Explorable Code Slides

Michael Fritz, Benjamin Biegel, Stephan Diehl
University of Trier, Germany
{biegel,diehl} @uni-trier.de

Abstract

Presenting source code to others is not only a typical task of computer science teachers, but also
when practitioners as well as researchers in software engineering are faced with this task. Usually,
classical presentation tools or source code editors are used for such presentations. However, while
the former are too inflexible for the presenter to deviate from a preplanned scheme, the latter show
too many irrelevant details to the audience. In this paper, we introduce Explorable Code Slides,
which address both issues. We not only describe its concept and features but also report on our
practical experience from using Explorable Code Slides in class and feedback gathered from our
students.

1. Introduction

There are many situations where teachers, developers, or computer science researchers have to
present source code. In order to do so, they most often either use the program editor of their favorite
IDE or a presentation tool such as Microsoft PowerPoint. However, it should be noted that both
approaches come with certain problems:

Program editor: The source code is shown in the editor view of an IDE, ideally using an increased
font size. During the presentation many details of the editor and the interaction with the editor
are visible to the audience. For example, file open dialogs may be shown and screen space
is wasted for displaying menu bars and other views. Furthermore, presentations can only be
prepared to a very limited extent in advance.

Presentation tool: Code is cut&pasted from the IDE into the slides of a presentation tool and
formatted using the features of the tool. The presenter has to decide on the typically linear
order and format of the presentation in advance. This premature commitment further restricts
the interaction with the audience, because the presenter cannot react or adapt to the question
by deviating from the “script”. Preparing slides on which source code is unfolded or folded
during the presentation is a tedious task. Finally, if the underlying source code changes, the
slides have to be revised by hand.

Both approaches are sometimes combined in programming courses: first, the main parts of a pro-
gram are presented on slides, then the program execution is demonstrated using the IDE before
the program is then improved or extended by using the IDE. While this approach combines the

199

978-1-4673-5140-9/13 © 2013 IEEE CSEE&T 2013, San Francisco, CA, USA

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

file_Edit Navigate Search Project Run Scala Window Help

$-0-Q- OB A~ <o e i (§FScaia) % Det
 Out | = 7)1 problems 4 Tasks Console (8@ Cod Presentation & =

. = Slide editor view
Main menu > [-] (oaek am Ia
Comment Box The Pong Entity Model | Entity I)
O O Inheritance
e fain N | Edge
- I Ball I collision detection
= of the ball!

Class Box

v

Paddle

StiCky button public void updatePosition()

Merge Box > Popup menu
Colored
55 im0 Comment box
} else if (input.down) {
Code Box y 4= +speedy; ,4
} else y += -speedY; ! Comment with
speedY = DEFAULT SPEED Y; / is similar to oo .
v = v - speedY; - Syntax highlighting
. . /
Presentation view L
_+“——————— Private canvas

Figure 1. An overview of most elements and features in Explorable Code Slides pre-
sented in the slide editor view.

flexibility of the IDE with the possibility to prepare slides in advance, it also inherits most of
the disadvantages of both approaches. Moreover, switching between the presentation tool and the
editor introduces another level of complexity both for the presenter as well as for the audience.

Taking the analysis above as a starting point, we came up with a set of requirements for a
presentation tool designed for source code and developed an approach called Explorable Code
Slides, which enables the presenter

e to prepare slides in advance by using familiar presentation features;

e to interactively explore the source code at any time during the presentation;

e to hide the presenter’s code search and navigation activities from the audience;
e to have full control over which elements should or should not be shown;

e to easily perform a dynamic or static walkthrough through the source code by following
method calls or data types;

Finally, as Explorable Code Slides is integrated into the IDE, the presenter has full access to all
features of the IDE and can thus work in a familiar environment.

2. Concepts behind Explorable Code Slides

In order to meet the requirements described above, we developed the following key concepts.
Figure 1 provides an overview of most elements and features in Explorable Code Slides.

2.1. Dual View

By using a separate presentation view, which is either displayed in a separate window or on
a second monitor or projector, the interactions of the presenter with the presentation tool and, in

200

SDRaytracer
TR 1 oo T T 55
** Members **
SDRayEaeE, RGB rayTrace(Ray ray, int rec)
++ Members ** e —
TPoint hitObject(Ray ray)
E RGB rayTrace(Ray ray, int rec) RGB lighting(Ray ray, IPoint ip, int rec) {

Ipoint hitObject(Ray ray) Vec3D point=ip. ipoint; T W
RGB color = RGB.addColors (ip.object . color, (Checkit shadow feeler it object]
float shininess = ip.object.shininess;

Ray shadow_ray=new Ray () ;
shadow_ray.start=point;
shadow_ray.source=ip.object; IPoint ip2=hitObject (shadow_ray); |
for (Light light : lights)
{_ shadow_ray.dir=11ght .position.minus
shadow_ray.dir.normalize () ;
IPoint ip2=hitObject (shadow_ray);
if (ip2.dist<IPoint.epsilon) // (
{ [trace reflected ray|
float ratio=Math.max (0, shadow_ray|
float ratio=Math.max (0, shadow ray| EELEE - RED.cCREelenE (e Lig i)
color = RGB.addColors (color, light }
1 }
Ray reflection=new Ray(); BB rcolor=rayTrace (reflection, rec+l);
reflection.source=ip.object.
Vec3D Leray.dir.malt(
reflection.start=point
reflection.dir=ip.normal.mult (2*ip.norm|

reflection.dir.normalize () ;

RGB rcolor-rayTrace (reflection, rec+l);
float ratio = (float) Math.pow(Math.ma
color = RGB.addColors (color,rcolor, rati,

Figure 2. Dual view: The Eclipse window as seen by the presenter (left) and the pre-
sentation view as seen by the audience (right).

particular, the IDE are not visible to the audience. In other words, the presenter can switch between
synchronous and asynchronous presentation modes. In the former case, all changes to the slides
become immediately visible to the audience, while in the latter the presenter has to initiate the
redrawing of the presentation view once he has completed his changes. Figure 2 shows both the
view of the presenter as well as the presentation view.

2.2. Private Canvas Area

An important and controversially discussed design decision is the spatial limitation of the canvas
instead of an unlimited canvas. By following code dependencies, like method calls or class defi-
nitions, it is often important to keep the origin of such a dependency path. By using an unlimited
canvas, it could be possible to pan the origin out of the visible area of the presentation. In order
to gain some of the benefits of an unlimited canvas, we introduced border lines, which indicate
the borders of the slide in the slide editor view. The extended canvas enables the lecturer to place
elements outside of the slide prior to the session, which can then be interactively dragged into the
view of the audience during the presentation. In Section 3.2 we will see, how this private canvas
area can be utilized to achieve a new fluent and interactive presentation style.

2.3. The Box Model

Classes including their attributes and methods, as well as code fragments are all displayed in
boxes. Lines connecting such boxes indicate different kinds of relations. These boxes can be freely
arranged on the slide. During the presentation new boxes can be created. In particular, this can be
done by clicking on a method or a class name in a certain code fragment. The source code of the
method or class will then be shown in a new box which is connected by a line to the original box.
The presenter can follow different links at the same time, which results in an expansion tree.

Explorable Code Slides provides four different types of boxes with different properties: class
box, code box, merge box, and comment box.

201

SDRaytracer IRGB lighting(Ray ray, IPoint ip, int rec) {
Vec3D point=ip.ipoint;
** Members ** —) RGB color = RGB.addColors(ip.object.color,ambient_color,1);
fi hininess = ip.object.shininess;
[RGB rayTrace(Ray ray, int rec) { V- reflection, rec+1, R‘;;'S;agwjﬁw:‘;:;’;‘,fyi,". inessi
if (rec>maxRec) return black; shadow_ray.start=point; g
IpointIp = hitObleck(ray); // (Fay, p, Iy shadow_ray.source=ip.object;
if (ip!=nul && (ip.dist>IPoint.epsilon)) for(Light light : lights)
e return lighting(ray, ip, rec); { shadow._ray.dir=light.position.minus(point);
e it . o e else X shadow_ray.dir.normalize();
Iy 3 retum black; TPoint ip2=hitObject(shadow_ray);
i if (ip2!=null) & (jp2.dist<IPoint.epsilon)) // (ip2.object==nul)
{ float ratio=Math.max(0,shadow_ray.dir.dot(ip.normal);
color = RGB.addColors(color,ight.color,ratio); } }
Ray reflection=new Ray();
merge box reflecton.source=ip.object;
J/R = 2N(NL)-L) ~ L ausgehender Vektor

Vec3D L=ray.dir.mult(-1);

reflectionstart=point;
reflection.dir=ip.normal.mult(2*ip.normal.dot(L)).minus(L);
reflection.dir.normalize();

RGB rcolor=rayTrace(reflection, rec+1);
float ratio = (float) Math.pow(Math.max(0,reflection.dir.dot(L)), shininess);
_ stacked boxes PR ek S
return(color);
¥

(a) Expanded recursive call tree of a method. (b) Here the code boxes of the intermediate method calls are subsumed
To fit all boxes on the slide, the class boxes by a single merge box. A comment lists the method calls within the
were stacked on top of each other. merge box.

Figure 3. Use of merge boxes to hide intermediate code boxes in a branch.

Class and Code Boxes: Classes can be dragged directly out of the IDE into the slide editor
and are represented as class boxes on the slide. A class box is divided into multiple blocks. The
first block includes the class name, while the second block contains the fields, and the subsequent
blocks the methods. Thus, the structure of a class box is very similar to the representation of a class
in an UML class diagram. A priority button at the upper left corner of a class box helps to remove
irrelevant inner blocks. Only sticky inner blocks remain visible. A code block can be marked as
sticky by clicking the sticky button which is available in each code box. Noteworthy, these buttons
are only visible in the editor view and not in the presentation view. A class box can be minimized
to the extent that it only shows the class name. It is also possible to manually draw inheritance
edges between class boxes which is similar to those in UML class diagrams. Furthermore, in a pull
down menu the presenter can select the set of methods which should be shown in the class box.

A code box represents a particular source code fragment which includes both methods or custom
selections of source code. A code box can either be used as a freely movable box on the slide or
an inner block of a class box. A code box can be expanded, minimized, or hidden. By selecting
a part of the source code and dragging it out of the current code box, a new code box will be
created showing the selected source code fragment. This feature can be useful when explaining
long methods. Hence, it helps by splitting them into parts and putting the code boxes containing
these parts side by side for further comparison.

Folding and Unfolding (Merge Boxes): By following links and by extracting source code, the
presenter can quickly build large trees of class and code boxes. Unfortunately, the space of the
presentation view is limited and gets quickly cluttered. Typically, the presenter is interested in
explaining the leaves of the tree, while the tree itself provides the context. In order to keep the
presentation view clear and the focus on the most important code fragments, it is possible to sub-
sume multiple boxes of a branch in a merge box, see Figure 3. Thereby, a merge box is a place
holder for multiple boxes within a branch. In general all boxes between the source (origin) box
and the last box of the branch will be automatically subsumed in a merge box. By using the the
sticky button, the presenter can mark boxes which should not be subsumed in a merge box. The
two branch buttons are shown as triangles to the left and right of a code box and make it possible
to navigate through the boxes subsumed by the merge boxes to left or right of the code box.

202

SDRaytracer void renderImage(){
System.out.printin("Render Image: "+fovx); I'(
** Members ** double tan_fovx = Math.tan(fovx); m)
= double tan_fovy = Math.tan(fovy);
void SDRaytracer() double xstep = (tan_fovx * 2.0) / width; ofefo|e|e (tan(fovy)* 2) / m
. o . N double ystep = (tan_fovy * 2.0) / height; el
public static void main(String[] argv) fey%ray.setstar:cj(shtartX,)startY, startZ); //ro 4 (tan(fov,)* 2) / n
3 or(int i=0;i<width;i++ n el]"
pokiliendenimaoe() for(int j=0;j<height;j++) T Ts
f { imagel[i]l[jl=new RGB(0,0,0);
RGB rayTrace(Ray ray, int rec) for(int k=0;k<raysPerPixel;k++) bl Il I I
IPoint hitObject(Ray ray) { double di=i+(Math.random()/2-0.25);
double dj=j+(Math.random()/2-0.25);
RGB addColors(RGB c1, RGB c2, float ratio) if (raysPerPixel==1) { di=i; dj=j; }
eye_ray.setDir ((float) ((0.5 + di) * xstep - tan_fovx),
RGB lighting(Ray ray, IPoint ip, int rec) (float) ((0.5 + dj) * ystep - tan_fovy),
(float) 1f); //rd
eye_ray.normalize();
//imageli][j] = rayTrace(eye_ray,0);
imagel[i][j] = RGB.addColors(image[i][j],rayTrace(eye_ray,0),1.0f/raysPerPixel);
}
3
¥

Figure 4. Combining code with illustrations.

Additional Text and Illustrations (Comment Boxes): Textual annotations or images can be
added to the slides as part of comment boxes. A comment box can be linked to another box or to
the slide itself. If boxes are moved all their related comments will also be moved relative to their
parent boxes. All those comment boxes which are related to boxes in a merge box are not shown on
the slide. In order to support adding alternative source code to the presentation, a comment box can
also display custom source code in a monospace font by highlighting its syntax. The combination
of source code and illustrations on a slide is demonstrated in Figure 4.

3. Practical Experiences

In order to get first insights into the practical benefits of our approach, we implemented a plugin
for Eclipse and then applied it in different user studies. Thereby, we followed the Rapid Iterative
Testing and Evaluation method [6] to achieve a stepwise refinement of the plugin. That is, we
gathered the participants’ feedback, which is taken as a basis for continuous improvements, after
each application.

3.1. Usability Review

In the first application, we intended to review both the implemented concept as well as the
usability of an early prototype. Hence, in order to achieve this, we asked a graduate student and
three PhD students with experience in usability and human computer interaction to participate in a
formative user study. Together with the authors, the participants presented source code they were
already familiar with by using Explorable Code Slides. In an open discussion we then determined
problems and improvements, which should be fixed and implemented before using our presentation
prototype in the lectures. Besides technical suggestions like changing the color scale, font size, or
text adjustment, we also came up with some conceptual improvements (e.g. private canvas area,
highlighting of boxes in the focus, linking of comments, option to pre-select methods in a list, etc.).

3.2. Educational Application
After improving our prototype based on the results of the usability review, we applied Explorable

Code Slides in two computer science courses—an undergraduate Java programming course and a
graduate course on computer graphics. The first was an introduction to the selection sort algorithm,

203

comprehension overview context structure

o — o ——— o —
—

o

[2 4 6 8 10 [2 4 6 8 10

Figure 5. Survey Question: Do you agree with the fact that Explorable Code Slides
helps leading to a better...?

which was followed by a functional decomposition of this sorting algorithm using refactorings.
While the latter introduced the theoretical principles and the implementation of a ray tracer. Each
of both courses was held by one of the authors.

In order to get an impression of the advantages of Explorable Code Slides, we asked the students
to participate in a study. In total, 14 students (9 undergraduates and 5 graduates) volunteered to fill
in a questionnaire after the lectures. The results of the survey are summarized in the following.

Evaluation of the Concept: In the first part of the survey, we wanted to find out how Explorable
Code Slides influenced the learning process. As for that, the students rated if there were any
advantages in the presentation for each of the following categories: comprehension, overview,
context, and structure. For the rating, we used a Likert scale consisting of five grades from “I
totally disagree” (——) to “I totally agree” (4++). As can be seen in Figure 5, in each category
there were at least 10 of 14 students who thought that using Explorable Code Slides for source code
presentation was beneficial. In particular, they gave high ratings for the structure and the overview
of the presented slides. Obviously, there seemed to be some problems with our approach when it
came to keeping track of the context.

In addition to the Likert scale, we asked the students to write down pros and cons of Explorable
Code Slides using a free text form. Thus, we received specific answers to the context problems
as mentioned before. Some students expressed their concerns about large source code fragments,
which cannot be completely displayed on the presentation view. According to them, the context
might get lost, hence, Explorable Code Slides could possibly not scale for presenting large source
code fragments. Apart from that, the students wrote throughout positive comments on Explorable
Code Slides. They not only considered our approach as being reasonable for source code presen-
tation in education because it helps creating clear and structured slides but also mentioned that this
concept forces them to focus on the relevant code fragments, instead of distracting them by irrele-
vant information during the presentation. Further, the free spatial placement of the boxes helps to
emphasize the relations of code fragments. Hence, Explorable Code Slides could be well suited to
introduce modular source code. For the students, however, the most important fact seems to be the
explorative presentation style. In particular, they liked the interactive rearrangement of elements
during the presentation, which resulted in an open and spontaneous lecture.

A further question asked the students to tick general topics, which can be presented by Ex-
plorable Code Slides in teaching. The answers are summarized in Table 1. Although we presented
simple and complex algorithms during the user study, and the suitability of our approach was
further rated fairly high, it is interesting that there is such a spread of opinions. Partially, this con-
tradicts the previously discussed results. However, as there is a large approval on the topic software
design, it seems that the students highly value the representation of relations between source code
fragments.

204

Table 1. Survey Question: Which of the following topics can be presented by Ex-
plorable Code Slides in teaching?

Topic Yes No

Simple Algorithms: Control structures without outgoing dependencies. 8 6

Complex Algorithms: Code fragments with outgoing dependencies. 8 6

Software Design: Relations and interplay of classes and their methods. 10 4
comprehension overview context structure

t —— ‘ +1 ————— ot —— + ——— ‘

o j— o] o |— o

— — | —

Figure 6. Survey Question: In comparison to other presentation techniques you are
already familiar with, do you agree with the fact that Explorable Code Slides performs
betterin...?

Comparison to other Presentation Techniques: Next, we aimed for an idea of the benefits
of Explorable Code Slides in comparison to other source code presentation techniques. Again,
for each of the categories mentioned above, the students rated if Explorable Code Slides is more
appropriate than other presentation techniques they know. The results in Figure 6 show that our
technique to present source code is preferred by most of the students.

The free-text answers reveal that some students prefer representations they are familiar with.
Taking the comprehension ratings into account, we can assume that Explorable Code Slides was
to a certain extent confusing and distracting at times. A reason for this might be boxes which are
not completely created within the visible area of the presentation. If this happened the lecturer
had to manually move boxes like these back into the view of the audience. Of course, effects like
these only occur rarely in offline-preprared and static presentations. One student recommended to
restrict the automatic creation of boxes to the visible area in order to avoid this.

Besides this, the students again gave positive feedback on the open and explorative lecture style
which allows the lecturer to better respond actively to the students during the presentation. Fur-
ther, the students considered the visualized relations between code fragments, represented by lines,
helpful to keep track of corresponding fragments. Some students even noted that Explorable Code
Slides would be an outstanding alternative to conventional static presentations to introduce source
code.

Further Suggestions from the Students: The students provided also a lot of constructive criti-
cism on how to improve our approach. First, it might be of benefit to emphasize the different kinds
of source code fragments. For example, at times it is important to know whether a box represents
a method or any other kind of code fragment. In order to achieve this, a student suggested to
introduce different representations of the boxes depending on their corresponding code fragment.
Since the box representation in Explorable Code Slides is a new presentation style, many stu-
dents requested some representations that they are familiar with. This could be done by making
use of both syntax highlighting as well as monospace font for source code. This was a surprise to
us, because in an earlier state we marked these features on our todo list as non-essential. However,

205

the user study taught us that details like these are very important in order to make a new approach
successful and accepted by potential users.

Finally, the students made some general suggestions on how to improve the lecture itself. First,
it might be helpful to execute every program which was introduced and to show its output. Second,
after explaining several parts of a program, it might be of benefit to show the whole program during
the lecture, which is necessary in order to keep track of the context.

First Experiences as Presenters: Putting ourselves in the role as lecturers, we also gained some
interesting insights. Each presenter summarized his personal impressions immediately after the
lecture:

“I liked the fact that I did not have to work out every single slide to the small-
est detail, as now the source code can be explored online during the presentation.
For example, I introduced how to perform a functional decomposition of a code frag-
ment. The corresponding method was opened on the current slide and I interactively
extracted some fragments into new code boxes. In order to label those new boxes, |
simply dragged prepared comment boxes from the invisible area of the canvas of the
presentation. At the same time, I used these comment boxes as an aide-mémoire during
the presentation.” —Benjamin Biegel, Java programming course

Another helpful feature is the integration of Explorable Code Slides into Eclipse:

“I like the fact that once a class is dragged into the slide editor, the class box offers
sufficient means to navigate through its code, extract code, and expand method calls.
I mostly used the functionality of Eclipse to find the initial class for the presentation,
and to compile and run the program.” ~ —Stephan Diehl, computer graphics course

All in all, as it is possible to influence the shape of the presentation at any time, we noticed that
our presentation style has changed in a positive way. Several times we extended the slides with
new contents, all without breaking the flow of the presentation. Further, it is helpful to be able to
import images into the slides. This makes it possible to create traditional slides, which are helpful
in order to explain different theoretical facts. In both lectures, this technique was used to introduce
the theoretical approach, which was explained in detail by source code examples afterwards.

3.3. Application Scenarios

So far, we have used Explorable Code Slides for presenting code in lectures only, nevertheless,
we think that there are other promising applications not only in education, but also in software
development in general.

Education: As has been shown in this paper, Explorable Code Slides can be used to present code
in lectures without preparing all slides in advance. In addition, the slides can be made available
to students, thus, they can use them to do both revise the lecture at home as well as a starting
point for exploring the source code. Finally, students can also produce slides as part of their
homework, e.g. to document their own code or to annotate third party code, e.g. the roles of
classes and methods in an instance of a design pattern.

206

Table 2. Survey Question: Which of the following application scenarios are reasonable
for Explorable Code Slides?

Area Yes No
Introducing and explaining of source code examples in a lecture. 13 1
Independent Exploration of a software system. 5 9
Interactive recapitulation at home after a lecture. 7 7
Online presentation of a self-developed software system. 4 10
Finding bugs or reviewing source code. 5 9

Software development: 'The most obvious application of Explorable Code Slides in software de-
velopment is the ad-hoc presentation of a software system by its developer(s). In addition,
it might also be used for code review and thus for finding bugs. Its source code exploration
capabilities might also be useful for software comprehension tasks in group meetings, e.g. for
understanding legacy or third party code. Finally, since the slides are stored within the Eclipse
project and thus also in the software repository, e.g. via Subversion, they might be used as
additional documentation of a software system

After the lectures, we asked our students whether they consider it necessary to apply Explorable
Code Slides to some of the scenarios mentioned above, see Table 2. While 93% of them considered
Explorable Code Slides a good tool for source code presentation in lectures, for the other scenarios
the results were by far not as positive. We think that this is also due to the fact that they have only
seen the presentation view and not the slide editor and how well it integrates into the Eclipse IDE.
Furthermore, the graduate students see a greater potential for alternative application scenarios than
the novices in the undergraduate course.

3.4. Threats to Validity

The feedback of the students, experts, and the lecturers makes us believe that a tool like Ex-
plorable Code Slides is in demand to enhance source code presentations, especially in teaching.
Nevertheless, our evaluation also contains some threats to validity, that is, we cannot exclude that
the participants of the survey consciously gave good ratings on Explorable Code Slides because
they are actually our students. For example, some of them might have feared that their ratings,
although anonymously gathered, might influence their mark. Further, a good presentation also
strongly depends on the quality of the lecturer. Also, the difficulty of the topics could play a role
in the rating of the tool. However, the students know the lecturers and attended other courses of
them. Since the students really liked the ability to focus on small and relevant snippets, they nev-
ertheless fear that there could be problems to keep track of the context by presenting large source
code fragments. Further studies need to clarify whether large source code documents could be a
problem in teaching presentations.

4. Related Work

The concept of placing source code in boxes and connecting these boxes by lines is not new.
Approaches like Code Canvas [3], Code Bubbles [1], and Debugger Canvas [2] are meant to pro-
vide novel interfaces for programming editors, and they place code in connected boxes where the
code within the boxes can be edited. In contrast to our approach, they are not meant as presentation

207

tools and hence, the boxes are placed on an possibly endless canvas, whereas in our approach fixed
sized slides were used. With Fluid Source Code Views, Desmond and Exton [4] present an inline
source code exploration technique that embeds related code from a different file into the current
context on demand. Similar to our approach, the idea is to keep track of the context by placing
related elements close together. However, in their approach the related elements are inlined lin-
early into the corresponding source code, whereas our box model allows to arrange those elements
freely on the screen. The integrated teaching environment Bluel [5] offers both a textual and a
UML-like representation of the underlying source code. In contrast to our approach, each of these
representations is placed in a separate view.

5. Conclusion

In this paper we introduced Explorable Code Slides—a new concept for interactive presentation
of source code. We also performed some initial user studies to evaluate our new approach and
to gather experience for further development. In general, the students not only accepted our new
approach, but also thought that it is superior to the traditional ways of presenting source code. We
also briefly discussed some future application scenarios both in education as well as in software
development in general.

References

[1] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C. Coleman, F. Adeputra,
and J. J. LaViola, Jr. Code bubbles: rethinking the user interface paradigm of integrated development
environments. In Proc. of the ACM/IEEE International Conference on Software Engineering ICSE’10,
pages 455464 vol. 1. ACM, 2010.

[2] R.DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss. Debugger canvas: Industrial experience
with the code bubbles paradigm. In ICSE, pages 1064—-1073, 2012.

[3] R. DeLine and K. Rowan. Code canvas: zooming towards better development environments. In Proc.
of the ACM/IEEE International Conference on Software Engineering ICSE’ 10, pages 207-210 vol. 2.
ACM, 2010.

[4] M. Desmond, M.-A. D. Storey, and C. Exton. Fluid source code views. In Proc. of the IEEE Interna-
tional Conference on Program Comprehension ICPC’06, pages 260-263. IEEE, 2006.

[5S] M. Kolling, B. Quig, A. Patterson, and J. Rosenberg. The bluej system and its pedagogy. Computer
Science Education, 13(4):249-268, 2003.

[6] M. Medlock, D. Wixon, M. Terrano, R. Romero, and B. Fulton. Using the rite method to improve
products: A definition and a case study. Usability Professionals Association, 2002.

208

