationOpen Type

Hierarchy

Quick Type

Hierarchy

Open Call

Hierarchy

Con�gure
Templates...Try/catch Block

Save

Undo

Debug AsRun As

Refactor

Source

Quick Fix

Paste

Copy

Cut

Surround With

(c) Radial Context Menu

Figure 2: Three touch-optimized menus.

Italic Main Menu. A disadvantage of the radial main menu
is that the user has to tap at a button to display the menu.
In the default implementation the top-level menu entries are
always listed side by side and can be immediately triggered
by the user. An alternative solution to the radial main menu
that addresses the above concerns is a linear menu with
oblique captions–called italic main menu. The implemen-
tation of this menu can be found in Figure 2(b). The goal
of this menu is a seamless integration into the IDE similar
to the default main menu. In contrast to the default Eclipse
menu, the entries in the italic main menu are arranged from
left to right. The concept exploits that in general the screen
has a greater width than height. The italic main menu is
easy to reach because it is placed at the bottom of the screen.
The levels of the submenus are arranged from bottom to top,
hence, they are not occluded by user’s hand.

Radial Context Menu. In general, it is no problem that
the main menu gets the full attention of the user and may
overlay large parts of the screen. In contrary, by using a
context menu users have to keep their focus to the related
context. By designing the context menu, we would like to
get the advantages of the human declarative memory and,
at the same time, we have to consider the related context.
We also decided to use a radial layout, but as shown in
Figure 2(c) only a quarter of a circle. At the screen borders
the context menu will be rotated. Thus, at any place it can
be displayed within the borders of the screen, also at its
corners. The radial layout helps the user to keep the focus
because the menu is placed around it. In other words, the
focus or context also represents the center of the circle.

Sash Overlays. A sash has a clear visual functionality,
thus, changing the appearance is not a solution at all. In
order to keep the appearance we introduce an additional,
overlaid component–called sash overlay. It represents vi-
sual handle for manipulating the position of an underlying
sash and the size of its adjacent views respectively. Figure 3

Sash

Sash Overlay

Figure 3: Sash overlays (shown as double arrows) for
manipulating the position of the underlying sashes.

shows such sash overlays that enable to resize the editor
and its surrounding views. A sash overlay is large enough
for touch interaction and can be trigged in two ways: First,
by clicking on a lock symbol in the bottom left corner, or
second, by just swiping over the related sash.

3.3 Mapping Touch Gestures to Refactorings
We selected a vocabulary of multi-touch gestures which is

as small as possible. In the following we list their redefined
semantics in respect to the refactoring context:

Pinch open: Usually this gesture is used to
zoom into a document. In contrast, we assign the

metaphor of extending the scope of selected source code en-
tities. For example, after selecting a bunch of statements,
this gesture triggers the Extract Method refactoring. Hence,
the scope of these statements is extended from within a sin-
gle method to at least all methods in the enclosing class.

Table 1: Interaction concept for triggering refactoring tools with common touch gestures.

Gesture Context Refactoring Inverse Refactoring Context Gesture

statements Extract Method Inline Method method call/declar.

expression Extract Local Variable Inline Local Variable local variable use

methods, fields, nested classes Extract Class undo —

— undo Introduce Parameter Object parameters

local variable declaration Convert Local Var. to Field undo —

anonymous class declaration Conv. Anon. Class to Nested undo —

class declaration Move Type to New File undo —

identifier Rename Rename identifier

modifier Decrease Visibility Increase Visibility modifier

method parameter Reorder Method Parameter Reorder Method Parameter method parameter

method declaration Reorder Method Reorder Method method declaration

field declaration Reorder Field Reorder Field field declaration

Pinch close: As one might expect, the inverse coun-
terpart of the pinch open gesture narrows the scope

of a selected entity. In respect to the example above, this
gesture triggers the Inline Method refactoring.

Rotate left/right: Since the rotate gesture is gen-
erally used to rotate elements, it does not make much

sense in an IDE. Hence, we redefine this gesture to reorder
adjacent entities. For example, with the rotate left gesture
a selected method parameter can be moved continuously to
the beginning of a parameter list.

Flick left/right: Inspired by the gesture to strike-
out text that has to be replaced, we use the flick

gesture to change the identity of entities. For example, for a
selected identifier this gesture triggers the rename refactor-
ing. If an entity has an enumerative character, we exploit
the directional nature of the flick gesture to switch between
the predecessor (flick left) and the successor (flick right) of
that entity. For example, in order to change the visibility
from public to private, the user can simply use flick left.

Pan: Since refactoring tasks involves a lot of read-
ing, we use the pan gesture not to trigger refactorings

but to easily scroll the source code.

In order to generate a consistent mapping which takes
conceptional similarities of refactorings into account, we con-
verted the three mapping rules (MR) of Murphy-Hill et al.
[13] from their directional use to multi-touch gestures:

MR1: The nature of a gesture has to be reflected in the
structural nature of the refactoring.

MR2: Every gesture should have an inverse counterpart
that triggers the inverse refactoring.

MR3: Conceptual similar refactorings have to be linked to
a unique gesture.

The mapping derived from these rules is presented in Ta-
ble 1. As can be seen, some refactorings have no inverse
counterpart. Thus, after executing a non-invertible refac-
toring, the inverse gesture is assigned to the undo command
instead, until the user changes the context.

As proof of concept, we implemented the proposed multi-
touch gestures, excluding those only triggering non-invertible
refactorings, namely: Rename, Extract/ Inline Method, Ex-
tract/ Inline Local Variable, Increase/Decrease Visibility,
Reorder Method Parameter, Reorder Method.

Since the text selection with touch gestures is still incon-
venient, we decided only to make minimal use of it. For
most gestures it suffices to tap on the entity which should
be refactored. Only refactorings which involve multiple enti-
ties require a proper selection. After the selection, gestures
can be executed anywhere on the screen to prevent the hand
from occluding the context of the source code. Then refac-
torings are performed immediately without interrupting the
work flow by configuration dialogs or pop-ups. For every
gesture Figure 4 gives representative examples demonstrat-
ing how a refactoring and its inverse counterpart can be
performed in our prototype implementation.

4. EVALUATION
In order to gain first insights into the suitability and ap-

plicability of the proposed concepts, we performed two in-
dependent think-aloud user studies. The focus of the first
study was on the modified GUI, whereas in the second study
we have investigated the gesture-to-refactoring mapping.

4.1 Study 1: Adapted and New GUI Elements
For the first user study, we recruited 8 right-handed de-

velopers (5 master/diploma students and 3 academic re-
searchers) to participate. First, they had to fill in a ques-
tionnaire to assess their prior knowledge and skills. One half
of the participants stated to have “advanced” and the other
half stated to have “good” programming skills. Especially 3
declared to have “advanced”, 4 “good” and 1 “minor” expe-
rience with the Eclipse IDE. Finally, concerning the experi-
ence in using several touch devices we received the following
answers: (a) Smartphones: 3 “advanced”, 4 “good” and 1
“minor” experience; (b) Tablets: 3 “advanced”, 1 “good”, 3
“minor”and 1“no”experience; (c) Touch monitor: 7“minor”
and 1 “no” experience.

In summary, the participants were quite familiar with
smartphones and tablets but they are unversed in using a
touch monitor.

(a) Pinch open/close to extract/inline local variable. (b) Rotate to reorder method parameters.

(c) Flick left or right to rename variable. (d) Flick right/left to unhide/hide method.

Figure 4: Examples of implemented gestures to perform refactorings (blue) and their inversions (red).

4.1.1 Experimental Design
For each person we performed a 45-minute think-aloud

session (with video record) in which the participants had
to solve small usability exercises by only using a keyboard
and a touch monitor instead of a mouse. The experiment
contained the following parts: (1a) Testing graphical ele-
ments of the original Eclipse implementation and (1b) of
our adapted prototype, (2) solving a small programming ex-
ercise by using preferred GUI features, and (3) a concluding
interview. For each original, adapted, and novel graphical
element the participants were asked to rate four properties:
(i) the behavior is as expected, (ii) the appearance is clear and
well-arranged, (iii) the handling is easy, and (iv) it supports
the work flow. The rating itself was done by Likert scales
consisting of 6 items (“strongly disagree”, “disagree”, “tend
to disagree”, “tend to agree”, “agree”, “strongly agree”).

4.1.2 Results
By using the original Eclipse IDE, the participants agreed

very well to the observations we gained from the preliminary
user study (Section 2). Hence, they implicitly confirmed our
proposed guidelines, from which we derived the ideas for the
extensions. All participants agreed that our extensions en-
hanced the handling of a touch monitor by solving the tasks
of this study even it was unusual to some extent. Neverthe-
less, not every extension has enhanced touch handling. In
contrast, sometimes a problem was replaced by another.

The participants preferred neither the radial nor the italic
menu layout. The first impression of the radial menu was
somewhat unusual. Nevertheless, some participants men-
tioned that the compact layout centered in the middle of the
screen was clearly structured and readable. After a while,
they were able to guess the spacial position of several menu
items. In contrast, the participants were more familiar with
the italic menu because it is similar to the list layout of the
original main menu. By considering readability the opinions
were very different. Some participants had problems to read
the italic font, while others do not.

On the whole, occlusion effects were not recognized with
one exception–touching very small elements. Since we have
resized most graphical elements, in our study this fact only
occurred by controlling the original sashes because the accu-
racy of the touch input had to be with pixel precision. Thus,
by resizing graphical elements the touch handling could be
enhanced but comes with an undesired side effect. Some
participants criticized that the larger elements negatively

influence the layout, or in other words, the adapted layout
looked strange to some extent. Hence, such modifications
had to be worked out by professional UI designers. Never-
theless, most participants agreed that the new rearranged
layout enhances controlling Eclipse by touch gestures, even
if it was unusual.

At this point it is worth to underline that we only have
adapted an existing Eclipse instance. Problems that come
with decisions of the Eclipse developers, like overloaded menus,
or wasteful and inefficient graphical elements were not part
of this work. There is no doubt that such aspects has to be
considered by designing a touchified IDE.

In respect to the experimental setup, the general opin-
ion among the participants was that most of our touch ex-
tensions were beneficial to control the GUI by touch ges-
tures. Nevertheless, in respect to a non-experimental sce-
nario, their opinions were more controversial. Three partici-
pants could not imagine that a touchified GUI of an IDE
could support the work flow of a professional developer.
Three others argued exactly the opposite, whereas the re-
maining two were unsure. Some participants stated that
touch gestures are well-suited for reading and navigation
tasks, thus, they could facilitate to perform code reviews or
presentations. Furthermore, developing apps for touch de-
vices could be very natural and intuitive by using a touch-
ified IDE. Altogether, we assume that some inconveniences
occurred because of some concepts that were completely new
for the participants. 45 minutes are not enough to become
familiar with these novel concepts. Thus, in order to achieve
more significant results, a more extensive user study has to
be performed over a longer period of time.

4.2 Study 2: Mapping from Invertible Touch
Gestures to Automated Refactorings

For the second user study, we recruited another group
of 8 right-handed developers (2 bachelor students, 3 mas-
ter/diploma students, 3 academic researchers) to partici-
pate. They also had to fill in a questionnaire to assess their
prior knowledge and skills first. 6 participants stated to have
“advanced” and 2 stated to have “good” programming skills.
3 had“little”experience with touch devices, whereas the oth-
ers indicated “good” and “advanced” experience. They had
prior experience with using smartphones (6), tablets (6),
and touch monitors (2). Regarding gestures they are fa-
miliar with, they mentioned pinch open/close (8), flick (8),
and rotate (1). Nobody mentioned uncommon gestures such

as five-finger rotate. 3 have “good”, 4 “little” and 1 no ex-
periences with refactorings. 2 make “often”, 5 “little” and 1
“never”use of refactoring tools during programming sessions.
Half of the participants even declared to have exclusive refac-
toring sessions without adding any new functionality.

4.2.1 Experimental Design
We performed three experiments for each person: (1) com-

mon desktop setup with only keyboard and mouse interac-
tions; (2) desktop touch setup by only using a touch monitor;
(3) mobile touch setup by only using tablet interactions.

For the 30-minute thinking-aloud experiment the partic-
ipants were given some source code including a description
of the refactoring tasks they had to perform. These task
descriptions were put as a comment above the code explain-
ing what to do without using parts of the refactoring name
(e.g. for renaming a variable the description was: “change
the identifier of the following variable reasonably”). This
prevented the participants from guessing the name of the
required refactoring by the words of the task. While they
were performing the task, notes about their behavior and
comments they made were taken. This was repeated 3 times
(once for every setup). We concluded the experiment with
an interview. The participants were asked about their ex-
perience with and without using multi-touch gestures.

4.2.2 Experiment with Keyboard and Mouse
In total only 2 participants were able to recall the short-

cut for Rename. Shortcuts for other refactorings were un-
known. Hence, in order to solve the other refactoring tasks
all participants had to use the overfilled menu. Searching
the applicable menu entry took all of them over 5 and up
to 15 seconds. 5 participants said that they would prefer
to manually perform refactorings instead of spending most
of their time searching. The naming was not always self-
explanatory. For example, most participants had no idea
how to change the visibility of a method automatically, since
this functionality is covered by the Change Method Signa-
ture refactoring. In some cases after selecting an entity,
the desired refactoring was not listed in the context menu.
3 participants mentioned that the configuration dialogs in-
terrupted their work flow and that they were superfluous
because they always used the default configuration without
using the preview functionality.

4.2.3 Experiment with Multi-Touch Gestures
First, the novel multi-touch gestures were introduced by

short examples, so that the participants still had to explore
parts of the functionality by themselves. The participants
started scrolling through the text by using the pan-gesture
straight-away, although they were not told that this feature
is supported. Although most of them were familiar with
touch devices, however, in the beginning they had difficul-
ties to integrate the gestures into their programming work
flow. After a few trials the participants were able to use the
gestures effectively, thus, after reading the refactoring task
they solved it usually under 5 seconds. Occlusion effects
were not reported.

The most challenging part seemed to be making use of the
rotate gesture. Some participants took 3 attempts to learn
how to turn their arms or place their fingers correctly. The
main issue was the text selection required by extract refac-
torings. This made some participants use both the mouse

for a precise selection and the touch monitor to perform the
refactoring. They said that this combination felt very natu-
rally.

Since the tablet had a much better touch recognition than
the touch monitor in our experiment, performing the re-
quired touch gestures was a bit easier for all participants.
Without a mouse, the participants were again confronted
with the inconveniences of selecting text. Because of the
built-in virtual keyboard, renaming identifiers was no prob-
lem for anybody. Some participants mentioned that they
would like to use the tablet for code review and pure refac-
toring sessions. Nevertheless, in a real programming envi-
ronment they would prefer the classical desktop setup with
an additional multi-touch monitor.

5. RELATED WORK
An increasing number of application areas already benefit

from the advantages of direct user interactions. However, in
the area of software engineering, touch interactions are only
rarely used. In the following we discuss related work investi-
gating both the use of multi-touch gestures during program-
ming tasks and performing refactorings with gestures.

Previous work has shown that the use of direct manip-
ulations enables interesting opportunities for different soft-
ware engineering domains. Edwards and Barnette [5] use
tablet PCs with a pen in a laboratory programming course
without adapting the software to this novel input device.
While the students liked the mobility of their novel pro-
gramming devices, they felt uncomfortable in using a pen
for writing, testing, and compiling programs. After a while,
they brought their own keyboards to the course. By turning
smartphones into tangible digital CRC cards, Lutz et al. [11]
introduced a novel approach for modeling software and its
requirements. This application scenario demonstrates how
touch devices can be used for co-located collaboration within
the field of requirements engineering. Tillmann et al. [18]
proposed TouchDevelop–a new programming language and
environment for developing scripts, which can be created
and executed on mobile phones. It targets mainly hobbyists
for personalizing their phone. Hesenius et al. [7] presented
a similar solution which takes advantage of tablets’ larger
screen size to use more advanced features like a data and
call stack view, a dictionary with vocabulary filter, and a
separate view for navigation tasks. In contrast to those ap-
proaches we do not present a completely new GUI but intro-
duce a concept for adapting an existing IDE step-by-step.

Murphy-Hill et al. [13] introduced a novel context-sensitive
mapping from directional gestures to refactorings, which
was represented by marking menus. The results of their
user study indicate that developers are able to easily recall
this mapping and to initiate a refactoring tool even without
knowing its name. Since we are moving this idea forward
to multi-touch gestures, their approach fundamental forms
the basis for our gesture-to-refactoring mapping. However,
in our work we only create an additional interaction layer
and refrain from using additional visualizations. Raab et
al. [15] propose a new set of touch gestures for performing
refactorings on a tablet. To this end, they asked 16 partic-
ipants to invent and to perform suitable gestures to trigger
specific selection, editing, and refactoring operations. Our
work differs in three main aspects: First, we use a narrow
enclosed set of commonly known multi-touch gestures. Sec-
ond, performing a gesture directly triggers a refactoring. In

other words, we never use multiple composed gestures to
trigger a single refactoring. Third, in contrast to Raab et
al. we introduce a first prototype which implements the pro-
posed touch gestures and which was used in a user study
to evaluate these suggested gestures. Since the Eclipse IDE
only supports a few refactorings which can be triggered via
drag-and-drop gestures (e.g. Move Class), Lee at al. [9] con-
tributed a more extensive set of drag-and-drop gestures, ini-
tiating both single and composed refactorings. In contrast
to our work, their approach is optimized for using a mouse
and not a touch device.

6. CONCLUSIONS
To the best of our knowledge, this work presents the first

approach to touchify a widely used IDE, i.e. to make most of
its functionality available through touch gestures. In a user
study we revealed problems of using the Eclipse IDE with
the default touch support provided by the operating system.
Subsequently we introduced new interaction techniques ad-
dressing the design goals mentioned in the introduction. As
a first step we made touch optimizations by adjusting and
reconfiguring the components of the existing user interface.
This includes resizing and reordering of components by er-
gonomic aspects as well as adding touch support in existing
components that are expected by the test users. Some ele-
ments of the IDE were not suitable for touch usage, thus, we
introduced new elements including a radial main and con-
text menu, an italic main menu, and overlaid handles for
sashes. Finally, we provided a novel mapping from multi-
touch gestures to refactoring tools.

Our user studies suggest that using a touch device in com-
bination with keyboard and mouse improves the work flow
of professional software development, especially by control-
ling the GUI and simplifying refactoring tasks. By using the
emerging protoype during its implementation we were able
to use our own experience to optimize the conceptual design.
We think that especially feature-rich and complex bento box
designs, such as the Eclipse IDE, can benefit from the poten-
tial of using direct manipulation methods. Although, there
was a mouse available, in several situations we preferred to
use touch gestures instead. For example we liked to use the
radial menu because we noticed the advantages of the spatial
arrangement of the menu items (declarative memory). Fur-
thermore, most navigation tasks were performed by direct
manipulations because they felt more intuitive and comfort-
able.

7. REFERENCES
[1] G. Bailly, E. Lecolinet, and L. Nigay. Flower menus: a

new type of marking menu with large menu breadth,
within groups and efficient expert mode memorization.
In AVI, pages 15–22. ACM Press, 2008.

[2] P. Brandl, J. Leitner, T. Seifried, M. Haller, B. Doray,
and P. To. Occlusion-aware menu design for digital
tabletops. In D. R. O. Jr., R. B. Arthur, K. Hinckley,
M. R. Morris, S. E. Hudson, and S. Greenberg,
editors, CHI Extended Abstracts, pages 3223–3228.
ACM, 2009.

[3] R. DeLine and K. Rowan. Code canvas: zooming
towards better development environments. In ICSE
(2), pages 207–210. ACM, 2010.

[4] G. M. Draper, Y. Livnat, and R. F. Riesenfeld. A
survey of radial methods for information visualization.
IEEE Trans. Vis. Comput. Graph., 15(5):759–776,
2009.

[5] S. H. Edwards and N. D. Barnette. Experiences using
tablet pcs in a programming laboratory. In SIGITE
Conference, pages 160–164. ACM, 2004.

[6] M. Fowler. Refactoring: improving the design of
existing code. Addison-Wesley Professional, 1999.

[7] M. Hesenius, C. D. O. Medina, and D. Herzberg.
Touching factor: Software development on tablets. In
T. Gschwind, F. D. Paoli, V. Gruhn, and M. Book,
editors, Software Composition, volume 7306 of Lecture
Notes in Computer Science, pages 148–161. Springer,
2012.

[8] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting
design requirements for maintenance-oriented ides: a
detailed study of corrective and perfective
maintenance tasks. In G.-C. Roman, W. G. Griswold,
and B. Nuseibeh, editors, ICSE, pages 126–135. ACM,
2005.

[9] Y. Y. Lee, N. Chen, and R. E. Johnson.
Drag-and-drop refactoring: intuitive and efficient
program transformation. In D. Notkin, B. H. C.
Cheng, and K. Pohl, editors, ICSE, pages 23–32. IEEE
/ ACM, 2013.

[10] D. Leithinger and M. Haller. Improving menu
interaction for cluttered tabletop setups with
user-drawn path menus. In Tabletop, pages 121–128.
IEEE Computer Society, 2007.

[11] R. Lutz, S. Schäfer, and S. Diehl. Using mobile devices
for collaborative requirements engineering. In ASE,
pages 298–301. ACM, 2012.

[12] S. Meyer, O. Cohen, and E. Nilsen. Device
comparisons for goal-directed drawing tasks. In
C. Plaisant, editor, CHI Conference Companion, pages
251–252. ACM, 1994.

[13] E. R. Murphy-Hill, M. Ayazifar, and A. P. Black.
Restructuring software with gestures. In
G. Costagliola, A. J. Ko, A. Cypher, J. Nichols,
C. Scaffidi, C. Kelleher, and B. A. Myers, editors,
VL/HCC, pages 165–172. IEEE, 2011.

[14] E. R. Murphy-Hill, C. Parnin, and A. P. Black. How
we refactor, and how we know it. In ICSE, pages
287–297. IEEE, 2009.

[15] F. Raab, C. Wolff, and F. Echtler. Refactorpad:
editing source code on touchscreens. In EICS, pages
223–228. ACM, 2013.

[16] K. Samp and S. Decker. Supporting menu design with
radial layouts. In G. Santucci, editor, AVI, pages
155–162. ACM Press, 2010.

[17] B. Shneiderman and C. Plaisant. Designing the User
Interface - Strategies for Effective Human-Computer
Interaction (5. ed.). Addison-Wesley, 2010.

[18] N. Tillmann, M. Moskal, J. de Halleux, and
M. Fähndrich. Touchdevelop: programming
cloud-connected mobile devices via touchscreen. In
Onward!, pages 49–60. ACM, 2011.

[19] D. Wigdor and D. Wixon. Brave NUI world: designing
natural user interfaces for touch and gesture. Elsevier,
2011.

