
Are Smartphones Better Than CRC Cards?

Rainer Lutz
Computer Science

Department
University of Trier

Trier, Germany
lutzr@uni-trier.de

Sascha Schäfer
Computer Science

Department
University of Trier

Trier, Germany
s4sascha@uni-trier.de

Stephan Diehl
Computer Science

Department
University of Trier

Trier, Germany
diehl@uni-trier.de

ABSTRACT
During early phases of a software development process co-located
group work is an important technique that involves all stakehold-
ers to derive requirements and a design of a future software sys-
tem. However, such group work is usually applied without any
computer-assistance and often faces the problem that information
is not well preserved for subsequent steps. In order to examine
whether group work benefits from computer-assistance, we devel-
oped CREWSpace. It leverages mobile devices to allow simultane-
ous interaction with a shared software model. In particular, it im-
plements a digital variant of the CRC method. In this paper, we dis-
cuss advantages and disadvantages of the traditional CRC method,
briefly introduce CREWSpace along with important implementa-
tion details, and focus on a qualitative usability study. Its results
suggest that our prototype keeps the advantages of traditional CRC
method and compensates many of its weaknesses.

Categories and Subject Descriptors
D.2.1 [Software Eng.]: Requirements/Specifications—Tools

Keywords
requirements engineering, computer-supported collaborative work,
tools and environments, crc cards, mobile devices

1. INTRODUCTION
While the answer to the question raised in the title is obvious

when it comes to making a call, it is less obvious when it comes to
collaboratively analyzing requirements.

Co-located group work is an important method to elicit require-
ments and develop a fundamental model of a future software sys-
tem. People gather in the same room, provide ideas, discuss their
advantages and disadvantages, and finally, produce a first version
of the system to be built. However, these meetings are usually held
without any computer-assistance and often face the problem that
particular information is not well preserved for subsequent steps.

On the other hand, a lot of activities in people’s everyday life
have already been shifted to the digital world. Due to the preva-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14, March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

lence of mobile devices nowadays, smartphones and tablet com-
puters are not only used for communication, but also to augment
physical activities or replace low-tech artifacts and even improve
on them. For instance, hiking has been augmented into geocaching
and paper calendars have been widely replaced by electronic ones.
Thus, it seems promising to leverage such devices to augment ac-
tivities and replace real-world artifacts during the software devel-
opment process, as well. Moreover, mobile devices can help to
eliminate media breaks as all data must simply be available in a
digital form in order to be processed.

Furthermore, mental execution or mental walkthrough are typi-
cal analysis methods in software engineering [14, 26]. During group
work activities role play can be used to analyze certain aspects of a
software model. In these role plays each person typically takes on
the role of one or more elements of the model (e.g. classes of the
future system) and acts for them. While role play has been applied
in software engineering education of most phases, in real software
development, it is mainly used in the requirements phase to bridge
the communication gap between developers, customers, and users.

Recently, we developed a series of prototypes [6, 7, 15] that
support co-located collaboration for model analysis based on the
CRC method introduced by Beck and Cunningham [3]. Our lat-
est tool, CREWSpace [15], allows users to simultaneously interact
with a shared software model using touch devices like smartphones
or tablets to create their model and analyze it through role play.

In this paper, we discuss advantages and drawbacks of the tra-
ditional CRC method and briefly explain how CRC sessions with
CREWSpace differ from common ones. Furthermore, we describe
important aspects of the design and the implementation of our pro-
totype. The focus of this paper, however, is on the usability study
where we present in which way our participants used CREWSpace,
how they perceived it, and to what extent our prototype can remedy
the identified disadvantages.

2. MODELLING WITH CRC CARDS
The CRC method has been first introduced by Beck and Cun-

ningham at OOPSLA in 1989 [3]. In their paper they explain how
index cards and role play can be used to develop an object-oriented
model of a future software system. The role play itself is based on
use cases [13] and use case scenarios, which describe functional re-
quirements and capture the externally visible behavior of a system
from a user’s perspective. In general, the CRC method is intended
to supplement the requirements analysis as requirements provided
by customers are often vague or simply do not match the vocabu-
lary of requirements engineers.

CRC cards are divided into three parts: a header for the class
name and two columns; the left one for responsibilities and the
right one for collaborators. Responsibilities list both the tasks a

Table 1: Process of traditional CRC sessions
P1 Identifying use cases: During the first phase relevant use cases, possible scenarios, and their actors are identified in a brainstorming session. The

gathered information is an essential precondition for the third phase and thus may be stored in several ways, e.g., in a textual form, as a use case
diagram, or a combination of both [11].

P2 Identifying classes: Here, the team identifies candidate classes, which serve as a starting point for the next phase. The name of each candidate class is
written on a separate CRC card. Obvious responsibilities and collaborators may also be added. Missing information will be added in the third phase.

P3 Analyzing use cases: Finally, the team uses role play to refine the initial software model from the second phase. Therefore, each team member acts for
a certain number of classes. Role play resembles a simple “what happens next” game where the team walks through a use case scenario—a possible
path through a use case—and assesses whether the software model is appropriate for that particular scenario. To this end, one of the team members
is said to be active and explains which responsibilities her CRC card is able to fulfill and whether there is a need for collaboration with other classes.
During the role play the group may add responsibilities, search for collaborations between classes, or even create new cards in order to refine the
software model. The following figure depicts the complete procedure:

P4 Transfer to UML: Once all classes, their responsibilities, and collaborators have been identified, it is crucial to translate the CRC model to a more
powerful modeling language like UML. In order to emphasize fundamental relationships between classes, the team members may stick the CRC cards
to a whiteboard and connect them with hand-drawn edges.

class is able to fulfill and the information it contains. Collaborators
are those cards a class has to communicate with in order to fulfill a
certain task or to access certain data [3, 4]. During so called CRC
sessions all stakeholders are involved and try to identify the central
classes of the system to be built. Such groups typically consist of
four to seven members with different expertise and are assisted by a
moderator. A CRC session comprises four subsequent phases (P1-
P4, cf. Tab. 1) and requires only pens, a set of blank CRC cards,
and a table to spread them out [4].

Before we were able to develop a tool for computer-assisted
CRC sessions, we had to study benefits and drawbacks of the tradi-
tional CRC method to derive requirements for such a prototype. In
the following we describe all advantages (A1–A3) and disadvan-
tages (D1–D4) relevant for computer-assisted CRC sessions along
with the resulting requirements:

A1: First of all, the traditional CRC method does not need any
kind of technical support. It is independent from operating sys-
tems, computers, and even electricity. All you need is index cards,
pens, and a table. Although this cannot be achieved with computer-
assistance, a low entry barrier should be preserved.

A2: CRC sessions are based on group work activities and role
play. Thus, our prototypes should not only support multi-user in-
teractions, but also allow for fair collaboration between all stake-
holders. Furthermore, a tool should display which components a
certain user is allowed to modify or not.

A3: According to Beck et al. one of the biggest advantages of
the traditional CRC method is the tangibility of paper cards and the
possibility to identify with them [3]. Hence, a tool should preserve
such tangibility as good as possible.

D1: Paper cards are at a disadvantage when it comes to chang-
ing or removing information. Previous experience showed that it is

not trivial to correctly identify names of classes and responsibilities
at the beginning of an analysis, and that these names may change
during the course of a CRC session [5]. For instance, if the name
of a card, which serves as collaborator for other cards, is changed,
a certain rewriting effort is necessary to keep all names consistent
among several cards. A computer-assisted variant should provide
editable text fields as well as automatic features, e.g., for the prop-
agation of changes.

D2: As Ambler [2] put it, “CRC modeling leads directly into
class diagramming”. But when performing a traditional CRC ses-
sion no digital version of the cards is maintained or produced and
thus UML class diagrams have to be modeled in a separate step.
Therefore, a prototype should implement at least basic UML con-
cepts and a simple export functionality to common UML tools.

D3: During role play it may quickly become non-trivial to recall
the current state and how it was reached. Thus, a computer-assisted
variant should preserve and visualize such a call history, provide
methods to navigate through it, and allow to restart the role play
from any point in time.

D4: Managing different documents (requirements, use case di-
agrams, etc.) in addition to a set of CRC cards might distract the
team members from their actual task. Hence, a tool should main-
tain digital copies of all those documents and provide individual
and fast access to them.

3. COMPUTER-ASSISTED CRC SESSIONS
This section briefly explains how CRC sessions (Fig. 1) with

CREWSpace are conducted and contrasts it with the traditional
method. Please note that our previous work [15] provides a de-
tailed description of the entire process.

Assuming that a computer maintaining a shared workspace in the
main application and Android-enabled mobile devices, which serve
as controls and as private workspaces for the team members, are
available, computer-assisted CRC sessions are actually very simi-
lar to traditional ones. First, use cases are identified, then an initial
software model is developed and further refined by using role play
for use case analysis as described in Tab.1. Instead of writing paper
cards, digital ones can be created, viewed, and edited with each of
the mobile devices (D1, R1). The shared workspace contains the
entire software model and allows the group members to rearrange
the CRC cards on screen. Similar to common touch pads integrated
in laptops, each mobile device controls a cursor that enables inter-
actions with the shared workspace and the software model (A2).

During role play each group member may own several CRC
cards which is visualized by a colored border (cf. Fig. 2). These
cards are locked for other users, that is only the owner is able to
proceed with the role play when such a class is active (A2). CREW-
Space visualizes the progress of the role play by drawing animated
delegation edges between collaborating cards. In addition, our tool
records all delegation edges that have been created throughout the
analysis of a particular use case. Thus, the team may replay a pre-
vious analysis and even explore alternatives (D3). When the team
is satisfied with the CRC model, CREWSpace allows to draw basic
UML relationships between classes to turn the model into a rudi-
mentary class diagram.

4. DESIGN
The design of CREWSpace was inspired by different aspects.

First of all, our tool should meet the requirements discussed in
Sect. 2. Moreover, also based on these requirements we devel-
oped and formatively evaluated CREWW [6, 7], the predecessor of
CREWSpace. In contrast to our recent prototype, CREWW lever-
ages Wii-Remotes to allow simultaneous access to the CRC model,
but required a single shared bluetooth keyboard for text input.

In order to improve CREWW we asked 26 computer science stu-
dents to participate in two independent usability studies. In general,
our goal was to formatively evaluate CREWW and thus identify
additional requirements for a subsequent version. The first study
was designed to gather user feedback, in particular, whether the
chosen metaphors are accepted, whether interactions with our pro-
totype are intuitive, and whether it is suitable for CRC card based
use case analysis. . The second study aimed to gain more insights
into how teams actually perform the role play and which features
of CREWW would be used regularly..

In general, we found that the participants easily adopted the cho-
sen metaphors and most parts of the controls. However, we can to
formulate two additional requirements:

R1: Both studies revealed that users found it tedious to pass
around the keyboard or even instruct someone to enter a certain
text. Thus, an improved version requires a way to create and alter
CRC cards simultaneously.

R2: Some participants had problems remembering the functions
of less frequently used Wii-Remote buttons, especially when these
changed their functions dependent on the current state of the pro-
gram. In contrast, software buttons can easily display context-
sensitive descriptions such that user can directly recall the current
function.

Next, we briefly introduce the key features not covered in Sect. 3.
For detailed information please confer to our previous paper [15].

In order to separate CRC modeling from UML class diagram-
ming, CREWSpace offers two different views. While the Use Case
View (Fig. 2) implements the actual CRC method as described in
Sect. 2, the UML View allows to add inheritance, association, or

Figure 1: Computer-assisted CRC sessions with CREWSpace

aggregation relationships between two classes and, moreover, is
able to export this model to edit it with common UML tools (D2).

Apart from using mobile devices to interact with the shared soft-
ware model, they also serve as private workspaces. Hence, every
user is able to create or edit CRC cards and use the card overview
(Fig. 2) to discuss them with nearby teammates (A3). Also, infor-
mation about use cases including a use case diagram can be stored
in the shared workspace and examined independently from other
users via a mobile device (D4).

In a co-located setting it is important that users are aware of what
their teammates currently work on. In CREWSpace each group
member is always able to recall who is currently editing which
class by a small colored, lock-shaped icon on the card (A2). Fur-
thermore, when the state of the role play changes, i.e., the control
is given to another group member, it is crucial to notify that person;
not only on the shared screen, but also in the private workspace.
Besides a short message on the mobile device, it also gives a haptic
feedback in order to draw the team member’s attention. Further-
more, interactions with the global workspace should be visible to
all users. To this end, CREWSpace provides a navigation toolbar
with common functions as depicted in Fig. 2.

Finally, digital CRC cards provide an opportunity for automa-
tion. For instance, our tool automatically updates all collaborator
lists when the name of a card was changed (D1).

5. IMPLEMENTATION
In this section we briefly explain how multi-user interaction in

Java is implemented, Android-enabled touch devices are leveraged
to control a Java application, and CRC cards can be exchanged
between a private and the shared workspace.

Since our prototype is developed for collaborative modeling and
role playing and Java does not provide support for multiple cursors
natively, we use lightweight UI components (JComponent) as cur-
sors. All cursors are drawn in different colors on the upmost layer
of a window and thus will not be covered by other components.
In combination with self-defined events they are able to interact
with common UI components. Those components that shall inter-
act with any cursor simply implement the according listeners. To
restrict simultaneous interaction, we had to modify some of the UI
components to establish rules for concurrent access. For example,
it is not desired that a user is able to confirm or cancel another user’s
dialog. Therefore, we extended common UI components such that
they can store a user ID. If this ID is already set, i.e., a user interacts
with the component, other users are not authorized to access it.

Active CRC card

Active user

Inactive user

Initial class

Delegation edge

Inactive CRC card

Menu bar
New card 1

List of cards 2
List of users 3

Use cases 4
Help 5

Context-sensitive
buttons

Touch pad area

Card name

Collaborators tab

Responsibility

Send card to server

Navigation toolbar
1 Switch views
2 History navigation

1 2 3 4 5

21

Options menu

Options menu

Card overview

Figure 2: Main application of CREWSpace in Use Case View (center). Edit dialog, main screen (right), and card overview (bottom
left) of the mobile application.

The mobile application of CREWSpace provides among others
a touch pad feature that allows users to interact with the main ap-
plication. Using the touch screen of their mobile devices, team
members are able to control a colored cursor. Interaction with CRC
cards, buttons, and panels is done via different kinds of taps. If such
local events are triggered on the mobile device, a UDP connection
is used to send messages to the main application where motion or
click events are created and forwarded to all UI components that
are registered as listeners. In addition to simple taps, the touch pad
feature provides a menu bar at the top and two buttons at the bottom
of the main screen (Fig. 2). The menu bar enables quick access to
commonly used features of the private workspace, for instance, the
dialog for creating new CRC cards. The two buttons at the bottom
provide context-sensitive features, which trigger additional func-
tions of the main application again using the UDP connection (R2).

Exchanging CRC cards between the private and the shared work-
space is based upon a simple client/server approach. Although there
are different possibilities to select a class for editing, in general, re-
quests for a CRC card are all treated equally. First, a request mes-
sage is sent to the main application where all classes are stored in a
central data structure. Then the respective card is identified, trans-
lated to an XML representation, and sent (via a TCP connection) to
the mobile device that requested the class. On the client-side, the
XML file is parsed and displayed using the edit dialog (Fig. 2). Af-
ter modifying the CRC card, it is sent back to the main application
and stored in the central data structure. Furthermore, the current
view on the screen is updated.

6. EVALUATION
In order to evaluate the usability of our prototype, we conducted

a small user study. In general, we investigated if (and how) use case
analysis, namely the CRC method, benefits from computer-assisted
co-located collaboration.

Our study was designed to be qualitative, i.e, it is not supposed to
be complete in terms of statistical significance, it is rather a tech-
nique to explore why and how participants behave or acted in a

certain situation. This is, we were mainly interested in exploring
different ways how CREWSpace is used during collaborative CRC
sessions. In particular, we conducted a usability test in combination
with a post-study questionnaire. Four teams, in total 15 students,
participated in our experiments and were asked to model predefined
software systems (cf. Tab. 2). We chose groups with different ex-
perience in software design in order to examine how our tool is ap-
plied on various skill levels. As CREWSpace shall be integrated in
our software engineering course, we mainly recruited undergradu-
ate students. Although all participants were introduced to the CRC
method, seven of them had prior experience with CRC cards (cf.
Fig. 3), either with our prototype or traditional CRC sessions.

Table 2: Group characteristics
G1 G2 G3 G4

Students Graduate PhD Undergraduate
Group size 4 4 4 3
Time spent for modeling 44 min 65 min 40 min 37 min
System to model online store light control system
Initial classes provided yes yes no no

Each of the team members had access to an Android-enabled
touch device with preinstalled mobile application. Also, the groups
got descriptions (requirements documents, use case diagrams, etc.)
of the systems to model. Earlier studies with our previous proto-
type revealed that a team might spend a lot of time identifying (and
discussing) an initial set of cards. In order to facilitate this process
we provided four named but otherwise empty CRC cards for two
of the teams. This allowed us to focus on role play and interactions
between the team members and with our prototype.

After a short briefing and a warm-up phase to learn the con-
trols and features of our prototype, the teams were asked to model
their software system using CREWSpace. To gain more insights
into how the teams performed the actual role play and which fea-
tures were used, we logged all activities including timestamps and
user identifiers. Moreover, we videotaped the first two sessions for
later analysis. After each experiment we collected feedback from

our participants in short group discussions. Additionally, we asked
them to answer a questionnaire, which was based on the assessment
principles for usability testing described in [1].

6.1 User Behavior
By analyzing the recorded log-files we were able to generate an

overview of the activities of each group over time as depicted in
Fig. 3. Here, we classified all activities into five categories as pre-
sented in Tab. 3. Please note that activities usually include group
discussions and do not always reflect a high interaction with our
prototype. To this end, we computed the amount of activities per
minute (act/min) logged by our prototype, which is visualized by a
black horizontal line for each segment. Role play segments (Cat-
egory 1), for example, inherently show less activities per minute
because role play is mostly based on explanations and group dis-
cussions. Editing segments (Cat. 2), on the other hand, describe
modifications to CRC cards and thus often reflect a higher amount
of activities per minute.

Table 3: Activity categories
Categories Examples
1 Role play Calling other classes and fulfilling responsibilities.
2 Editing Adding, modifying and deleting cards.
3 Navigation Browse recorded role playing sessions.
4 Change owner Gaining or releasing ownership of a CRC card.
5 UML Modeling Adding, modifying, and deleting UML edges.
6 Other Switching between views, moving CRC cards, etc.

Figure 3 shows that all groups had individual ways of tackling
their task. Experiments with our previous prototype strengthen this
observation. Some groups, especially the more experienced second
group, performed long editing activities (Sections A) along with
several discussions before analyzing them in a subsequent role play
(B). In contrast, other teams, at a first glance less experienced ones,
preferred short editing activities and analyzed these modifications
in immediate role playing sessions (C,E). Also, longer editing ac-
tivities often occurred at the beginning of an experiment because
the teams had to create content to work with during role play. This
holds especially for groups 3 and 4 as they started to model from
scratch. Moreover, groups 1 and 4 resorted to UML modeling in
order to discuss and record relationships between classes (D).

Considering the amount of activities per minute (cf. Fig. 3), one
can easily spot a difference between groups 1&2 and 3&4. For the
first two teams this value is often low (average of 6.4 act/min) as
the participants spend a lot of time with discussions about how to
improve the software model before they actually modified it. In
contrast, groups 3 and 4 (average of 10 act/min) applied more of
a trial-and-error strategy. Particularly, they changed the software
model in advance—sometimes several users even provided individ-
ual solutions at the same time (R1). Then, such modifications were
discussed and analyzed through role play and afterwards accepted
or rejected. The advantage of this strategy is that ideas or solutions
are directly visible to all team members. However, it requires some
extra effort for editing the CRC cards.

To illustrate the data summarized in Fig. 3, we describe a single
example in more detail—general insights are listed below. Please
consider the magnified Section E, where Group 1 reset the navi-
gation history in order to start a new role playing session (Cat. 3
segment). Based on the previous role play (Section F) they decided
to add a further class to improve the CRC model (Cat. 2) and re-
structured the layout (Cat. 6). Next, one of the team members took
the ownership of the card (Cat. 4) and added obvious responsibili-
ties after a short discussion (Cat. 2). Finally, role playing was used

to integrate the new card into the already existing CRC model. Dur-
ing that process the team resorted to the history navigation feature
(small Cat. 3 segments) to go back to earlier states of the role play
where they replayed important steps (Cat. 1) in order to validate
their modifications to the CRC card (Cat. 2) (D3). Finally, Group 1
switched to the UML View (tiny Cat. 6 segment) and used UML
modeling to emphasize relationships of the new card with the other
classes (Cat. 5) (D2).
Model validation: Replaying a previous step of a use case analy-

sis with the history navigation feature was often used after new
classes, responsibilities, or collaborators were added or modified
in order to validate such changes to the CRC model. Moreover,
the first group also applied the history navigation feature for a fi-
nal validation of an entire use case scenario (Sections F). To this
end, one participant took the lead, went back to the beginning of
that scenario, and browsed through the previously finished role
play. During that process he briefly explained what all the classes
are responsible for or directly asked their owners to do this.

User activity: The chart on the bottom right corner of Fig. 3 de-
picts the distribution of user activities logged by our prototype.
Although there might be a dominating team member, it shows
that all people actively participated in a CRC session and the ac-
cording group discussions. Moreover, team members who used
one of our prototypes before seemed to be more confident and
even supported unexperienced users.

Editing: Figure 3 does not distinguish between additions and mod-
ifications. But our log-files reveal that about 28% of all editing
activities were modifications of existing CRC cards. In a tradi-
tional setting this could have led to unstructured and messy CRC
cards or required unnecessary rewriting effort (D1).

Workspace partitioning: Based on the work of Tse et al. in [25]
we investigated if workspace partitioning also occurs in our sce-
nario. At first, when participants had to choose a CRC card for
role playing, this decision was often based either on their seating
arrangement (mostly left/right) or the current position of their
cursor. If there was enough screen space available, newly cre-
ated cards were often grouped by color. However, during the
course of an experiment, the teams changed the layout of the
model in order to minimize edge crossings (especially in UML
View) or provide additional semantics (e.g., important classes
were moved above other ones).

UML modeling: Although we do not feel confident to make a
clear statement about the quality of a modeled UML class di-
agram, groups 1 and 4 used UML modeling in conjunction with
role play in order to augment the CRC model with additional
information. This may raise the comprehension of the future
software system. During earlier experiments with CREWW we
observed a similar behavior (D2).

6.2 User Perception
Next, we present the results of our post-study questionnaire. Al-

though the overall user feedback was positive, some participants
revealed weaknesses of our prototype and helped us improve its
usability. The following paragraphs explain what our participants
answered to questions of a particular principle as described in [1].
Suitability for the task: CREWSpace was developed to meet the

requirements listed in Sect. 2. Thus, we asked all participants to
compare traditional with computer-assisted CRC sessions. Here,
most of the drawbacks of the traditional CRC method (D1-D3)
were mentioned as advantages of the computer-assisted one. In
particular, our participants appreciated that they could easily re-
call the current state of the role play due to animated delegation
edges. The possibility to save their work for later use was men-

60

40

min50

30

F

20

Group 1 C EDD

10

FD C

1 Role play

2 Editing

3 Navigation

4 Change owner

5 UML Modeling

6 Other

A AB BGroup 2

6

1

4
3

5

2

Section E

6

1

4
3

5

2

min

6

1

4
3

5

2

CAGroup 4 AB B D

6

1

4
3

5

2

CGroup 3 A B

Total number of logged activities per group:
G1=358, G2=300, G3=391, G4=375

Figure 3: Group activities during the usability study. Represented by color as well as the height of the bars for better readability
if printed in grayscale. Horizontal lines depict the amount of activities per minute. The diagram at the bottom left shows the
distribution of user activities. A dot • marks users with prior experience with the CRC method.

tioned as an important advantage. Moreover, most participants
liked the fact that all team members are able to modify differ-
ent CRC cards simultaneously with their mobile devices (R1).
One person found that computer-assisted CRC sessions could
also benefit from further automation features. He suggested to
add collaborators automatically to the respective card during role
play. Also, the UML modeling features were appreciated (D2).
Our participants also uncovered weaknesses of CREWSpace. For
instance, some students found that text input with smaller mobile
devices can become tedious and hence, handwritten CRC cards
feel more accessible. However, this is a general problem when
using small mobile devices and features like word completion try
to remedy it. Finally, most students mentioned the extra effort of
setting up hardware and familiarize with the controls.
In addition, we asked the students to assess whether computer-
assisted CRC sessions yield a better software model. Eleven of
them found that this is true especially when people get used to
the controls, features, and metaphors of our prototype. Studies
with our previous prototype revealed that participants could eas-
ily perform computer-assisted CRC sessions after a short time.
Three participants thought there will be no significant difference,
while only one found that the traditional variant produces a better
result because he found it less distracting.

Self-descriptiveness: Since we introduced the students to the con-
trols and features of our prototypes, answers to this part of the
questionnaire were mostly short. The participants found that all
notifications and tooltips are self-explanatory. Moreover, one
student stated that in order to get help he simply asked more
experienced users.

Conformity with user expectations: A few students thought that
the mobile application might have some issues with respect to
different kinds of taps or gestures and the features they repre-
sent. Some of these problems were caused by the hardware or

the client/server communication, e.g., the touch devices some-
times simply misinterpreted a tap. According to some partici-
pants, certain controls or interactions might not be that intuitive
or obvious at first. However, there was no overall consensus of
how to use certain touch gestures to achieve intuitive controls.

Suitability for learning: Here, the teams mainly suggested a tu-
torial video that introduces a scenario play through in case no
instructor is available. Due to a larger screen of his touch device,
one participant found that additional and customizable buttons
would improve the comprehensibility of our prototype.

Controllability: Here, we asked if and where participants could
imagine more interactivity with our prototype. One student stated
that the actual role play seemed to slow down when the team
chose to edit a CRC card. In fact, our video recordings reveal
that although users are able to edit different CRC cards simulta-
neously, often only a single or at most two classes need to be ad-
justed and thus not all participants were active during that time.

Error tolerance: Most of the answers in this section considered
detailed suggestions and questions about bugs or errors that oc-
curred during the CRC session and could be fixed afterwards.
Nevertheless, most users replied that warning and error messages
were self-descriptive.

Suitability for individualization: Here, people asked for a pos-
sibility to resize CRC cards individually to obtain more screen
space. While this is possible for all cards in advance, we should
consider to provide individual or even automatic resizing capa-
bilities. As described before, one participant asked for a way to
customize the controls. However, most people do not want to
customize their controls at first. Thus, it becomes more impor-
tant to provide the same intuitive controls for all users.

Support for collaboration: This section of the questionnaire re-
vealed that during role play some participants were not always
able to recall directly which user is currently active. Although

this was mostly stated by unexperienced users, we should con-
sider to provide additional feedback techniques through the mo-
bile devices, e.g., simply show the active users name and color
on the other devices. Moreover, opinions about collaboration
and the restriction of rights were twofold—especially when it
comes to editing cards. While some participants suggested that
everybody should be able to modify a card, others found that this
should only be possible by the owner.
Although we mainly discussed negative feedback that we got

from the questionnaire, the usability study suggests that CREW-
Space keeps most of the advantages of the traditional CRC method
and even compensates its weaknesses. Also, we want to stress that
not only this study, but also the experiments with CREWW re-
vealed that it is crucial to support individual strategies and avoid
restricting users to a certain workflow.

6.3 Mobile or Gaming Devices?
In our questionnaire we asked the participants who worked with

both prototypes (CREWW and CREWSpace) to compare them in
terms of controllability. They preferred the mobile devices due to
different reasons. Most frequently mentioned was the fact that each
team member is able to edit CRC cards. Moreover, our partici-
pants appreciated more precise and intuitive controls along with
less physical movement. The flexibility of a mobile device was
also named as an advantage. For instance, a mobile device is able
to display context sensitive and self-exploratory software buttons
while a Wii-Remote only provides generic hardware keys.

However, it was stated that mobile devices lose some of the tan-
gibility the Wii-Remotes seemed to preserve. Although in CREW-
Space mobile devices may serve as a single card (cf. Fig. 2), our
log-files reveal that this feature was rarely used. Hence, we con-
sider integrating the card overview into the role play, i.e., a user
that is currently active might simply flip her mobile device and di-
rectly view the particular card in the private workspace. A disad-
vantage of our latest approach might also be that editing cards with
a mobile device is hardly visible to all team members (cf. [19, 23]).
However, a common strategy was to discuss all required edits and
distribute them over the team members if possible. When all modi-
fications where done, the team analyzed the updated model through
role play and further group discussions.

6.4 Threats to Validity
During its evolution CREWSpace was repeatedly evaluated in

formative user studies (41 participants in total). All these stud-
ies including the one presented in this paper were qualitative and
task-oriented. They were not meant to quantitatively measure or
compare the performance or effectiveness of our tool, but to help
improve its usability. We used different methods (video, logging,
questionnaire) to compensate for limitations of each individual one
and to exploit their respective benefits. The example systems used
in our study were quite simple compared to real software. Further-
more, all experiments were limited to a certain time frame and thus
none of the teams was able to model the entire system. Both the
small number as well as the choice of our participants limit the va-
lidity of our results. In longer experiments the groups would have
had more time to better adopt the metaphors and the controls of
our prototype. Moreover, all of our participants were students and
not professional software engineers. People, who deal with system
design every day, might have applied CREWSpace differently.

7. RELATED WORK
Support for remote synchronous or asynchronous collaboration

is quite common in software development. From simple messen-

ger or video conference systems to software for distributed edit-
ing of diagrams such as Gliffy or Creately1 software engineers
and developers can choose from a variety of tools. For instance,
D-UML [8] supports distributed software modeling. Users only
share the model but no views or windows, which provides a cer-
tain flexibility and privacy. Thum et al. [24] follow a lightweight
approach for synchronous collaborative modeling. They present
SLIM, a UML modeling environment that works in any modern
browser and thus lowers the technical entry barriers on the client
side. In contrast, our prototype supports co-located collaboration,
i.e., users gather in the same room and share the same virtual arti-
fact. Knight [10] and SUMLOW [9] implement co-located collab-
oration for UML modeling on an electronic whiteboard but do not
support CRC sessions or role play.

Although we examined different CRC tools, to the best of our
knowledge, there does not exist a tool that supports co-located col-
laboration for CRC sessions. EasyCRC [20] and CRC Design As-
sistant [21] were mainly developed to teach and assist students
designing object-oriented software. ECoDE [12] is able to gen-
erate source code in order to facilitate subsequent development
processes. In contrast, Flying Circus [22] uses tree-dimensional
CRC cards to further encode different design semantics like im-
plementation complexity or reusability. QuickCRC2, a commercial
tool, supports and automates responsibility driven design of object-
oriented software. Besides designing and simulating scenarios, it
claims to manage a large amount of cards.

CREWSpace is not the first tool that leverages mobile devices
for human-computer interaction. In the late 1990s Myers et al.
launched the Pebbles project [18, 17], which comprises different
single and multi-user applications controllable by mobile devices.
From a technical point of view, PebblesDraw is most closely related
to our prototype because, as a multi-user application, it has to deal
with issues like managing multiple cursors and concurrent access
to UI components. Recently, Yang et al. [27] suggested augmenting
a mouse with an interactive touch display in order to provide a cus-
tomizable secondary workspace. They suggested different applica-
tions and showed that unnecessary mouse trips can be prevented.
Although multi-user interaction and private workspaces have not
been explored in their publication, this approach could bridge the
gap between a traditional mouse and a touch device.

We were not the first that used mobile devices for requirements
engineering. In contrast to our argumentation that mobile devices
are widely available and thus no additional hardware is required
(A1), Maiden et al. [16] leverage the mobility of these devices for
requirements engineering. Their Mobile Scenario Presenter runs
on a PDA and supports requirements engineers while eliciting re-
quirements directly at the workplace.

8. CONCLUSIONS
In this paper we first introduced the traditional CRC method and

discussed its advantages and disadvantages. Based upon this dis-
cussion we derived requirements for CREWSpace—a tool that as-
sists groups conducting CRC sessions. We briefly presented how
such computer-assisted CRC sessions differ from traditional ones,
the design of CREWSpace, and important implementation details.
However, this paper mainly focused on our user study and gave
insights into how our prototype was actually used and how our par-
ticipants perceived it. The results provide qualitative evidence that
CREWSpace supports collaborative computer-assisted CRC ses-
sions and even compensates weaknesses of the traditional variant.

1http://www.gliffy.com, http://creately.com (Sept. 2012)
2http://www.excelsoftware.com/quickcrcwin.html (Sept. 2012)

Refining the title of this paper, we conclude that for collaborative
requirements analysis virtual CRC cards on smartphones are better
than physical CRC cards.

Although CREWSpace only implements the CRC method, we
think that many of the concepts presented in this paper can be trans-
ferred to collaborative analyses of other kinds of software models.

9. REFERENCES
[1] EN ISO 9241-110: Ergonomics of human-system interaction

– Part 110: Dialogue principles, 2006.
[2] S. Ambler. The Object Primer: The Application Developer’s

Guide to Object Orientation. SIGS Books, 1995.
[3] K. Beck and W. Cunningham. A Laboratory for Teaching

Object-Oriented Thinking. In Proc. of Conference on
Object-Oriented Programming Systems, Languages and
Applications, New Orleans, LA, USA, October 2-6, pages
1–6. ACM, 1989.

[4] D. Bellin and S. S. Simone. The CRC Card Book.
Addison-Wesley Longman, 1997.

[5] J. Börstler. Improving CRC-card role-play with role-play
diagrams. In Companion to the Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, San Diego, CA, USA, October 16-20, pages
356–364. ACM, 2005.

[6] F. Bott. Collaborative Requirements Engineering with
Wiimotes (CREWW). Master’s thesis (in German),
University of Trier, Germany, 2009.

[7] F. Bott, S. Diehl, and R. Lutz. CREWW - Collaborative
Requirements Engineering with Wii-Remotes (NIER Track).
In Proc. of International Conference on Software
Engineering, Waikiki, Honolulu, HI, USA, May 21-28, pages
852–855. ACM, 2011.

[8] N. Boulila, A. H. Dutoit, and B. Brügge. D-Meeting: an
Object-Oriented Framework for Supporting Distributed
Modelling of Software. In Proc. of ICSE Workshop on
Global Software Development, Portland, OR, USA, May 9,
2003.

[9] Q. Chen, J. G. Hosking, and J. C. Grundy. An E-whiteboard
Application to Support Early Design-Stage Sketching of
UML Diagrams. In Proc. of Symposium on Human Centric
Computing Languages and Environments, Auckland, New
Zealand, October 28-31, pages 219–226. IEEE Computer
Society, 2003.

[10] C. H. Damm, K. M. Hansen, and M. Thomsen. Tool Support
for Cooperative Object-Oriented Design: Gesture Based
Modeling on an Electronic Whiteboard. In Proc. of
Conference on Human factors in computing systems, The
Hague, Netherlands, April 1-6, pages 518–525. ACM, 2000.

[11] E. Gottesdiener. Use Cases: Best Practices. Technical report,
IBM, 2003.

[12] K. A. Gray, M. Guzdial, and S. Rugaber. Extending CRC
cards into a complete design process. In Proc. of Conference
on Innovation and Technology in Computer Science
Education, Thessaloniki, Greece, June 30-July 2, page 226.
ACM, 2003.

[13] I. Jacobson. Object-Oriented Development in an Industrial
Environment. In Proc. of Conference on Object-Oriented
Programming Systems, Languages and Applications,
Orlando, FL, USA, October 4-8, pages 183–191. ACM,
1987.

[14] J. W. Kirchner. A Methodological Framework for System
Dynamics Model Evaluation. Dynamica, 10(1), 1984.

[15] R. Lutz, S. Schäfer, and S. Diehl. Using mobile devices for
collaborative requirements engineering. In Proc. of the
International Conference on Automated Software
Engineering, Essen, Germany, September 3-7, pages
298–301. ACM, 2012.

[16] N. Maiden, N. Seyff, P. Grunbacher, O. Otojare, and
K. Mitteregger. Making mobile requirements engineering
tools usable and useful. In Proc. of the International
Requirements Engineering Conference, Minneapolis-St.
Paul, MN, USA, September 11-15, pages 26–35. IEEE
Computer Society, 2006.

[17] B. A. Myers, J. Nichols, J. O. Wobbrock, and R. C. Miller.
Taking Handheld Devices to the Next Level. IEEE
Computer, 37(12):36–43, 2004.

[18] B. A. Myers, H. Stiel, and R. Gargiulo. Collaboration Using
Multiple PDAs Connected to a PC. In Proc. of the
Conference on Computer Supported Cooperative Work,
Seattle, WA, USA, November 14-18, pages 285–294, 1998.

[19] D. Pinelle, C. Gutwin, and S. Greenberg. Task analysis for
groupware usability evaluation: Modeling shared-workspace
tasks with the mechanics of collaboration. ACM Transactions
on Computer-Human Interaction, 10(4):281–311, 2003.

[20] A. Raman and S. Tyszberowicz. The EasyCRC Tool. In
Proc. of International Conference on Software Engineering
Advances, Cap Esterel, French Riviera, France, August
25-31, pages 52–58. IEEE, 2007.

[21] S. Roach and J. C. Vásquez. A Tool to Support the CRC
Design Method. In Proc. of International Conference on
Engineering Education, Gainesville, Florida, October 16-21,
2004.

[22] A. Savidis, P. Papadakos, and G. Zargianakis. Rapid Visual
Design with Semantics Encoding through 3d CRC Cards. In
Proc. of Symposium on Software Visualization, Herrsching
am Ammersee, Germany, September 16-17, pages 193–196.
ACM, 2008.

[23] S. D. Scott, M. S. T. Carpendale, and K. M. Inkpen.
Territoriality in collaborative tabletop workspaces. In Proc.
of the Conference on Computer Supported Cooperative
Work, Chicago, IL, USA, November 6-10, pages 294–303,
2004.

[24] C. Thum, M. Schwind, and M. Schader. Slim - a lightweight
environment for synchronous collaborative modeling. In
Proc. of International Conference on Model Driven
Engineering Languages and Systems, Denver, CO, USA,
October 4-9, pages 137–151, 2009.

[25] E. Tse, J. Histon, S. D. Scott, and S. Greenberg. Avoiding
interference: how people use spatial separation and
partitioning in SDG workspaces. In Proc. of the Conference
on Computer Supported Cooperative Work, Chicago, IL,
USA, November 6-10, pages 252–261, 2004.

[26] C. Wharton, J. Rieman, C. Lewis, and P. Polson. The
cognitive walkthrough method: a practitioner’s guide. In
Usability inspection methods, pages 105–140. John Wiley &
Sons, Inc., 1994.

[27] X.-D. Yang, E. Mak, D. C. McCallum, P. Irani, X. Cao, and
S. Izadi. LensMouse: Augmenting the Mouse with an
Interactive Touch Display. In Proc. of International
Conference on Human Factors in Computing Systems,
Atlanta, GA, USA, April 10-15, pages 2431–2440, 2010.

