
Transformations of Evolving Algebras

Stephan Diehl

FB 14 - Informatik

Universit�at des Saarlandes

Postfach 15 11 50

66041 Saarbr�ucken

GERMANY

diehl@cs.uni-sb.de

in Proceedings of the VIII Conference on Logic and Computer Science LIRA'97, Novi

Sad, Yugoslavia, September 1-4, 1997, pp. 51-57

Transformations of Evolving Algebras

Stephan Diehl, Universit�at des Saarlandes

Abstract. We give a precise de�nition of evolving algebras as nondetermin-

istic, mathematical machines. All proofs in the paper are based on this de�-

nition. First we de�ne constant propagation. We extend evolving algebras by

macros and de�ne folding and unfolding transformations. Next we introduce

a simple transformation to
atten transition rules. Finally a pass separation

transformation for evolving algebras is presented. It can be used to derive a

compiler and abstract machine from an interpreter. All transformations are

proven correct. Finally a comparison to other work is given.

1 Introduction

Evolving algebras (EvAs) have been proposed by Gurevich in [Gur91] and used by

Gurevich and others to give the operational semantics of languages like C, Modula-

2,Prolog and Occam. B�orger and Rosenzweig's proof of the correctness of the Warren

Abstract Machine is based on a slight variation of evolving algebras ([BR92]). An

evolving algebra may be tailored to the abstraction level necessary for the intended

application of the semantics, e.g. we might have a hierarchy of evolving algebras, each

being more concrete with respect to certain aspects of the semantics. In this paper we

only discuss syntactic-sugar free evolving algebras. As a result reading descriptions of

an EvA using this notation is harder than reading descriptions, which make extensive

use of syntactic-sugar. The advantage of considering the syntactic-sugar free EvAs

is clearly, that we have to deal with less constructs when we de�ne EvAs and a

variety of transformations, as well as, when we prove operational equivalence and

other properties.

Syntactic-sugar free EvAs For our purposes here, we need a precise de�nition of

what an EvA is, and what a computation of an EvA looks like. An evolving algebra

	 is a quadruple < �; S; T; I

0

> where

1

� is a signature, i.e. a �nite set of function

names with associated arity, S is a nonempty set, called the superuniverse, T is a

�nite set of transition rules and I

0

: �!

S

n�0

(S

n

! S) is the initial interpretation

of functions in �, i.e. I

0

maps every function name f of arity n to an interpretation

function I

0

(f) : S

n

! S.

Transition rules are either function updates f(t

1

; :::; t

n

) := t

0

, where f 2 �, n � 0

is the arity of f and the t

i

are terms, or guarded updates if b then C , where b is

a term and C is a set of transition rules. A term t is either of the form f(t

1

; :::; t

n

),

where f 2 �,n � 0 is the arity of f and the t

i

are terms, or t 2 S.

A function update changes the interpretation of a function f for the arguments

t

0

1

; : : : ; t

0

n

to the value t

0

0

, where t

0

i

is the value of the term t

i

in the current inter-

pretation. In a guarded update the updates in C are only executed, if the guard b is

true in the current interpretation.

1

We will assume ftrue; falseg � S.

We will use the notation I

	

! I

0

to indicate, that I

0

is the result of applying the

transition rules of 	 to I. We will call this a step of the evolving algebra. Before we

can de�ne a step of an EvA, we have to introduce some notation. First we de�ne the

value of a term t in an interpretation I and the evaluated form of a function update:

eval(f(t

1

; :::; t

n

); I) = I(f)(eval(t

1

; I); : : : ; eval(t

n

; I)) for n � 0

eval(f(t

1

; :::; t

n

) := t

0

; I) = f(eval(t

1

; I); : : : ; eval(t

n

; I)) := eval(t

0

; I) for n � 0

Let T be a set of transition rules and I be an interpretation, then those function

updates occurring in T can be executed, which either depend on guards evaluat-

ing to true in the interpretation or on no guard at all. We de�ne updates(T; I) =

feval(u; I) : u 2 T ^ u is a function updateg [updates(U; I) where U is the union

of all C, such that if b then C 2 T and eval(b; I) = true.

There can be several con
icting function updates in updates(T; I), i.e. evaluated

function updates, which change the interpretation of a function for the same ar-

guments to di�erent values. Let M be a set of evaluated function updates, then

M denotes the set of all greatest subsets A of M , such that if f(t

1

; :::; t

n

) := t

0

in

A then there is no update f(t

1

; :::; t

n

) := t

0

0

in A where t

0

6= t

0

0

. The relation

	

!

is de�ned as follows: I

	

! I

0

, 9U 2 updates(T; I) 8~a 2 S

�

; s 2 S; f 2 � :

I

0

(f)(~a) =

8

<

:

s if f(~a) := s 2 U

i if f is an external function (for some i 2 S)

I(f)(~a) otherwise

Note, that if updates(T; I) is not a singleton, then from every set of con
icting

updates only one member is chosen nondeterministically.

A terminating computationof an evolving algebra 	 is a sequence < I

0

; I

1

; :::; I

k

>,

such that I

0

	

! I

1

	

! :::

	

! I

k

and updates(T; I

k

) = ;. Sometimes we will use the no-

tation I

0

	

!! I

k

to refer to a computation. Furthermore the set reach(I

0

) is de�ned

as fI

m

: 9I

0

	

! I

1

	

! : : :

	

! I

m

g.

Proof Method Let 	 and 	

0

be EvAs and F be a partial mapping of interpreta-

tions in 	

0

to those in 	 . Then 	

0

is correct wrt. 	 i� I

0

= F(I

0

0

) and for every

terminating computation I

0

0

	

0

!! I

0

k

there is a terminating computation I

0

	

!! F(I

0

k

).

Furthermore 	 is complete wrt. 	 , i� for every terminating computation I

0

	

!! I

k

there is a terminating computation I

0

0

	

0

!! I

0

m

such that I

k

= F(I

0

m

). If 	

0

is both

correct and complete wrt. 	 , then 	

0

and 	 are operational equivalent. The proof

method is discussed in more detail in [BR92].

2 Transformations

Constant Propagation In evolving algebras functions are classi�ed as internal

or external. External functions mimic input to the evolving algebra, i.e. how their

interpretation changes at each step of the evolving algebra can not be foreseen.

An internal function f is called static, if there is no function update to f in the

transition rules. We will extend this classi�cation by allowing external functions to

be static or dynamic. We will call an external function static, if we know its value on

all arguments a priori. We actually turn an external function into an internal static

one. Now we will show, how a given EvA can be partially evaluated with respect

to its static functions. First we de�ne the result of constant propagation �(t) of

a term t. If t � f(t

1

; :::; t

n

) and f is static then �(t) = I(f)(�(t

1

); :::; �(t

n

)) else

�(t) = f(�(t

1

); :::; �(t

n

)). A term is de�ned to be static, if it does not contain any

dynamic function, i.e. t is static i� t 2 S or t = f(t

1

; :::; t

n

) where n � 0 and all t

i

and the function f are static.

Let C be a set of transition rules. We construct the set �(C) of the transition

rules after constant propagation by induction. �(C) is also called the residual of

C. For all r 2 C: If r � f(t

1

; :::; t

n

) := t

0

then f(�(t

1

); :::; �(t

n

)) := �(t

0

) 2 �(C). If

r � if b then D and �(b) 62 ftrue; falseg then if �(b) then �(D) 2 �(C). Finally, If

r � if b then D and �(b) = true then �(D) � �(C).

Theroem: Let 	 =< �; S; T; I

0

> and let �() denote the residual < �; S; �(T); I

0

>

of 	 . Then �() is operationally equivalent to 	 .

Proof: After constant propagation in the resulting algebra the same updates are

done as before, we only changed the amount of work which is necessary to evaluate

terms. So the inital interpretation and the terminal interpretations are preserved

(correctness). Furthermore for every terminating computation in 	 there is a ter-

minating computation in �() (completeness). The operational equivalence follows

immediately from the correctness and completeness. 2

Macro De�nitions Readability of an evolving algebra can be increased, if we de-

�ne functions in terms of other functions. First we might think of macro de�ni-

tions as simple combinations of functions like snd = fst � rest implying I(snd) =

I(fst) � I(rest). But this is not powerful enough. So we will consider macro de�ni-

tions of a di�erent form,e.g. mult twice(x; y) = mult(plus(x; x); plus(y; y)), which

is to imply 8x; y 2 S : I(mult twice)(x; y) = I(mult)(I(plus)(x; x); I(plus)(y; y)).

Let ~� be the set of all static functions in �, f 2 ~� and t

0

be a �rst-order term consist-

ing of function names in ~� and x

1

; : : : ; x

n

distinct variables, then a macro de�nition is

of the form f(x

1

; : : : ; x

n

) = t

0

. A macro de�nition is valid, i� eval(f(s

1

; : : : ; s

n

); I) =

eval(t

0

[x

1

7! s

1

; : : : ; x

n

7! s

n

]; I) for all s

i

2 S and all I 2 reach(I

0

).

We have several choices to restrict macros: no additional restrictions on the macros

(1), allow only non-recursive de�nitions (2) or none of the macros de�ned, may occur

in the right hand side of a macro de�nition (3). We will address the implications of

these restrictions in the next section.

Unfolding Macros Let � be a set of macro de�nitions. First we de�ne the �-

unfolding of a term t, which we will write as t " �. If t � f(t

1

; :::; t

n

) and (f(x

1

; :::; x

n

) =

t

0

) 2 � then t " � = t

0

[x

1

7! t

1

" �; :::; x

n

7! t

n

" �] else t " � = t

We will denote t " �::: " �

| {z }

n times

by t "

n

�. The above mentioned restrictions on macro

de�nitions have the following implications with respect to the �-unfolding of a term:

it is possible, that there is no n such that t "

n

� = t "

n+1

�, e.g.� = ff(x) = f(x)g

there is an n such that t "

n

� = t "

n+1

� or t " � = t "

2

�.

Now we de�ne the �-unfolding of a set of transition rules T , which we will write as

T " �. Let r 2 T : If r � f(t

1

; :::; t

n

) := t

0

then f(t

1

" �; :::; t

n

" �) := t

0

" � 2 T " �. If

r � if b then D and b " � 62 ftrue; falseg then if b " � then D " � 2 T " �. Finally,

if r � if b then D and b " � = true then D " � 2 T " �

Theorem: Let 	 =< �; S; T; I

0

>, let � be a set of valid macro de�nitions and let

	 " � denote the evolving algebra < �; S; T " �; I

0

>. Then 	 " � is operationally

equivalent to 	 .

Proof: In the unfolded algebra the same updates are done as before, we only changed

the structure of the terms, not their interpretation, i.e. the value they evaluate to.

The operational equivalence follows by the same argument used for the proof in the

previous section. 2

Folding Macros As before let � be a set of macro de�nitions. First we de�ne

the �-folding of a term t, which we will write as t # �. Furthermore we will use

u to denote uni�cation of �rst-order terms.If t � f(t

1

; :::; t

n

) and t

�

i

2 t

i

� then

f(t

�

1

; :::; t

�

n

) 2 t # �. Furthermore, if f(t

1

; :::; t

n

) and t

0

are uni�able, i.e. f(t

1

; :::; t

n

)u

t

0

is de�ned and g(x

1

; :::; x

m

) = t

0

2 � then g(x̂

1

; :::; x̂

m

) 2 t # �, where the x̂

i

are terms, such that f(t

1

; :::; t

n

) = t

0

[x

1

7! x̂

1

; :::; x

m

7! x̂

m

] Note, that in an

implementation we do not need an occurs check here, because we always unify a

variable free term and a term. Now we de�ne the �-folding of a set of transition

rules T , which we will write as T # �. Let r 2 T : If r � f(t

1

; :::; t

n

) := t

0

then

f f(t

�

1

; :::; t

�

n

) := t

�

0

g [T

�

2 T # �, where t

�

i

2 t

i

� and T

�

2 T n frg # �. If

r � if b then D and b " � 62 ftrue; falseg then f if b

�

then D

�

g[T

�

2 T # �, where

b

�

2 b # �;D

�

2 D # � and T

�

2 T n frg # � Note, that T # � is the set of all

possible foldings of the rules in T .

Theorem: Let 	 =< �; S; T; I

0

>. Let � be a set of macro de�nitions and T

�

2

T # �. < �; S; T

�

; I

0

> is operationally equivalent to 	 .

Proof: In the folded algebra the same updates are done as before, we only changed

the structure of the terms, not their interpretation, i.e. the value they evaluate to.

The operational equivalence follows by the same argument used for the proofs in the

previous sections. 2

Clearly, in practice we are interested in one set of folded rules. Thus in an imple-

mentation we would have to choose one T

�

2 T # �. The choice can be based on

heuristics. Both, folding and unfolding transformations did only change the terms

occuring in rules. Next we will address transformations, which change the structure

of a set of rules.

Flattening Next we consider a simple transformation, which is helpful to prepare a

set of rules to apply other transformations. Let C be a set of rules, then we construct

the set of
at rules F(C) as follows. For each r 2 C we have: If r � if b

1

then D 2 C

then f if b

1

then u : u 2 D is function update g [f if b

1

&b

2

then u : if b

2

then u 2

F(D)g � F(C). If r � f(t

1

; :::; t

n

) := t

0

then r 2 F(C). For this construction to

be semantics preserving, the interpretation of & has to be 8~a 2 S : I(&)(~a) =

�

true if ~a = (true; true)

false otherwise

Note that in the de�nition of a computation of an EvA, we de�ned updates, such

that the rules of a guarded update are only considered, if the condition evaluates

to true. Flattening and its inverse transformation (\crushing"), can be used to re-

structure a set of rules, e.g.: fif b

1

then fu

1

; if b

2

then u

2

g; if b

1

then u

3

g can be

transformed into fif b

1

&b

2

then u

2

; if b

1

then fu

1

; u

3

gg

Pass Separation Now we will classify dynamic functions as compile-time or run-

time functions. The value of a compile-time function is known, before that of a

run-time function, e.g. in an interpreter we might consider the program as compile-

time data and the input to the program as run-time data. The idea is now to classify

the rules: There is one group of rules, which depend only on compile-time functions

and the remaining rules depend on compile-time or run-time functions. In practice

we consider some of the external functions not to be known before run-time. Since

other dynamic functions can depend on these functions, we have to classify these

dynamic functions as run-time functions, too. In the literature on partial evaluation

(e.g. [JGS93]) this process is called binding-time analysis.

Classi�cation of Functions: Let R be the initial set of run-time functions and

	 =< �; S; T; I

0

>. Now we classify the functions in S as follows:

1. Let R

0

= R

2. For all r 2 F(T): If r � f(t

1

; :::; t

n

) := t

0

and there is a function name g 2 R

0

,

such that g occurs at least in one of the terms t

0

; :::; t

n

, then f 2 R

0

. If r �

if b then f(t

1

; :::; t

n

) := t

0

and there is a function name g 2 R

0

, such that g occurs

at least in one of the terms b; t

0

; :::; t

n

, then f 2 R

0

.

3. If R

0

= R then return R else set R := R

0

and goto 2

Now the set of all compile-time functions is just C = � � R. Note, that all static

functions are classi�ed as compile-time functions. The classi�cation of functions

terminates in timeO(j�j), because in each iteration the jR

0

j decreases and jR

0

j < j�j.

Classi�cation of Rules: Next we have to classify rules as compile- or run-time

rules: r 2 T is a run-time rule, if r � f(t

1

; :::; t

n

) := t

0

and there occurs at least one

run-time function in one of the terms t

0

; :::; t

n

, or if r � if b then D and there occurs

at least one run-time function in b or there is a run-time rule in D. Otherwise r is

a compile-time rule. This classi�cation of rules terminates in time O(jT j).

For the pass separation transformation, we require that the top-level conditions in

the run-time rules are mutually exclusive, i.e. if f if b

1

then u

1

; : : : ; if b

n

then u

n

g

is the set of all run-time rules in T , then we require: for all interpretations I 2

reach(I

0

) : eval(b

k

; I) = true) for all i 6= k : eval(b

i

; I) = false

An evolving algebras is separable, if the top-level conditions of the run-time rules

are mutually exclusive and consist of compile-time functions only, and if there occurs

no term f(t

1

; :::; t

n

) in any of the run-time rules, where f is a dynamic compile-time

function and a run-time function occurs in at least on of the t

i

.

Now we construct two evolving algebras: one which generates a program, and one

which executes this program. In the following we assume, that the usual non-

destructive list functions (cons; fst; rest; reverse; nth; islist) are static functions in

the evolving algebra and that it is separable. For each run-time rule if b then D in

T let i 2 S be a new instruction and add the following rules to T

e

and T

c

:

compilation: if b then D

C

[fprg := cons(cons(i;args); prg)g 2 T

c

execution: if islist(prg)&fst(fst(prg)) = i then

~

D

R

2 T

e

where D

C

is the set of compile-time rules in D, D

R

is the set of run-time rules in D

and args = [a

1

; :::; a

m

] is the list of all maximal subterms occurring in D

R

, which

only consist of compile-time functions.

~

D

R

is obtained from D

R

by replacing every

occurrence of a

i

by nth(i+1; fst(prg)). Furthermore the islist function yields true, if

its argument is a non-empty list. Finally we have if islist(prg) then prg := rest(prg) 2

T

e

and all compile-time rules are elements of T

c

. Obviously splitting the rule set

T can be done in time O(jT j). Now we de�ne the following evolving algebras

2

:

	

c

=< � [fprgg; S; T

c

; I

c

0

> where I

c

0

j

�

= I

0

and I

c

0

(prg) = nil and 	

I

c

m

=<

� [fprgg; S; T

e

; I

e

0

> where I

e

0

j

�

= I

c

m

j

�

and I

e

0

(prg)() = I

c

m

(reverse)(I

c

m

(prg)()).

We call the algebra executing the program 	

I

c

m

to make explicit, that it depends on

the terminal state of the compiling algebra. Taking the time complexities of all phases

of the pass separation into account, the transformation needs time O(max(j�j; jT j))

Theorem: If I

0

	

!! I

m

is a computation in 	 , then in the compiling algebra 	

c

there exists a computation I

c

0

	

c

!! I

c

m

and in the executing algebra 	

I

c

m

there exists

a computation I

e

0

	

I

c

m

!! I

e

q

, where q � m. Furthermore we have I

e

q

j

�

= I

m

.

Proof: First we note, that no dynamic compile-time functions occur in T

e

. Let C

be the set of compile-time rules in T and R be the set of run-time rules. We will

prove the �ve stronger properties

Lemma: The following properties hold: (1) 8j 2 f0; :::;mg : I

c

j

j

R

= I

0

j

R

and

(2) 8j 2 f0; :::;mg : I

c

j

j

C

= I

j

j

C

and (3) 8j 2 f0; :::; qg : I

e

j

j

C

= I

m

j

C

and (4)

9i

0

; :::; i

q

� m; i

k

< i

k+1

: 8j 2 f0; :::; qg : I

e

j

j

R

= I

i

j

j

R

and (5) I

e

q

j

R

= I

m

j

R

(1): Clearly I

c

j

j

R

= I

0

j

R

, because there is no update to a run-time function in any

of the rules in T

c

.

(2): This part follows by induction on the steps of the computations:

j = 0: by de�nition we have: I

c

0

j

�

= I

0

and as a consequence I

c

0

j

C

= I

0

j

C

j + 1: In T

c

are only updates to compile-time functions, because any rule contain-

ing an update to a run-time function is considered a run-time rule. As a conse-

quence, for all updates u to compile-time functions we have u 2 updates(T; I

j

) ,

u 2 updates(T

c

; I

c

j

), because the conditions,which have to be true for adding u

to updates(T

c

; I

c

j

) contain only compile-time functions, for which we know, that

I

j

j

C

= I

c

j

j

C

by the induction hypothesis. By the de�nition of a computation step it

follows, that I

j+1

j

C

= I

c

j+1

j

C

.

(*): Furthermore we know, that only the guard of one run-time rule can be true

(mutually exclusive rules). In this case prg is updated:

I

c

j+1

(prg)() = I

c

j

(cons)([i; eval(a

1

; I

c

j

); :::; eval(a

n

; I

c

j

)]; I

c

j

(prg)).

By the induction hypothesis it follows, that eval(a

k

; I

c

j

) = eval(a

k

; I

j

)

(3): Since T

e

does not contain an update to a compile-time function, we have

I

e

j

j

C

= I

c

m

j

C

and by (1) we have I

c

m

j

C

= I

m

j

C

.

(4): This part follows by induction on the steps of the computations:

j = 0 : By de�nition we have: I

e

0

j

�

= I

c

m

j

�

and by (1) I

c

m

j

R

= I

0

j

R

. Thus it follows,

that I

e

0

j

R

= I

0

j

R

and i

0

= 0. j + 1 :

case 1: There is a computation step I

i

j+1

�1

	

! I

i

j+1

, where i

j

< i

j+1

and a top-level

condition of a run-time rule evaluates to true. Then this guard also evaluates to true

in the step I

c

i

j+1

�1

	

c

! I

c

i

j+1

and [i; ~a

1

; :::; ~a

k

] is cons'ed to prg. The rules involved

are: if b then D 2 T , if b then D

C

[fprg := cons(cons(i;args); prg)g 2 T

c

and if islist(prg)&fst(fst(prg)) = i then

~

D

R

2 T

e

Since in 	

I

c

m

the value of prg has been reversed and at each step prg := rest(prg)

2

The restriction of a function f to a set A is de�ned as f j

A

= f(a; f(a)) : a 2 Ag.

is executed, it is easy to see, that [i; ~a

1

; :::; ~a

k

] is the �rst element of prg in I

e

j

. As a

consequence we have: updates(T

e

; I

e

j

) = updates(

~

D

R

; I

e

j

)[feval(prg := rest(prg))g

Since there is no other update to a run-time function in an intermediate step, we have

I

i

j

j

R

= I

i

j+1

�1

j

R

and by the induction hypothesis, I

e

j

j

R

= I

i

j

j

R

. Now it follows, that

updates(

~

D

R

; I

e

j

) = updates(

~

D

R

; I

i

j+1

�1

[I

e

j

j

fprgg

) and by (*) we know that ~a

k

=

eval(a

k

; I

c

i

j+1

�1

) = eval(a

k

; I

i

j+1

�1

) and thus updates(

~

D

R

; I

i

j+1

�1

[I

e

j

j

fprgg

) =

updates(D; I

i

j+1

�1

). And by the de�nition of a computation step: I

e

j+1

j

R

= I

i

j+1

j

R

.

case 2: There is no such computation step. Then j = q and we conclude, that

I

q

j

R

= I

m

j

R

and by the induction hypothesis I

e

q

j

R

= I

q

j

R

and thus I

e

q

j

R

= I

m

j

R

,

which is point (5) of the above lemma. 2

An Example Next we will apply pass separation to an interpreter for simple arith-

metic expressions (E ! V AR j INT j (E OP E)). We assume, that in is a list

of symbols representing an expression, e.g. in = ["("; X;+; "("; 7; �;3;")";")"]. Fur-

thermore env maps variable names to values, e.g. env(X) = 3.

if islist(in) then

{ if fst(in)="(" then in:=rest(in),

if isop(fst(in)) { opstack:=cons(fst(in),opstack), in:=rest(in) },

if isint(fst(in)) then { estack:=cons(fst(in),estack), in:=rest(in) },

if isvar(fst(in)) then { estack:=cons(env(fst(in)),estack), in:=rest(in) },

if fst(in)=")" then { opstack:=rest(opstack),

estack:=cons(apply(fst(opstack),snd(estack),

fst(estack)),

rest(rest(estack))),

in:=rest(in) } }

Using
attening the above transition rule can be converted into a set of transition

rules, which is more suitable for applying the pass separation transformation:

if islist(in) then in:=rest(in),

if islist(in) & isop(fst(in)) then opstack:=cons(fst(in),opstack),

if islist(in) & isint(fst(in)) then estack:=cons(fst(in),estack),

if islist(in) & isvar(fst(in)) then estack:=cons(env(fst(in)),estack),

if islist(in) & (fst(in)=")") then opstack:=rest(opstack),

if islist(in) & (fst(in)=")" then estack:=cons(apply(fst(opstack),snd(estack),

fst(estack)),

rest(rest(estack)))

We assume, that in is known at compile-time and env not before run-time and

classify functions and rules as described above. Now we can apply the pass separation

transformation

3

to generate a simple compiler

if islist(in) then

{ in:=rest(in),

if isop(fst(in)) then opstack:=cons(fst(in),opstack),

if isint(fst(in)) then prg:=cons(cons("pushint",fst(in)),prg),

if isvar(fst(in)) then prg:=cons(cons("pushvar",fst(in)),prg),

if fst(in)=")" then opstack:=rest(opstack),

if fst(in)=")" then prg:=cons(cons("app",fst(opstack)),prg) }

3

To increase readability we applied the \crushing" transformation, see the conditions

islist(in) and islist(prg).

and an abstract target machine

if islist(prg) then

{ if fst(fst(prg))="pushint" then estack:=cons(rest(fst(prg)),estack),

if fst(fst(prg))="pushvar" then estack:=cons(env(rest(fst(prg))),estack),

if fst(fst(prg))="app" then estack:=cons(apply(rest(fst(prg)),

snd(estack),fst(estack)),

rest(rest(estack))),

prg := rest(prg) }

For example given the value in = ["("; X;+; "("; 7; �;3;")";")"] at compile time,

the compiler will generate the abstract machine program: prg =[(pushvar X),

(pushint 7), (pushint 3), (app *), (app +)]. The above example shows, that

pass separation can be used for semantics-directed compiler generation.

Implementation All transformations in this paper can be automated, but testing

the mutual exclusion of run-time rules is not even decidable. Nevertheless heuristics

can be used to decide, whether the conditions are mutually exclusive. Even checking

mutual exclusion at run-time is co-NP complete ([Gur91]).

3 Other Work

In [JS86] the authors use pass separation to generate a compiler and an abstract

machine for a functional language from a speci�cation of an abstract interpreter.

The transformations are very sophisticated, but they are neither formally de�ned,

nor is it likely that they can be automated. In [Han91] John Hannan de�nes a pass

separation transformation of a very restricted class of term rewriting systems. From

an interpreter for a simple functional language, which he calls the CLS machine, he

derives a compiler and an abstract machine similar to the CAM ([CCM85]).

4 Conclusions

We de�ned evolving algebras in automata theoretic terms and used this de�nition as

a basis to de�ne some transformations on evolving algebras and prove some essential

properties of these. The pass separation transformation can be used to split simple

interpreters into compilers and abstract machines.

References

[BR92] Egon B�orger and Dean Rosenzweig. The WAM { De�nition and Compiler Cor-

rectness. Technical Report TR-14/92, Universita Degli Studi Di Pisa, Pisa, Italy,

1992.

[CCM85] G. Cousineau, P.-L. Curien, and M. Mauny. The Categorial Abstract Machine.

In Proceedings of FPCA'85. Springer, LNCS 201, 1985.

[Gur91] Yuri Gurevich. Evolving Algebras: a tutorial introduction. Bulletin of the

European Association for Theoretical Computer Science, 43:264{284,

1991.

[Han91] J. Hannan. Staging Transformations for Abstract Machines. In Partial Evalu-

ation and Semantics-Based Program Manipulation. SigPlan Notices, vol.

26(9), 1991.

[JGS93] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Englewood Cli�s, NJ: Prentice Hall, 1993.

[JS86] U. J�rring and W.L. Scherlis. Compilers and Staging Transformations. In 13th

ACM Symposium on Principles of Programming Languages, 1986.

This article was processed using the L

a

T

E

X macro package with LLNCS style

