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Abstract The evolution of a software project is a rich data source for ana-
lyzing and improving the software development process. Recently, several re-
search groups have tried to cluster source code artifacts based on information
about how the code of a software system evolves. The results of these evo-
lutionary approaches seem promising, but a direct comparison to traditional
software clustering approaches based on structural code dependencies is still
missing. To fill this gap, we conducted several clustering experiments with an
established software clustering tool comparing and combining the evolutionary
and the structural approach. These experiments show that the evolutionary
approach could produce meaningful clustering results. While the traditional
approach provides better results because of a more reliable data density of the
structural data, the combination of both approaches is able to improve the
overall clustering quality. A review of related studies shows that this approach
of combining dependency information is also successful in other software en-
gineering applications.
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1 Introduction

Software clustering is an important discipline in reverse engineering and soft-
ware maintenance. It deals with the automatic unsupervised grouping of soft-
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ware artifacts like functions, classes, or files into high-level structures like
packages, components, or sub-systems based on the similarity of the artifacts.
Software clustering is applied, for instance, to understand complex software
systems (Mancoridis et al, 1999), to restructure software architectures (An-
quetil et al, 1999), to identify reusable components (Maarek et al, 1991), or to
detect misplaced software artifacts (Vanya et al, 2008).

Software clustering algorithms rely on characteristic information about
the software artifacts to compute a pairwise similarity measure and to fi-
nally yield a reasonable clustering. Common clustering approaches retrieve
this information directly from the static source code in form of structural de-
pendencies based on, for example, method invocations and variable references
among methods (Andritsos and Tzerpos, 2005; Mancoridis et al, 1999; Maq-
bool and Babri, 2007), or inheritance, aggregation, and method invocations
among classes (Mitchell and Mancoridis, 2007; Wierda et al, 2006). Some ap-
proaches try to improve the clustering by taking dynamic code dependencies
recorded during the program execution into consideration (Gargiulo and Man-
coridis, 2001; Xiao and Tzerpos, 2005). Other approaches use the source code
only indirectly by analyzing variable names and comments (Kuhn et al, 2005).
Although there exists such a variety of data sources, only few approaches in-
tegrate several of them into their clustering technique (e.g., Andritsos and
Tzerpos, 2005; Wierda et al, 2006).

In the last decade, software engineers have become aware of software evo-
lution as an important and largely unused data source to enhance the software
development and maintenance process. Information from the evolution of soft-
ware projects, in particular, information on how developers change the source
code, has been leveraged across many applications: It helps project managers
to control the development process (Ma, 2008), software architects to detect
design flaws (Gall et al, 2003; Zimmermann et al, 2003), developers to find
related files or hidden dependencies (Zimmermann et al, 2004), and quality
controllers to identify bugs (Kim et al, 2007). But can it also be leveraged to
cluster software artifacts?

1.1 Evolutionary Data in Software Clustering

Some research groups have already addressed this question and started to link
ideas from both fields of research—software clustering and software evolution.
Clustering-centered approaches enrich structural data with some evolutionary
aspects: Andritsos and Tzerpos (2005) integrated the file ownership informa-
tion, a simple evolutionary data source, and improved a clustering approach
based on structural data. However, they also found that the integration of the
file timestamps, another simple evolutionary data source, tends to decrease the
clustering quality. Wierda et al (2006) used the assumption that the intended
architecture of a software system is represented in a purer form in the initial
version than in a later one. In their case study, combining the current version
with the first version by intersecting their structural dependencies improved
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the decomposition. Furthermore, Sindhgatta and Pooloth (2007) introduced
a transaction-based clustering approach. Adding evolutionary transactions to
structural transactions increased the quality of the clustering result.

Other approaches are more evolution-centered and work only on co-change
data (files that are often changed together): In one of the first works on software
evolution, Ball et al (1997) used a specialized graph layout algorithm on an
evolutionary co-change graph. Clusters emerge as visual groups in the graph
visualization. Beyer and Noack (2005) refine this approach by revising the
graph data structure and the layout algorithm. In both cases the user, however,
needs to finally mark the clusters manually. Voinea and Telea (2006) integrate
a clustering algorithm based on software evolution into their visualization tool
CVSgrab. The evolutionary clustering is used to improve the sequential order
of the files in the visualization. Vanya et al (2008) are able to identify design
flaws in the software architecture by comparing the evolution-based clustering
decomposition to the current architecture of the software. In a case study,
experts rated most of the detected design flaws as valuable information.

1.2 Objectives

Methods that integrate software clustering and software evolution, such as
those discussed above, seem promising. On the one hand, software clustering
based on structural data might be improved by integrating evolutionary data
sources and, on the other hand, it appears to be possible to cluster software
only by using evolutionary data.

But despite these positive results, there are some aspects that are not
covered sufficiently yet: The clustering-centered approaches first of all present
new clustering techniques and only secondarily employ evolutionary data. The
evolution-centered approaches just show that clustering based on evolutionary
information is working to some degree, but are not contrasted to approaches
based on structural data.

Our goal is to overcome these shortcomings by directly comparing struc-
tural and evolutionary data sources to each other. We use an established
software clustering approach to recover the architecture of ten open source
Java software projects based on three different kinds of dependencies: static
structural source code dependencies, evolutionary co-change dependencies, and
combined structural and evolutionary dependencies. Different filtering setups
and combination strategies lead to a total of 152 different concrete depen-
dency graphs per project. For each of these graphs, we compute a clustering
and assess its quality by measuring its similarity to a reference decomposition.

The main contributions of this paper are:

– It presents the first systematic comparison of structural and evolutionary
data for software clustering.

– The study is one of the most extensive studies in software clustering with
respect to the number of analyzed projects and project sizes.
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– The paper describes the first approach that consequently integrates evolu-
tionary information into a traditional clustering technique.

– The paper includes an assessment of the influence that filtering evolution-
ary data has on the clustering quality.

– We review related approaches and discuss the results of our study in this
broader context.

The rest of this paper is organized as follows. Section 2 introduces an
experimental design that clusters software systems and measures the quality of
the resulting software decompositions. Section 3 presents the study, consisting
of three experiments. Finally, Section 4 discusses the validity of the results and
Section 5 compares them to the results of related studies. Section 6 concludes
the findings.

This work is an extended version of a paper presented at the Working
Conference of Reverse Engineering 2010 (Beck and Diehl, 2010a), which we
broadened in three directions: First, we increased the number of analyzed
projects from six to ten carefully selected projects (Section 2.4). Second, results
are discussed in greater detail, which provides further insights (Section 3.4).
Third, a review of related studies enables consolidating our results in a broader
context (Section 5).

2 Experimental Design

Our study concentrates on grouping Java classes into packages. Classes are
the elementary units in the design process of object-oriented software sys-
tems. Their organization into packages reflects the architecture of a software
system. Since interfaces are similar to classes, we handle them like classes in
the experiments and therefore use the term class interchangeable for classes
as well as for interfaces.

2.1 Data Sources

In the following experiments the dependency information is the independent
variable. A directed graph, where nodes represent classes and edges represent
dependencies, models this asymmetric dependency information.

2.1.1 Structural Dependencies

Structural static source code dependencies (short: structural dependencies)
are the most widely used data source for software clustering. As such, they
represent the conventional approach and constitute the control group in our
study. We incorporate all main types of structural class dependencies, namely
inheritance, aggregation, and usage (e.g., method calls, method parameters,
local variables).
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Definition 1 Let C(S) be the set of classes of a software system S. We define
four directed relations on classes:

(c1, c2) ∈ ECIG ⇔ c1 extends c2

(c1, c2) ∈ ECAG ⇔ c1 aggregates c2

(c1, c2) ∈ ECUG ⇔ c1 uses c2

ESCDG := ECIG ∪ ECAG ∪ ECUG

The directed graphs Gx := (C(S), Ex) are called Class Inheritance Graph
(CIG), Class Aggregation Graph (CAG), Class Usage Graph (CUG), and
Structural Class Dependency Graph (SCDG).

These graphs only consider direct dependencies—transitive closures or the
like are not computed. To retrieve the graphs, we use DependencyFinder1, a
code analysis suite that works on Java bytecode and, among other things, is
able to extract all relevant dependencies.

2.1.2 Evolutionary Dependencies

The evolution of a software project is documented by the changes applied to
its source files in the course of development. In modern software engineer-
ing, a revision control system (version archive) such as CVS or SVN stores
these changes. Transactions—changes simultaneously submitted to the version
archive by the same developer—are the elementary units in these systems.

Class A depends on class B by evolution if class A has often been changed
together with class B. In other words, both classes have often been part of the
same transactions. This is the basic idea behind evolutionary dependencies
(also referred to as evolutionary couplings or co-change couplings).

Interpreting evolutionary dependencies is based on the assumption that
transactions implicitly group dependent files together. But some transactions
might relate files randomly, for example, if a developer fixed two totally un-
related bugs in a single transaction. Hence, a mechanism that allows filtering
out such noise and considers only strong dependencies might improve the re-
liability of the evolutionary data.

Zimmermann et al (2003) introduce the concept of support and confidence
to measure the strength of evolutionary dependencies. The support value of a
dependency counts how often the two software artifacts were changed together.
Additionally, the confidence value of a dependency relates the support to the
total number of changes applied to one of the artifacts.

Definition 2 Let c1, c2 ∈ C(S) be two classes and {Ti}li=1 a sequence of
transactions.

Supp(c1, c2) := |{Ti : c1, c2 ∈ Ti}|
1 http://depfind.sourceforge.net/
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is called support of the evolutionary dependency of class c1 to class c2.

If c1 is element of at least one transaction Ti, the confidence of the evo-
lutionary dependency of class c1 to class c2 is defined as

Conf(c1, c2) :=
Supp(c1, c2)

Supp(c1, c1)

Otherwise, Conf(c1, c2) := 0.

In the definition of Conf, the value of Supp(c1, c1) represents the total
number of transactions c1 is part of. Thus, the value of Conf reaches its maxi-
mum 1 if c2 is changed whenever c1 is changed. Note that Supp is a symmetric
function whereas Conf is not. Conf can be interpreted as the conditional prob-
ability that c2 is changed if c1 is changed.

Analogously to the structural dependencies, an evolutionary dependency
graph can be defined with the help of the Conf and the Supp functions. In
contrast to the structural graphs, the evolutionary graph depends on two pa-
rameters that filter out weak dependencies: a confidence threshold α and a
support threshold k. As part of our experiments, we have to find a reasonable
setting for these parameters.

Definition 3 Let C(S) be the set of classes of a software system S. We define
a directed relation of classes

(c1, c2) ∈ EECDGkα
⇔ Supp(c1, c2) > k ∧ Conf(c1, c2) > α

The directed graphGECDGkα
:= (C(S), EECDGkα

) is called Evolutionary Class

Dependency Graph (ECDGk
α) with parameters α ∈ [0, 1) (confidence thresh-

old) and k ∈ N0 (support threshold).

We use the approach by Zimmermann and Weißgerber (2004) to extract
the evolutionary class dependency graphs from the version archives.

As common when mining software repositories, we omit large transactions
to reduce noise in the evolutionary dependency data—transactions with more
than 25 classes, or 50 classes respectively for projects already investigated
in Beck and Diehl (2010a). The converter also ignores classes from branched
versions to avoid conflicts caused by multiple copies of the same class. Refactor-
ings are not tracked; only classes available in the latest version are considered.

Although it is possible to relate non-source files with the concept of evolu-
tionary dependencies, in the context of this study we restrict it to source files
to guarantee the comparability to structural dependencies. In real world appli-
cations, the possibility to cluster non-source files might be a crucial advantage
of evolutionary dependencies over structural dependencies.



On the Impact of Software Evolution on Software Clustering 7

2.2 Clustering Algorithm

In general, a clustering algorithm divides a set of entities—here, classes—
into clusters. The result of this division is called clustering decomposition.
Depending on the algorithm, the decomposition is either flat or hierarchical.
Various software clustering approaches have been proposed and studied (e.g.,
Maqbool and Babri, 2007, provide an overview). Since this work does not aim
at improving a particular clustering algorithm directly but at assessing the
quality of different data sources, any established software clustering algorithm
would serve as an example; the results, however, are only directly valid for the
selected approach.

Bunch (Mancoridis et al, 1998; Mitchell, 2002) is a graph-based cluster-
ing tool that follows the concept of low coupling and high cohesion (Stevens
et al, 1974). Its clustering algorithm optimizes a clustering quality metric
with a heuristic search technique and produces hierarchical clustering decom-
positions. Several evaluations showed that Bunch is among the best currently
available software clustering tools (Andritsos and Tzerpos, 2005; Maqbool and
Babri, 2007; Wu et al, 2005). Since Bunch is customizable, we tried to find a
good parameter setting. The resulting setup is similar to the ones used in the
evaluations cited above.

Bunch works on a graph structure that is called Module Dependency Graph.
The graph represents modules as nodes and module dependencies as directed
edges. Since the terms module and dependency are not bound to a strict defi-
nition, we are allowed to consider the weighted dependency graphs defined in
Section 2.1 as Bunch Module Dependency Graphs.

Bunch provides three optimization strategies: an exhaustive search algo-
rithm, a hill climbing algorithm, and a genetic algorithm. We prefer the hill
climbing algorithm because it produces stable high quality results efficiently in
predictable runtime. When using the hill climbing algorithm, further param-
eters need to be set. Based on some performance tests with the JFtp project
and a study by Mitchell and Mancoridis (2007), we set the initial population
size to 1, chose the nearest ascent hill climbing option, and deactivated further
algorithm extensions.

Since Bunch uses a heuristic search approach that has a random element,
the clustering process can be considered a random experiment. Mitchell and
Mancoridis (2007) showed in their study about Bunch that in most cases
the resulting decompositions differ only slightly. Nevertheless, we performed
several repetitions of our experiments to increase the reliability of the results.
Due to these repetitions and some performance problems of Bunch, we had to
restrict our experiments to less than 1000 classes per project.

2.3 Evaluation Method

To decide which data source performs best, we finally have to measure the
quality of the clustering result. But evaluating software clustering results is



8 Fabian Beck, Stephan Diehl

challenging: There does not exist an optimal solution to the clustering prob-
lem due to different paradigms for designing software decompositions and in-
dividual preferences of developers. Hence, every evaluation method will be a
heuristic. In this section we motivate our evaluation approach and discuss our
design decisions.

According to Maqbool and Babri (2007) the quality of a software decompo-
sition can be evaluated either by considering internal quality criteria (internal
assessment), or by comparing it to a reference decomposition (external assess-
ment). But since we vary the input data source (not the clustering algorithm),
internal metrics are not applicable: They compare the clustering result to the
input data (or are at least biased by the input data) and thus rely on a con-
stant input. For instance, measures based on coupling and cohesion use the
dependency graph to determine the quality of a software decomposition (An-
quetil et al, 1999). Results derived from different input graphs would not be
comparable. In contrast, an external assessment allows a quality measurement
independent of the input data. Thus, we are confined to using such an external
assessment.

2.3.1 Reference Decompositions

The approach of creating a reference decomposition as a benchmark for an
external assessment assumes that a perfect clustering exists, which is repre-
sented by the reference decomposition. But since there is no single optimal
solution in practice, a reference decomposition can only be an approximation
of one of the optimal scenarios.

A reference decomposition can be created by employing external domain
experts, who create the decompositions manually, or by using the current,
factual architecture of the system created by the developers (e.g., the package
structure of an object-oriented system). While domain experts may have a
more objective view on the system, the developers know their system best
and spend much more time thinking about its architecture. But engaging an
expert to modularize a particular system is more expensive than retrieving the
factual architecture from the source code because the latter can be automated.
Since we analyze ten projects in this study, taking the package structure of
the projects as the reference decomposition was the only feasible option.

Working with the factual architecture as the reference decomposition, it is
important that the architecture is of good quality. But this does not have to
be the case for every project: A few less qualitative reference decompositions
could be compensated by other projects. Moreover, even if there is some sort
of bias, it is very unlikely that this bias is the same across all 10 software
projects that we finally analyze in the study.

Assuming that the developers thoroughly designed their systems, a certain
quality can be expected at least on average. To decrease the risk of getting
projects with a low quality of the package structure, we look at different quality
criteria and discard those projects showing problematic characteristics (Sec-
tion 2.4).
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2.3.2 Similarity of Decompositions

The clustering decomposition that is most similar to the reference is considered
the best result. While there is no natural metric that measures the similarity
between two decompositions, some heuristics are proposed in the literature.

As Wen and Tzerpos (2004) point out those metrics can be classified into
three categories: first, metrics based on the nodes of the dependency graph;
second, metrics based on the edges of the dependency graph; and third, metrics
based on both, nodes and edges. Again, our options are limited because we
vary the dependencies and hence cannot use dependency-based metrics if we
want to design a fair experiment.

Tzerpos and Holt (1999) developed a node-based metric, called MoJo, that
estimates the distance between two decompositions computing the minimal
number of Move and Join operations needed to transform one decomposition
into the other. Furthermore, Wen and Tzerpos (2004) introduced MoJoFM,
a revision of MoJo normalized by the decomposition most distant to the ref-
erence decomposition. MoJoFM ranges from 0, representing the most distant
decomposition, to 100, representing a clustering that is completely identical to
the reference. It simulates the operations a user would perform to transform
one decomposition into the other. The metric is clear and simple to under-
stand. For these reasons we preferred MoJoFM over comparable node-based
metrics like the Precision/Recall metric (Anquetil et al, 1999) or the Koschke-
Eisenbarth metric (Koschke and Eisenbarth, 2000).

Definition 4 Let mno(X,Y ) be the minimum number of Move and Join op-
erations that is needed to transform a flat decomposition X into a flat decom-
position Y . For two flat decompositions A,B

MoJoFM(A,B) := 100 ·
(

1− mno(A,B)

maxx(mno(x,B))

)
(where x is an arbitrary decomposition) is called the MoJoFM similarity
from A to B.

Hence, the metric is normalized by maxx(mno(x,B)), which is the worst-
case number of operations needed to transform an arbitrary decomposition x
into B. Though the worst case needs to be found among all possible decom-
positions, it is not necessary to compute mno(x,B) for all decompositions x
as Wen and Tzerpos (2004) explain in detail.

As B is the criterion for the normalization, the reference decomposition
has to be represented by B. The polarity of the scale is reversed to get a mea-
sure of similarity instead of distance. Despite the normalization of MoJoFM,
one cannot compare the MoJoFM values of different sample projects directly
because the normalization depends on the structure of the reference decompo-
sition. Only comparisons on the same reference—i.e., on the same project—are
valid.

MoJoFM works on flat decompositions, that is, the metric ignores the hier-
archical structure of the clustering decomposition and of the package structure.
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In contrast, the END framework (Shtern and Tzerpos, 2004) takes this hier-
archical structure into account and MoJoFM can be used as a plug-in for the
framework. However, we decided against applying it: Bunch produces hierar-
chical decompositions of different height and we observed a considerable sys-
tematic variation of these heights for different data sources. Due to the height
balancing mechanism of the END framework, this variation could systemati-
cally bias our results—a risk that we do not want to take for better considering
the hierarchical structure. An alternative is the UpMoJo metric (Shtern and
Tzerpos, 2007), which incorporates the hierarchy by introducing an additional
up operation to MoJo; but also in this case, the systematic variation in height
could introduce an unwanted bias.

For employing MoJoFM, we, however, have to transform the hierarchical
decompositions into flat decompositions. To transform the reference decom-
position, we use the lowest level of the package partition ignoring the package
hierarchy. To transform the hierarchical clustering result, we cut the hierar-
chy on the level where the resulting flat decomposition is most similar to the
reference (based on the MoJoFM value). This solution avoids noise or a bias
caused by too fine- or coarse-grained clustering decompositions.

It can also be helpful to visually compare software decompositions: Beck
and Diehl (2010b) developed a visualization approach that contrasts two soft-
ware decompositions while concurrently giving an overview on the dependen-
cies. For evaluating clustering results, visualization can provide valuable addi-
tional insights, but cannot replace a metric because in a visualization results
have to be analyzed manually and are liable to the subjective interpretation
of the analyst.

2.4 Sample Software Projects

The study is to be conducted on real-world software projects. In particular, we
analyze ten open source Java projects selected from a list of eighteen projects.
The first step was to acquire all necessary data for the initial list of eighteen
projects, including the source code, executable versions (bytecode) as well as
copies of the version archives.

2.4.1 Initial Set of Projects

Table 1 presents meta-data for the initial list of eighteen software projects:
basic information like a brief description and the considered version, details
on the size of the project such as the number of packages (#P) and classes
(#C), and an outline of the evolution consisting of the type of archive, the
analyzed time frame, the number of transactions (#T), and the number of
developers (#D). In this extended version of the paper, twelve new projects
were taken into consideration (Checkstyle–Wicket).

Although this set of projects cannot be considered statistically represen-
tative of the whole population of software projects, it covers a wide range of
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Table 1 Characteristic data of the sample software projects and their repositories; number
of packages (#P), classes (#C), transactions (#T), and developer (#D)

Project Description Version #P #C Archive Time frame #T #D

Azureusa BitTorrent client 2.5.0.4 69 477 CVS 2003/07/10 – 2007/02/14 10665 27

JEdit text editor 4.2 27 840 SVN 2001/09/02 – 2007/02/12 2190 20

JFreeChart chart library 1.0.4 54 794 CVS 2001/10/18 – 2007/02/14 2413 5

JFtp FTP client 1.0 7 78 CVS 2002/01/25 – 2003/03/23 210 5

JUnitb unit tests 4.2 16 103 CVS 2002/12/12 – 2007/02/08 673 7

Tomcatc Java Servlet 6.0.10 38 561 SVN 2006/03/27 – 2007/03/10 661 13

Checkstyle coding conventions 5.1 21 261 SVN 2001/06/22 – 2010/02/16 1335 6

Cobertura test coverage 1.9.4.1 19 99 SVN 2005/02/12 – 2010/03/03 226 6

CruiseControl cont. integration 2.8.4 27 295 SVN 2001/03/26 – 2010/09/16 1615 10

iText PDF library 5.0.5 24 402 SVN 2007/12/20 – 2010/11/02 817 7

JabRef BibTeX manager 2.6 37 499 SVN 2003/10/16 – 2010/04/14 1348 23

JHotDraw GUI framework 7.6 65 656 SVN 2006/11/22 – 2011/01/09 302 2

LWJGL gaming library 2.7.1 27 564 SVN 2002/08/09 – 2011/02/10 1557 11

PMD code problems 4.2 47 565 SVN 2002/06/24 – 2008/03/26 2041 18

Stripes web framework 1.5.5 19 238 SVN 2005/09/07 – 2011/01/04 812 7

SweetHome3D interior design 3.1 8 167 CVS 2006/04/11 – 2011/02/13 1807 1

TV-Browser program guide 2.7.6 62 485 SVN 2003/04/25 – 2010/12/19 4602 12

Wicket web framework 1.2.2 86 622 SVN 2004/12/21 – 2006/08/27 3456 12

a restricted to org.gudy.azureus2.core3
b test cases excluded
c restricted to org.apache.catalina

project types—from user clients and libraries to server applications. The num-
bers of classes (based on the latest version) give an idea of the project sizes:
JFtp is the smallest project examined with only 78 classes while JEdit is the
largest one with 840 classes. Note that for the Azureus and Tomcat project, we
only considered one of their main packages because our experimental setup—
in particular, the employed clustering tool Bunch—was not able to handle
more than 1000 classes efficiently. Moreover, we excluded all test cases from
JUnit because they are arranged in two large unstructured test packages—a
structure that conflicts with the idea of grouping dependent files together.

2.4.2 Selection Criteria

To ensure a certain quality of the reference decomposition, we chose the set
of sample projects carefully: We look at project and code quality metrics and
exclude those projects that show questionable results for one of the quality
metrics. The assumption behind this strategy is that the general project and
code quality is correlated with the quality of the package structure. We cannot
measure the quality of the package structure directly because metrics for this
purpose usually depend on structural dependencies (Melton and Tempero,
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2007, provide an overview on graph-property based package design measures).
Using those or evolutionary dependencies for the selection of software projects
could bias the results of the study towards the respective data source. In
particular, we take the following criteria into account:

Package Size: Software development experts agree that the size of a pack-
age should not exceed a certain limit—they disagree, however, on the quantity
of that limit (Melton and Tempero, 2007). Hansen et al (2011) analyzed 1 141
open source Java projects and found that a vast majority of projects has an
average beneath 18 classes per package (Hansen et al, 2011, Figure 8). Since we
only want to exclude those projects that are clear outliers, we take this value
as a threshold and require not more than 18 classes per package on average.

Comment Ratio: As a predictor of maintainability, the ratio of code
comments is an established measure of code quality (Arafat and Riehle, 2009).
It is, however, hard to name a fixed target range for this metric because the
ratio may vary depending on the programming language and the exact metric
definition used. Our strategy is here to simply exclude the three projects with
the smallest comment ratios. We measure the comment ratio employing the
tool CodeAnalyzer2.

Success: If the developers managed to implement a successful system,
the software design is likely to meet at least a certain standard. Following
this rationale, we consider success as an indicator of high design quality. Two
perspectives are taken into account: The number of downloads, which we could
retrieve for projects hosted at sourceforge.net, estimates the impact of the
system from an end-user perspective. Additionally, developers and experts are
covered by counting the people enlisted as users of the system at ohloh.net, a
directory of open source systems. To filter out the less successful projects, we
set the thresholds to at least 500 weekly downloads at sourceforge.net and 50
enlisted users at ohloh.net.

Other: In some cases, the nature of the project hints at a certain qual-
ity of the package structure. For instance, JHotDraw is a project primarily
developed as a reference for good software design3. Moreover, projects such
as development frameworks, extensible plug-in architectures, or libraries are
also likely to be designed carefully because other developers will have to rely
on a comprehensive structure of the code. We consider these kinds of extra
properties as positive quality indicators.

2.4.3 Project Selection

Table 2 documents the selection process of software projects. The columns of
the table show the quality metrics as defined above together with the condi-
tions that specify the desired ranges for each criterion. If a criterion is violated
for one of the projects, the respective value is printed in bold font. The projects
that finally made it into the selection are highlighted with gray background
color.

2 http://www.codeanalyzer.teel.ws/
3 http://www.jhotdraw.org/
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Table 2 Quality criteria for the initial list of software projects; conditions provide desired
ranges for the criteria; violations of the criteria are marked in bold font; considered projects
for the study are highlighted in gray

Project #C/pack. Comment ratio Downloadsa Usersb Other

Condition ≤ 18 > smallest three ≥ 500 ≥ 50

Azureus (Az) 6.9 18% 161 283 374

JEdit (JE) 31.1 29% 7 956 196 plug-in architecture

JFreeChart (JFC) 14.7 45% 3 953 117 library

JFtp 11.1 14% 121 0

JUnit (JU) 6.4 18% 1 608 1 245

Tomcat (Tom) 17.4 34% – c 1 360

Checkstyle (Che) 12.4 45% 763 303

Cobertura 5.2 15% 481 102

CruiseControl (CC) 10.9 37% 729 99

iText (iT) 16.8 39% 3 635 109 library

JabRef 13.5 23% 4 565 32

JHotDraw (JHD) 10.1 31% 70 2 reference design, library

LWJGL 20.9 38% 4 774 40 library

PMD 12.0 14% 1 529 220

Stripes 12.5 42% 145 24 framework

SweetHome3D 20.9 22% 146 016 5

TV-Browser 7.8 26% 8 185 27

Wicket (Wi) 7.2 47% – d 131 framework

a weekly downloads from sourceforge.net, retrieved 2012-01-09
b ohloh.net users, retrieved 2012-01-02
c Tomcat is not hosted at sourceforge.net
d moved to apache.org

In particular, our strategy for selecting the projects worked as follows:
Projects are considered if none of the condition is violated or if each violation
is compensated by an extra quality criterion (referenced in the last column).

This strategy leaves ten of eighteen projects: For instance, we did not
consider JFtp, one of the six projects of the previous study, due to various
violations of quality criteria (comment ratio, downloads, and users). But we
did consider JHotDraw despite of violations of the two success criteria—they
are compensated by strong extra evidence. Although we could not retrieve
download rates for Tomcat and Wicket, we included both projects because we
assumed for Tomcat that it not only has many users but is also downloaded
frequently, and because Wicket is a development framework.

3 Study

One of the main use cases of software clustering is architecture recovery. When
the architecture of a software system is totally undocumented or the documen-
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tation is just outdated, software clustering helps to retrieve the current archi-
tectural information. An automatically recovered architecture also supports
the developers to redesign a badly structured system.

The following study addresses this problem of architecture recovery. It eval-
uates the quality of a clustering decomposition in terms of its similarity to the
package structure as described in Section 2.3. This approach of retrieving the
already documented package structure by a clustering algorithm may sound
strange, but is an established assessment method for software clustering al-
gorithms (Mancoridis et al, 1999; Anquetil et al, 1999; Wu et al, 2005). The
goal is not to use this procedure in practical application, but to get a measure
for the quality of a clustering approach. To this end we need examples where
we already have a good reference. Outside our experimental environment, we
would of course apply the clustering algorithm to projects or subsystems with
no documented structure or an assumed bad structure.

The study consists of three experiments. Experiment 1 contrasts structural
and evolutionary dependency graphs in the application of software clustering.
Experiment 2 looks at the dependency quality in these graphs to better un-
derstand the previously gained results. Finally, Experiment 3 focuses on com-
bining both data sources. Each of the experiments explores different setups of
dependency graphs to find the best possible solution.

Table 3 Dependency graph sizes

Az Che CC iT JE JFC JHD JU Tom Wi

#Nodes 477 261 295 402 840 794 656 103 561 622

#Edges CIG 279 214 203 226 318 484 465 55 312 599

CAG 434 90 142 372 691 223 555 49 455 417

CUG 2269 786 1070 2656 4020 3714 3552 294 2207 3441

SCDG 2362 810 1177 2698 4117 3937 3668 306 2348 3596

ECDG0
0.0 6218 5178 6264 1466 29372 13922 9270 642 696 16054

ECDG0
0.2 1354 2162 1865 1204 8438 9512 6107 487 502 5434

ECDG0
0.4 727 1003 862 1005 4011 5427 3776 310 293 2736

ECDG0
0.6 345 547 355 784 2117 2478 2126 146 177 1557

ECDG0
0.8 277 378 267 704 1655 2063 1897 105 169 1202

ECDG1
0.0 2330 1378 2000 688 9430 2376 1288 138 84 4984

ECDG1
0.2 650 894 779 652 3289 1991 1043 116 63 2309

ECDG1
0.4 302 518 373 580 1542 1334 582 92 45 1142

ECDG1
0.6 172 303 213 531 888 930 424 71 25 636

ECDG1
0.8 104 134 125 451 426 515 195 30 17 281

ECDG2
0.0 1258 586 936 100 4538 696 388 42 24 2432

ECDG2
0.2 419 401 424 92 1713 588 340 33 23 1221

ECDG2
0.4 193 281 222 56 814 338 222 14 18 609

ECDG2
0.6 99 141 90 20 390 172 129 9 13 281

ECDG2
0.8 51 54 55 10 247 56 75 5 11 128
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Table 3 characterizes the dependency graphs of the studied software projects
in terms of numbers of nodes and edges. Comparing the simple structural de-
pendency graphs with respect to their edge density, the Class Usage Graph
(CUG) and the Structural Class Dependency Graph (SCDG) are far denser
than the Class Inheritance Graph (CIG) and the Class Aggregation Graph
(CAG). Thus, clustering might be harder using only inheritance or aggrega-
tion dependencies.

The Evolutionary Class Dependency Graph (ECDG) depends on two pa-
rameters, the support threshold and the confidence threshold. These two pa-
rameters can be considered as filters that are getting stronger (i.e., reducing
the number of dependencies) with increasing values. In Table 3, we are able to
confirm that the number of dependencies decreases for increasing support val-
ues as well as for increasing confidence values. Only the slightly filtered graphs
contain extensive dependency information. Since it is hard to define reasonable
threshold values in advance, the first two experiments will vary support and
confidence systematically. Finding a good filtering setup is a trade-off between
dependency reliability and dependency density.

3.1 Experiment 1: Simple Data Sources

The first experiment addresses the question whether it is possible to get mean-
ingful clustering decompositions using only structural or evolutionary data
sources: The experiment compares the clustering results for the CIG, CAG,
CUG, and SCDG to the ECDG in different filtering setups. Table 4 presents
the results of the experiment regarding the MoJoFM metric values for each
clustering setup. As mentioned in Section 2.2 repeated runs were performed
(n = 50) and averaged to increase the precision of the quality information.

A precision measure of average values is the standard error σ̂x (the standard
deviation of the mean values). In Table 4 and all following tables containing
clustering results, less precise MoJoFM values with a standard error of 0.5 ≤
σ̂x < 1.0 are marked with ’ and those with a standard error of 1.0 ≤ σ̂x
with *. The values that are not marked can be considered as stable across the
multiple runs of the clustering algorithm (σ̂x < 0.5). The upper bound of the
standard error completes each table. Moreover, we highlight the best overall
quality values in light gray and the best project specific ones in gray.

3.1.1 Results for Structural Graphs

Starting with the simple structural dependencies (CIG, CAG, and CUG), the
highest MoJoFM values, indicating a high agreement with the reference de-
composition, are mostly reached with the CUG. This fits with the observation
that the CIG and CAG usually do not contain as much information as the
CUG. There exist, however, some exceptions: For JUnit (JU) the quality of
the CIG, CUG, and CAG results are nearly equal although the CUG has much
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Table 4 MoJoFM clustering quality

n = 50, σ̂x ≤ 1.7 Az Che CC iT JE JFC JHD JU Tom Wi avg

CIG 30.2 46.0’ 54.3 51.1 42.0 35.4 37.2 28.5 32.8 51.2’ 40.9

CAG 28.6 25.2 30.3 48.0 47.1’ 14.3 17.8 21.6 35.8 23.2 29.2

CUG 52.4 52.0’ 51.2 66.3 63.5* 40.6’ 33.1’ 33.5 54.5’ 49.3’ 49.7

SCDG 49.9’ 55.1 52.5’ 66.7 65.5* 44.2 35.0’ 35.0 54.0’ 52.2’ 51.0

ECDG0
0.0 31.7 49.2’ 40.1’ 56.9 40.4 40.7 27.3 18.5 11.1 49.6’ 36.5

ECDG0
0.2 34.7 55.4 46.3 57.1 46.2 41.3* 28.1 19.4 11.1 54.9’ 39.4

ECDG0
0.4 35.6 55.4 43.2 57.8 47.0 43.2 28.9 20.7 11.3 53.4 39.6

ECDG0
0.6 33.6 51.6 36.9 57.4 47.2 40.9 28.7 21.1 11.4 47.8 37.7

ECDG0
0.8 32.6 43.6 37.1 57.5 45.9 39.8 28.3 20.6 11.4 41.7 35.9

ECDG1
0.0 29.0 50.5’ 36.4 53.0 36.5 29.1 17.8 18.2 8.0 44.1 32.3

ECDG1
0.2 30.7 53.7 37.8 53.0 40.0 29.3 18.2 17.5 8.0 46.1 33.4

ECDG1
0.4 31.3 49.9 35.8 53.0 39.6 28.2 17.5 17.5 7.5 42.6 32.3

ECDG1
0.6 29.6 44.5 30.7 52.8 37.5 26.5 17.1 18.3 6.9 36.4 30.0

ECDG1
0.8 27.0 34.1 27.0 51.5 36.9 20.9 13.7 13.4 6.8 25.6 25.7

ECDG2
0.0 27.3 40.6 31.1 47.1 32.9 13.8 10.6 11.0 6.4 31.8 25.3

ECDG2
0.2 27.3 40.3 32.0 47.0 34.6 14.2 10.2 9.9 6.4 32.5 25.4

ECDG2
0.4 28.0 37.0 31.0 46.5 32.8 12.9 9.9 11.0 5.8 30.2 24.5

ECDG2
0.6 27.1 33.8 22.0 45.4 30.9 11.7 9.5 9.9 5.8 25.3 22.2

ECDG2
0.8 23.3 25.2 17.5 44.6 30.0 6.8 8.6 8.8 6.0 16.7 18.7

Default1 16.3 11.5 8.7 42.2 15.7 1.8 3.3 3.3 4.1 2.3 10.9

Defaultm 11.3 1.2 3.2 2.1 0.4 2.8 5.9 4.4 2.1 10.7 4.4

more dependencies than the CIG and CAG (Table 3). For CruiseControl (CC),
JHotDraw (JHD), and Wicket (Wi) the CIG even outperforms the CUG.

The SCDG, as an aggregation of the CIG, CAG, and CUG, incorporates
the information from the three simple structural graphs and increases or at
least stabilizes the clustering quality of the simple data sources: The average
clustering quality of the SCDG (51.0) is clearly higher than the CIG and CAG
average values (40.9 and 29.2) and at least slightly higher than the CUG value
(49.7).

3.1.2 Results for Evolutionary Graphs

The ECDG0
0.4, which has a support threshold of 0 and a confidence threshold

of 0.4, produces the best average quality for evolutionary dependencies (39.6),
closely followed by the other evolutionary graphs with a support threshold of 0
(please recall that a threshold of 0 means that the support must be at least 1).
This clustering quality is in the range of the CIG (40.9), considerably better
than the CAG (29.7), but clearly lower than the CUG (49.7) and SCDG (51.0)
values.

These characteristics of the average value need not be valid for each of
the individual projects. For instance, the evolutionary clustering quality for
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the Tomcat (Tom) project is very low (5.8 to 11.4) and far from being com-
petitive to any structural dependency information. This is probably caused
by its sparse evolutionary class dependency graph (Table 3). In contrast, for
CruiseControl (CC), JFreeChart (JFC), and Wicket (Wi) the relation between
structural and evolutionary data sources is balanced—the best evolutionary
and structural results are nearly equal.

3.1.3 Default Clustering Decomposition

Additional to the clustering results, Table 4 lists two default quality metric
values in the last rows: Default1 represents a decomposition that consists of
only one huge cluster; Defaultm represents a decomposition that consists of
m = |C(S)| singleton clusters (i.e., each cluster contains only one class). These
values provide a reference for the MoJoFM values of a project.

The default decomposition qualities cover a wide range of MoJoFM val-
ues, from 0.4 (JEdit (JE), Defaultm) up to 42.2 (iText (iT), Default1). This
observation underpins clearly that comparisons of clustering results based on
MoJoFM are only valid for the same reference decomposition (i.e., the same
sample software project). The MoJoFM difference between a clustering and
the best default clustering gives a hint at the overall clustering quality. In con-
trast, taking the absolute value into account might be misleading. For instance,
the structural clustering seems to work better for JEdit (JE) (SCDG: 65.5;
Default1: 15.7) and Tomcat (Tom) (CUG: 54.5; Default1: 4.1) than for iText
(iT) (SCDG: 66.7; Default1: 42.2) although their best absolute MoJoFM val-
ues are similar. Regarding the evolutionary dependencies, only Tomcat (Tom)
does not exceed its default values clearly, but at least slightly.

Result 1 The usage graph, as well as the aggregated structural graph, out-
performs all other data sources. The slightly filtered evolutionary dependencies
produce results similar to the inheritance dependencies and better than aggrega-
tion dependencies. In nine of ten cases these evolutionary decompositions seem
to be meaningful as their results exceed the default decompositions clearly.

3.2 Experiment 2: Dependency Quality

Support and confidence are established metrics to measure the strength of evo-
lutionary dependencies. This second experiment investigates whether stronger
evolutionary dependencies are more reliable for software clustering. Further-
more, we want to examine the interplay between reliability and density of
evolutionary dependencies.

We call the edges of a dependency graph that connect classes of the same
package intra-edges. They enable the clustering algorithm to retrieve the pack-
age structure. In contrast, edges that connect classes from different packages
influence the clustering result negatively. Hence, the percentage of intra-edges
among all edges of the graph provides a measure of the dependency reliability
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for software clustering. This measure is independent of the total amount of
available dependencies. Table 5 lists the values of this intra-edge ratio (first
value) for the previously used set of graphs. Additionally, the data density is
expressed as the percentage of nodes with at least one in- or outgoing edge
(second value), which we denote as node coverage.

Table 5 Percentage of package intra-edges (first value) and node coverage (second value)

(% values) Az Che CC iT JE JFC JHD JU Tom Wi avg

CIG 25;60 39;84 37;72 73;59 70;44 69;50 59;61 31;54 47;51 53;88 50;62

CAG 42;52 60;32 72;45 77;56 81;64 41;29 39;48 51;37 46;61 44;50 55;47

CUG 32;98 39;99 32;96 65;98 59;99 27;97 23;85 33;84 35;94 26;99 37;95

SCDG 31;99 40;99 31;98 65;99 59;100 29;98 24;86 33;84 35;94 27;100 38;96

ECDG0
0.0 16;54 37;95 32;87 77;34 23;65 40;66 20;63 14;48 30;15 24;94 31;62

ECDG0
0.2 32;54 57;94 46;86 82;34 36;64 47;66 24;63 16;48 31;15 42;93 41;62

ECDG0
0.4 39;51 76;89 51;83 83;33 43;64 54;64 27;63 16;48 35;14 50;90 48;60

ECDG0
0.6 45;45 86;72 63;65 95;30 51;62 67;57 32;62 19;43 37;14 58;78 55;53

ECDG0
0.8 47;39 84;60 65;52 95;28 53;60 63;56 30;61 16;40 37;14 56;65 55;47

ECDG1
0.0 19;40 62;67 49;62 98;16 29;49 78;36 36;31 26;31 48;06 38;71 48;41

ECDG1
0.2 36;39 77;66 66;61 98;16 43;49 83;36 41;31 27;30 46;06 56;71 57;41

ECDG1
0.4 45;34 86;59 70;57 99;16 54;48 89;34 49;30 27;29 49;06 64;63 63;38

ECDG1
0.6 45;30 90;49 69;44 98;15 65;45 94;32 52;29 24;28 56;04 70;53 66;33

ECDG1
0.8 51;21 90;30 77;28 100;11 83;41 99;22 65;20 20;22 71;03 75;32 73;23

ECDG2
0.0 20;32 72;42 59;43 100;07 33;39 85;16 47;14 24;13 67;03 45;50 55;26

ECDG2
0.2 36;31 86;42 77;41 100;07 47;39 87;15 49;14 24;13 65;03 62;50 63;26

ECDG2
0.4 44;27 89;38 76;37 100;07 59;38 87;14 49;13 29;13 61;02 69;44 66;23

ECDG2
0.6 45;21 93;30 78;21 100;05 76;34 98;12 50;11 33;12 69;02 81;34 72;18

ECDG2
0.8 49;13 98;17 87;10 100;04 90;31 100;05 52;09 20;09 82;02 91;18 77;12

3.2.1 Dependency Reliability

The average values in the last column of Table 5 show similar average intra-
edge ratios for the structural graphs, ranging from 38% to 55%, and more
varying ratios for evolutionary graphs, ranging from 27% to 77%. The lower
reliability of totally unfiltered evolutionary dependencies explains their lower
clustering quality in the previous experiment. With a stronger filter setup, the
evolutionary dependencies, however, provide better dependency reliability. But
this does not automatically imply better clustering results.

3.2.2 Dependency Density

Although we covered considerable time spans of development, the average
node coverage rate of the evolutionary dependencies is 62% at most. In other
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words, on average there is no evolutionary information available for 38% of the
system. We had to ignore the initial check-in because it does not provide any
reliable co-change information and the developers just did not change the files
in the considered time span (see Table 1). In contrast, the CUG and SCDG
nearly cover the whole system: their average node coverage rate is 95% (CUG)
and 96% (SCDG)—the remaining nodes could be dead code, code loaded by
reflections, or code only containing constants or meta-information.

The low coverage rates of the evolutionary dependencies are clearly the
main problem of a clustering approach exclusively based on this kind of data:
Many parts of the system just do not get changed over years. Assuming that
classes that frequently changed in the past will also frequently change in the
future, those are much more relevant in many software clustering applications.
The evolutionary dependencies at least cover these potentially critical parts of
the system. Nevertheless, structural dependencies obviously remain the first
choice when complete coverage is important.

3.2.3 Filtering

The general trend with respect to the intra-edge percentages shows that the
dependency reliability increases significantly at the costs of lower coverage
rates. In contrast, varying the support only enhances the reliability moderately,
but decreases the coverage rate faster. All in all, filtering by confidence seems
to be more successful for the application of software clustering than filtering
by support.

When looking at the single projects, we also observe outliers to these gen-
eral tendencies: For instance, filtering evolutionary dependencies with a cer-
tain confidence value decreases the intra-edge ratio in the JUnit (JU) project.
These counter-trend anomalies seem to be more frequent for stronger filtering
setups, where the evolutionary information is already sparse.

Result 2 The dependency density, not the dependency reliability, is the main
problem of the evolutionary dependencies and explains their lower clustering
quality. Nevertheless, it is important to filter the evolutionary data to exclude
unreliable dependencies. Filtering by confidence works better than filtering by
support.

3.3 Experiment 3: Combined Data Sources

Clustering exclusively based on evolutionary data was only partly successful
because the data density is often too low for a complete clustering. Since the
data quality of the filtered evolutionary dependencies is good, yet sparse, in
this experiment we integrated the evolutionary dependencies into the dense
structural data to improve the overall clustering results.

For this experiment we only considered a subset of the previously used
graphs because the expected extra gain would not justify the extra effort of
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combining each of the four structural graphs with each of the 15 evolution-
ary graphs. SCDG, as the provider of the best structural clustering result,
will be the representative of the structural graphs while the following selec-
tion of evolutionary graphs represents the evolutionary data: the raw data
(ECDG0

0.0), the best setup in the first experiment (ECDG0
0.4), two trade-offs

between reliability and coverage (ECDG0
0.8 and ECDG1

0.4), and a setup focus-
ing on reliability (ECDG1

0.8).

3.3.1 Simple Union

A straightforward method to integrate structural and evolutionary dependen-
cies is a union operation on graphs.

Definition 5 Given two unweighted directed graphs, G1 = (V,E1) and G2 =
(V,E2), the graph union operation ∪ applied to G1 and G2 creates an
unweighted directed graph

G1 ∪G2 := G3 = (V,E3)

with E3 := E1 ∪ E2 (here, ∪ denotes the normal set union operation).

Table 6 presents the new clustering results for the combined data sources
and contrasts them to the results of the first experiment. Please recall the
usage of the symbols ’ (standard error of 0.5 ≤ σ̂x < 1.0) and * (standard
error of 1.0 ≤ σ̂x).

Table 6 MoJoFM clustering quality based on combined structural and evolutionary de-
pendency graphs using the union operation

n = 50, σ̂x ≤ 2.2 Az Che CC iT JE JFC JHD JU Tom Wi avg

SCDG 49.9’ 55.1 52.5’ 66.7 65.5* 44.2 35.0’ 35.0 54.0’ 52.2’ 51.0

ECDG0
0.0 31.7 49.2’ 40.1’ 56.9 40.4 40.7 27.3 18.5 11.1 49.6’ 36.5

ECDG0
0.4 35.6 55.4 43.2 57.8 47.0 43.2 28.9 20.7 11.3 53.4 39.6

ECDG0
0.8 32.6 43.6 37.1 57.5 45.9 39.8 28.3 20.6 11.4 41.7 35.9

ECDG1
0.4 31.3 49.9 35.8 53.0 39.6 28.2 17.5 17.5 7.5 42.6 32.3

ECDG1
0.8 27.0 34.1 27.0 51.5 36.9 20.9 13.7 13.4 6.8 25.6 25.7

SCDG∪ECDG0
0.0 48.4’ 51.0 46.4 65.0’ 54.8* 53.1 36.1’ 28.2 51.7’ 50.9’ 48.6

SCDG∪ECDG0
0.4 50.6’ 59.8 52.7 65.7 63.7* 55.9 39.7 31.9 56.1 58.4’ 53.4

SCDG∪ECDG0
0.8 52.7 60.4’ 54.2 67.8 68.7’ 53.3* 37.4’ 34.4 55.9 56.9’ 54.2

SCDG∪ECDG1
0.4 52.3 63.0 50.6’ 68.9 64.6* 56.0 38.1 32.7 57.0 57.8’ 54.1

SCDG∪ECDG1
0.8 52.6 59.7 54.3 68.1 64.1* 50.5’ 37.3 35.1 56.6 55.4 53.4

Combining structural and filtered evolutionary dependencies by using the
simple union operation improves the average clustering quality from 51.0
(SCDG) to 54.2 (SCDG∪ECDG0

0.8). It can be rejected with sufficient con-
fidence that this could be a random effect: We compared the results of the
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SCDG and the results of all combined graphs including filtered evolutionary
information. The latter seem to perform better than the SCDG; a Friedman
Test—a non-parametric statistical test for independent measures—rated the
difference as statistically significant (p = 0.014; significance level: 5%).

In contrast to Experiment 1, a stronger filtering of evolutionary dependen-
cies provides the best results (Experiment 1: ECDG0

0.4; current experiment:
SCDG∪ECDG0

0.8). When combining data sources, the reliability of evolution-
ary dependencies seems to be more important than their coverage. Integrating
unfiltered evolutionary dependencies even decreases the clustering quality from
51.0 to 48.6 for the ten analyzed projects.

Result 3 The quality of a clustering based on structural dependencies in-
creases when integrating filtered evolutionary dependencies.

3.3.2 Weighted Union

Both structural as well as evolutionary dependency information may be flawed:
A particular structural dependency may exist because a developer has mis-
placed a method. Similarly, a particular evolutionary dependency may exist
because two classes were changed coincidentally at the same time. But if both
dependencies link the same two classes, it is unlikely that this happens just
by chance. An analysis of the dependency quality in terms of intra-edge ratios
(compare to Experiment 2) shows the importance of this effect.

Table 7 presents the intra-edge and node coverage results for duplicate
dependencies—i.e., dependencies included in the intersection of both original
graphs, which we define analogously to the union operation: (V,E1)∩(V,E2) :=
(V,E1∩E2). The intra-edge ratio of the duplicate dependencies (49% to 74%) is
clearly higher than the intra-edge ratio of the original dependencies (structural:
38%; evolutionary: 31% to 73%). Moreover, the intersection still covers 8% to
42% of the nodes. If those nodes can be clustered better, this might make a
difference for the clustering result. Thus, we try to use this increased reliability
to improve the clustering results.

After integrating both data sources with the union operation, the rele-
vance of all dependencies is identical. To exploit the more reliable duplicate
dependencies, we introduce a dependency importance implemented as an edge
weight. An extended union operation on graphs allows assigning a higher edge
weight to duplicate dependencies. We will denote the resulting three sets of
dependencies as dependency groups in the following.

Definition 6 Given two unweighted directed graphs, G1 = (V,E1) and G2 =
(V,E2), the weighted graph union operation ∪[a,b,c] with a, b, c ∈ R ap-
plied to G1 and G2 creates a weighted directed graph

G1 ∪[a,b,c] G2 := (V,E3, µ)
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Table 7 Percentage of package intra-edges (first value) and node coverage (second value)
for duplicate dependencies

(% values) Az Che CC iT JE JFC JHD JU Tom Wi avg

SCDG 31;99 40;99 31;98 65;99 59;100 29;98 24;86 33;84 35;94 27;100 38;96

ECDG0
0.0 16;54 37;95 32;87 77;34 23;65 40;66 20;63 14;48 30;15 24;94 31;62

ECDG0
0.4 39;51 76;89 51;83 83;33 43;64 54;64 27;63 16;48 35;14 50;90 48;60

ECDG0
0.8 47;39 84;60 65;52 95;28 53;60 63;56 30;61 16;40 37;14 56;65 55;47

ECDG1
0.4 45;34 86;59 70;57 99;16 54;48 89;34 49;30 27;29 49;06 64;63 63;38

ECDG1
0.8 51;21 90;30 77;28 100;11 83;41 99;22 65;20 20;22 71;03 75;32 73;23

SCDG∩ECDG0
0.0 37;50 60;83 39;82 82;30 55;63 59;45 36;50 42;44 45;11 38;90 49;55

SCDG∩ECDG0
0.4 60;29 78;41 56;41 86;24 72;49 58;27 50;34 38;33 42;08 62;55 60;34

SCDG∩ECDG0
0.8 63;15 81;18 71;18 94;18 87;40 56;11 55;19 46;17 40;05 76;24 67;18

SCDG∩ECDG1
0.4 61;21 82;27 60;26 100;11 74;37 70;13 54;11 37;19 58;03 56;38 65;21

SCDG∩ECDG1
0.8 58;09 84;07 65;10 100;07 93;28 75;03 73;03 20;06 100;01 68;11 74;08

where (V,E3) = G1 ∪G2 and µ : E3 → R is a weight function defined as

µ(e) :=


a if e ∈ E1 ∧ e 6∈ E2

b if e ∈ E1 ∧ e ∈ E2

c if e 6∈ E1 ∧ e ∈ E2

Note that this definition allows weights of 0, which will result in ignoring
the corresponding dependencies in the clustering process. A weighted union
with weights of 1 for all three parameters is equivalent to the simple union.

These weights influence the Bunch clustering tool, or more exactly, its
internal quality metric. To emphasize the importance of the duplicate depen-
dencies, their weight should be higher than that of the non-duplicate depen-
dencies. To make a clear difference, we set the weight of the duplicate ones to
4 while the other edge weights stay 1. This setup is reflected in the weighted
union operation ∪[1,4,1]. Table 8 compares the clustering results based on this
weighted union operation to the previous results.

The clustering qualities of the weighted combinations enhance slightly in
comparison to the non-weighted combinations. This effect is statistically signif-
icant as a Wilcoxon Test4 that compares the project average of non-weighted
union clustering results to the equivalent average of weighted union results
shows (p = 0.022; significance level: 5%). The best clustering result increases
from 54.4 to 55.3. The largest differences can be, however, observed for the
non-filtered evolutionary dependencies (from 48.6 to 52.9). In general, using
the weighted union enlarges the difference between the best combined strat-
egy and the exclusively structural clustering (SCDG: 51.0; SCDG∪ECDG0

0.8:
55.3).

4 The Wilcoxon Test is used instead of a Friedman Test when only comparing two variables
instead of three or more.
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Table 8 MoJoFM clustering quality based on combined structural and evolutionary de-
pendency graphs using the weighted union operation ∪[1,4,1]

n = 50, σ̂x ≤ 2.2 Az Che CC iT JE JFC JHD JU Tom Wi avg

SCDG 49.9’ 55.1 52.5’ 66.7 65.5* 44.2 35.0’ 35.0 54.0’ 52.2’ 51.0

SCDG∪ECDG0
0.0 48.4’ 51.0 46.4 65.0’ 54.8* 53.1 36.1’ 28.2 51.7’ 50.9’ 48.6

SCDG∪ECDG0
0.4 50.6’ 59.8 52.7 65.7 63.7* 55.9 39.7 31.9 56.1 58.4’ 53.4

SCDG∪ECDG0
0.8 52.7 60.4’ 54.2 67.8 68.7’ 53.3* 37.4’ 34.4 55.9 56.9’ 54.2

SCDG∪ECDG1
0.4 52.3 63.0 50.6’ 68.9 64.6* 56.0 38.1 32.7 57.0 57.8’ 54.1

SCDG∪ECDG1
0.8 52.6 59.7 54.3 68.1 64.1* 50.5’ 37.3 35.1 56.6 55.4 53.4

SCDG∪[1,4,1]ECDG0
0.0 53.6’ 58.4 49.9 65.5’ 64.7* 52.1* 39.1 35.1 52.6’ 57.4 52.9

SCDG∪[1,4,1]ECDG0
0.4 52.8’ 63.0 53.4 67.9 67.9* 54.8’ 39.7 33.2 55.1’ 60.5 54.8

SCDG∪[1,4,1]ECDG0
0.8 52.7’ 60.5 55.4 69.0’ 71.1’ 54.4’ 38.4 37.1 55.4 58.8 55.3

SCDG∪[1,4,1]ECDG1
0.4 53.1’ 63.2 53.7 67.1’ 69.0* 54.8’ 37.8 34.8 55.3’ 59.4 54.8

SCDG∪[1,4,1]ECDG1
0.8 52.8 59.6 53.4* 67.0’ 70.4’ 50.0’ 37.2 34.9 56.2 56.9 53.9

Result 4 The reliability of duplicate dependencies is better than the reliability
of general structural or evolutionary dependencies. The clustering results show
that emphasizing these duplicate dependencies in the integration of structural
and evolutionary data improves the clustering slightly further.

3.3.3 Parameter Optimization

The weights in the previous experiment were derived from theoretical con-
siderations. Nevertheless, better weighting setups may exist, which should be
found by systematically varying the weights in a reasonable range. The follow-
ing sub-experiment implements such a weight optimization by comparing the
clustering qualities of differently weighted combined graphs.

To get results in due time, we decided to vary the weights in five steps,
resulting in 53 = 125 different weight setups. While the SCDG stands for
the structural data, the ECDG0

0.8, which has produced the best results in
combination with the SCDG up to now, represents the evolutionary data.
The search space is covered by the set of weights {0, 1, 2, 4, 8} for each weight
parameter.

Table 9 documents the parameter optimization experiment by a selection
of the best twelve clustering results with respect to the average MoJoFM
similarity.

The first and most important conclusion from the results is that the clus-
tering quality does not improve in comparison to the weighted union ∪[1,4,1]
(∪[2,8,2] is equivalent and produces similar results—slight variations are due to
the random aspect in Bunch). This confirms our preliminary considerations
on emphasizing the duplicate dependencies. Nevertheless, one should not over-
state their importance: ∪[1,8,1] is already rated lower.

Additionally, we analyzed the entire list of 125 setups and observed some
further trends:
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Table 9 Best MoJoFM clustering qualities based on the combined SCDG and ECDG0
0.8

using the weighted union operation in different setups

n = 50, σ̂x ≤ 1.8 Az Che CC iT JE JFC JHD JU Tom Wi avg

SCDG∪[1,4,1]ECDG0
0.8 52.7’ 60.5 55.4 69.0’ 71.1’ 54.4’ 38.4 37.1 55.4 58.8 55.3

SCDG∪[2,8,2]ECDG0
0.8 53.2 60.2 55.0’ 69.0’ 71.4’ 54.0’ 38.7 37.3 55.9 58.2 55.3

SCDG∪[1,8,1]ECDG0
0.8 51.2* 60.1’ 56.8 68.5 70.7* 53.4* 38.0 36.4 56.4 57.3 54.9

SCDG∪[1,2,1]ECDG0
0.8 52.6 61.2 55.3’ 70.2 69.3* 53.1* 38.6 35.3 56.1 56.6* 54.8

SCDG∪[2,4,2]ECDG0
0.8 52.3’ 60.0’ 54.9 68.1’ 70.0’ 54.9 38.2 35.2 55.6 58.5 54.8

SCDG∪[4,8,4]ECDG0
0.8 53.1 60.7 54.8’ 69.8 70.7 53.8’ 38.2 34.9 54.8’ 57.3’ 54.8

SCDG∪[1,8,2]ECDG0
0.8 50.9’ 58.2’ 56.2 67.7 69.3* 55.4’ 38.0 36.5 56.9 58.1 54.7

SCDG∪[2,2,2]ECDG0
0.8 52.2 61.2 53.6 67.5 69.4 54.3 38.0 34.3 56.2 58.6 54.5

SCDG∪[2,8,1]ECDG0
0.8 53.4 58.4 55.7’ 69.2’ 69.2* 51.1’ 38.3 35.9 55.4 56.9 54.4

SCDG∪[4,4,2]ECDG0
0.8 53.0 60.1 55.1 69.0 69.7’ 52.1 38.6 36.3 54.9 55.7’ 54.4

SCDG∪[4,8,2]ECDG0
0.8 52.6’ 59.5 56.0 69.4’ 70.8’ 51.1’ 38.1 34.7 55.4 56.0’ 54.4

SCDG∪[8,8,8]ECDG0
0.8 51.8’ 61.5 53.5 66.8’ 69.6 54.5 38.2 34.1 55.4 58.3 54.4

. . .

– Ignoring one of the dependency groups does not produce good clustering
results. Setups that consider all groups (no weight is 0) reach an average
quality of 53.7. Leaving out exclusively structural dependencies (only the
first weight is 0) produces the worst results of 35.6. Since the other two
groups are much smaller, omitting exclusively evolutionary or duplicate
dependencies is not as dramatic (exclusively evolutionary: 51.4; duplicate:
53.2).

– Comparing all combinations that consider all dependency groups, setups
where the weight of the duplicate dependencies is among the highest per-
form slightly better (54.1) than setups where it is among the lowest weights
(53.7).

– The importance of the structural-only dependencies is about equal to the
importance of the evolutionary-only dependencies. An average over all se-
tups shows that setups with a higher structural than evolutionary weight
produce an average quality of 53.5 while setups with a higher evolutionary
than structural weight produce a quality of 53.2. But as we observed in
further experiments, a different filtering setup could change this relation.

Result 5 Each of the dependency groups is valuable. The parameter optimiza-
tion underlines again that duplicate dependencies are most important. The best
weight distribution of exclusively structural and evolutionary dependencies de-
pends on the strength of the evolutionary filtering.

3.4 Detailed Analysis

The results presented so far draw general conclusions by summarizing the
quality of the clustering decompositions on a high level of abstraction. In
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this section we deepen our understanding of these results by picking up in-
teresting parts of the results and finding reasons that explain the particular
phenomenon.

The MoJoFM metric provides a measure to estimate the quality of a clus-
tering decomposition. Nevertheless, it is hard to judge the practical appli-
cability of a clustering decomposition by just looking at its MoJoFM value.
Hence, our first step will be to relate the metric values to a more intuitive
representation in a small example.

When comparing the clustering decomposition to the package structure,
it would be interesting to know which package is matched by which cluster.
Thus, we identify the most similar cluster among all clusters of the cluster-
ing decomposition for each package. An appropriate metric to estimate the
similarity of a package and a cluster—two sets of classes—is the Jaccard co-
efficient. It measures the size of the overlap in relation to the total size of the
package and the cluster. When the package represents a set of classes A and
the cluster a set of classes B, the Jaccard similarity coefficient can be formally
defined as

sim(A,B) :=
|A ∩B|
|A ∪B|

.

A similarity value of 0.5, for instance, means that the classes contained in
both the package and the respective cluster cover 50% of the union of package
and cluster. In the following we denote package–cluster pairs as well-matched
for a Jaccard similarity of more than 0.75, reasonably-matched of more than
0.5, partly-matched of more than 0.25, and non-matched for worse similarity
values.

Table 10 shows an example where we compared the main packages of the
Azureus project to three different clustering decompositions—a structural-
based one (SCDG), an evolutionary-based one (ECDG0

0.4), and a combined
one (SCDG∪[1,4,1]ECDG0

0.8). Since we have to use a concrete clustering de-
composition here, we cannot summarize multiple runs of the clustering al-
gorithms as done before. Instead, we just take a random example out of all
created clustering decompositions. For each of the main packages, we provide
the Jaccard similarity values to the two most similar clusters in the clustering
decomposition. For choosing the second cluster, we ensured that it is neither
a subset nor a superset of the first cluster.

In Table 10, the Jaccard similarity values above 0.25 (partly-matched) are
highlighted in light gray and above 0.5 (reasonably-matched) in gray. The sec-
ond similarity value provides a clue how the rest of the package not covered
by the best-matching cluster is matched—two values, both higher than 0.25,
also indicate a sound clustering result. For instance, in the clustering decom-
position based on the structural information (Table 10, left), three packages
are reasonably-matched and two further ones partly. While the combined re-
sults are similar (Table 10, right), the evolutionary dependency results cannot
compete with these results (Table 10, middle). These observations match the
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Table 10 Best-matching clusters for the main packages of the Azureus project

Package SCDG ECDG0
0.4 SCDG∪[1,4,1]ECDG0

0.8

1st 2nd 1st 2nd 1st 2nd

disk 0.68 0.07 0.24 0.10 0.73 0.15

download 0.52 0.09 0.26 0.09 0.44 0.23

peer 0.43 0.19 0.29 0.13 0.32 0.26

torrent 0.39 0.35 0.22 0.15 0.46 0.35

tracker 0.53 0.19 0.43 0.13 0.50 0.27

util 0.23 0.19 0.21 0.18 0.25 0.20

results based on the MoJoFM metric for the Azureus project (Table 4 and
Table 8).

The packages with a higher similarity coefficient for structural information
are probably cohesive because the clustering algorithm is able to retrieve them
to some extent. But still they could not be perfectly confirmed by the algo-
rithm. Since the top similarity values do not increase, integrating evolutionary
information does not clearly change the situation. Hence, we took the disk

package, which provides the best results for structural and combined informa-
tion, and investigated why some of its classes could not be added to the correct
cluster. Our observation is that the rest of the disk package builds a small
cluster on its own (the second similarity value in the columns for combined
information of Table 10). This part of the package is somewhat more related
to the download package than to the rest of the disk package. Probably, the
designers of the system could have as well assigned the respective classes to
the download package. The algorithm cannot be expected to solve such an
ambiguous situation.

Beyond analyzing a single project, the approach of finding best-matching
clusters for important packages can be extended to covering all projects. We
take into account all packages that at least contain 10 classes but do not
cover more than 50% of the project. Those are compared to one clustering
decomposition per project and data source. Figure 1 summarizes the retrieved
Jaccard similarity values for the best-matching cluster for each of the packages.
Each of the three depicted histograms represents one data source.

The histograms in Figure 1 confirm the results derived from the MoJoFM
values (Table 4 and Table 8): Structural as well as combined structural and
evolutionary dependencies provide clustering results that match the package
structure best. The clusters produced by only employing evolutionary infor-
mation cannot compete as the lower similarity values suggest. Comparing the
first and the third histogram, the main difference seems to consist of the much
lower first bar and the much larger second bar in the third histogram. That
means, combining the data sources mainly improves the retrieval of the pre-
viously non-matched packages but only slightly improves the results of the
already partly- and reasonably-matched packages. This observation provides
a more comprehensive illustration of what a MoJoFM improvement from 51.0
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Fig. 1 Jaccard similarity distribution for the best-matching clusters of the packages of all
analyzed software projects

(SCDG) to 55.3 (SCDG∪[1,4,1]ECDG0
0.8) can mean. Clustering applications

where it is important to find a reasonable cluster for every class could consid-
erably profit from the combined data sources.

Finally, we want to find reasons why some of the packages do not have
a matching counterpart in the clustering hierarchy. For the Azureus project,
the util package embodies such an example (Table 10). In the histograms
that summarize all projects, we look at the non-matched packages. (Figure 1,
first bar). The results of the combined dependency graphs still include 39 such
packages (Figure 1, right). We found explanations for 27 of the 39 packages
why they could not be matched:

– Eight packages are utility packages, which are hard to retrieve by a dependency-
based software clustering algorithm because of their inherent structure: The
joint characteristic of the classes in such a package usually is that they are
accessed from all over the project without having dependencies to classes
outside the utility package—they are not highly cohesive themselves. Such
omnipresent clusters like utility packages, however, can be detected in a
preprocessing step (Wen and Tzerpos, 2005). Further eight non-matched
packages of JHotDraw have a similar non-cohesive structure because they
aggregate sample code.

– The granularity of the hierarchical clustering decomposition does not al-
ways match the granularity of the package structure. The absence of a
matching level of granularity explains why further eight of the 39 pack-
ages could not be appropriately retrieved. Many of the affected packages
belong to the JEdit project, where the clustering algorithm already splits
the system into 108 clusters on the first level of the hierarchical decompo-
sition. Hence, the clusters are much too fine-grained for matching one of
the larger packages of the system. Forcing the algorithm to add another,
more coarse-grained layer of clusters would probably solve this issue.
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– Further three non-matched packages are part of the JFreeChart project.
In this project, test classes are mixed with normal classes. The clustering
algorithm tends to cluster these test classes together. In the package struc-
ture, the developers, however, assigned test classes to the classes that are
tested. Hence, the three non-matched packages could be largely blamed to
these two different paradigms to handle test classes.

These analyses showed that the intuitive and detailed comparison of pack-
ages and clusters confirmed the general results proposed by the MoJoFM val-
ues: The results are much better for structural and combined data sources than
for evolutionary dependencies. It is interesting to observe that the combina-
tion does not uniformly improve the results, but mainly reduces the number
of non-matched packages, which can be important in many practical applica-
tions. Several of the still non-matched clusters can be explained by repairable
deficiencies of the clustering algorithm.

3.5 Summary

In the three clustering experiments and the subsequent detailed analysis we
observed that software clustering can produce meaningful results based on
structural as well as on evolutionary data: The results clearly exceed the de-
fault decompositions in nearly all cases. The overall quality of the clustering
results based on these individual data sources is, however, much better for
two of the structural dependency types (usage and aggregated structural de-
pendencies). Analyses of the dependency quality and density showed that the
lower clustering quality of the evolutionary dependencies can probably be at-
tributed to their sparse node coverage (62% for unfiltered dependencies; lower
for filtered dependencies).

Combining structural and evolutionary dependencies improves the cluster-
ing results—even slightly more when giving dependencies that mutually appear
in both graphs a higher weight. While these improvements are statistically sig-
nificant, the detailed analysis illustrated the effect of the improvement: Many
previously non-matched packages are at least partly matched in the clustering
results of the combined data sources. Depending on the particular software
clustering application, this could be an important advantage.

4 Threats to Validity

This section discusses the validity of our empirical approach. Following Cook
and Campbell (1979) we distinguish conclusion validity, internal validity, con-
struct validity, and external validity.

Conclusion Validity—Is there a relationship between the varied input and
the observed outcome?



On the Impact of Software Evolution on Software Clustering 29

We systematically varied the input by testing different dependency graphs.
Differences in the results can be either attributed to these changes of the in-
put or to random effects. We applied inference statistics and could verify the
statistical significance of the result wherever a general result was not certain.
Nevertheless, we also report observations specific to single projects or to a par-
ticular aspect of the input that did not undergo such a thorough investigation.
These observations have to be considered only as preliminary findings.

Internal Validity—Is the observed relationship causal?
Our approach to measure the impact of different data sources on the ap-

plication of software clustering is indirect and employs several heuristics. Al-
though, our goal was to design a fair study, which does not bias the result in
any direction, we cannot guarantee perfect fairness. Possibly, each step in the
experimental design could bias the result, for instance:

– The clustering algorithm might work better on dependency graphs having
certain structures. Studying the evaluation of Bunch (Mitchell and Man-
coridis, 2007), we did not, however, find any hints pointing in this direction.

– Using existing package structures as a reference comes along with some
problems: It assumes that there exists a single optimal solution to the
clustering problem. It furthermore takes only the structure into account as
it is, and not as it should be. Nevertheless, we still believe this external as-
sessment approach to be the most appropriate evaluation method available
for our scenario (Section 2.3) and also tried to enhance the approach by
selecting only those software projects that show certain quality attributes
(Section 2.4).

– The clustering assessment only considers parts of the data: The approach is
based on flat decompositions and hence ignores the hierarchical structure
of the packages as well as of the clustering decomposition. By selecting the
level in the clustering decomposition that matches best the lowest level of
the package structure, we target at preserving the most significant infor-
mation; but the result only reflects the probably best part of the clustering
decomposition.

Construct Validity—Do we measure the constructs as intended?
The dependency graphs as defined in Section 2.1 may not model the theo-

retical construct of structural and evolutionary dependencies as intended. At
least we used definitions similar to those used in literature. Furthermore, from
a pragmatic point of view, everything that improves the clustering result is of
interest.

Comparing two hierarchies and computing their similarity is far from being
trivial. Although relatively intuitive and often applied, MoJoFM may not
measure as expected the similarity of the clustering result to the reference
decomposition.

External Validity—Are the results generalizable?
By default, the results of a study are only valid for the examined subjects—

here, for the sample software projects in a certain version. The current study is
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based on ten different software projects that cover a wide range of application
types, however restricted to Java projects of less than 1000 classes. Neverthe-
less, the study is one of the most extensive studies in software clustering—only
a few studies examine more software projects (Mitchell and Mancoridis, 2001,
2007) or larger projects (Beyer and Noack, 2005; Wu et al, 2005). Due to the
wide range of studied software projects, the findings are generalizable to some
extent and might be a good indication for other Java projects and at least a
weak indication for general software projects.

Improving the clustering results of Bunch does not directly imply that this
is also possible for other clustering approaches in the same way. It, however,
is an indicator of an increased data quality for software clustering integrating
structural and evolutionary data sources. Possibly, other approaches might
also be able to use this potential improvement of data quality to produce
better clustering results—replicating the experiment using other clustering
techniques would be necessary to confirm this assumption.

Similarly, the use case of architecture recovery limits the validity of the
results. Nevertheless, it is plausible that other use cases of software clustering
would also profit from the applied approach of integrating structural and evo-
lutionary dependencies. Especially, applications where completeness is not a
prime requirement are predestined for the usage of evolutionary dependencies.

Moreover, the study only showed that it is possible to improve the clus-
tering results by a certain setup, but it cannot make any statements about
to what degree the potential of the data sources is already used. Although
we aimed at using a high quality clustering setup, it may be possible to get
much better results in a different setup (e.g., with a different data integration
method or other clustering parameters).

5 Consolidation of Results

Recently, several research groups came up with approaches that compare and
try to exploit different types of code dependencies similar to the approach
presented in this paper. Since code dependencies are used in diverse software
engineering applications, these approaches follow different goals but are based
on similar ideas and observations. In this section we want to consolidate our
results and the results of these related approaches. A brief survey may reveal
additional support for particular results or hint at controversial findings.

5.1 Comparing Structural and Evolutionary Dependencies

The relevance of structural and evolutionary dependencies in software design
can be traced back to two basic design paradigms for modular software: in-
formation hiding (Parnas, 1972) and the principle of low coupling and high
cohesion (Stevens et al, 1974). Information hiding advocates hiding design
decisions into modules—co-changes occurring mainly within module borders
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would be the consequence. In contrast, low coupling between the different mod-
ules and high cohesion within a module address the structural dependencies
among the elements of the modules.

Software Clustering: As already mentioned, structural and evolutionary
information have been already collectively applied in software clustering (An-
dritsos and Tzerpos, 2005; Sindhgatta and Pooloth, 2007; Wierda et al, 2006).
Since these approaches also introduce new software clustering techniques, the
comparison of the two data sources is only a by-product. In contrast, our work
consequently focuses on investigating the relation between the two coupling
types in this application scenario. But especially the approach by Sindhgatta
and Pooloth (2007) is closely related to ours as it is also based on co-change
data derived from the transactions of the versioning system. Instead of trans-
forming transactions into dependencies, they decided to transform the struc-
tural dependencies into transactions. Although they do not directly contrast
structural and evolutionary information, a combination of both data sources
improved the results of the formerly structural-based approach similar to our
results.

Mining Concerns: Related to software clustering, some approaches in
mining crosscutting and modular concerns include structural and evolution-
ary information. Breu and Zimmermann (2006) present a technique that is
based on concurrently added method calls in the same transaction—structural
and evolutionary information are thereby inseparably connected. Adams et al
(2010) contrast this approach to an approach based on structural information
only. Moreover, they modify and extend the evolutionary mining strategy in a
third approach. The results of a case study show only small overlap between
the three techniques; it seems that each technique covers a different dimension
of concern mining, which could also be related to some extent to the different
data sources they employ.

Change Impact Analysis: For predicting the impact of changes of source
code, Hattori et al (2008) use evolutionary information to sort the results of a
prediction based on structural information, which they demonstrate in a small
case study. The approach by Zhou et al (2008) combines structural informa-
tion and evolutionary information like frequency, significance, age, and author
of a change and thereby outperforms an approach exclusively based on evo-
lutionary information. Wong and Cai (2009) introduce another hybrid change
prediction approach. In a case study, they compare the hybrid approach to an
approach based on structural information and to one using only evolutionary
information. While the structural approach performs well at the early phase of
development, the evolutionary provides better results later in the evolution of
the studied software project. In contrast, the hybrid approach yields competi-
tive results over the whole span of development. We can learn from this study
that it could be questionable to rely on evolutionary information at the early
phase of development when evolutionary information is only sparsely avail-
able. Although we did not test different versions of the same project in our
study, we also observe that the sometimes sparse data density of evolutionary
dependencies is a major drawback of this data source.
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Bug Prediction: Cataldo et al (2009) compare the impact of different
code dependencies on failure proneness, among them structural and evolu-
tionary dependencies, but also work dependencies, which model workflow de-
pendencies and coordination requirements. Their results provide evidence that
a high number of dependencies more reliably predicts bugs in case of evolu-
tionary and work dependencies than in case of structural dependencies.

Summarizing these studies we observe that structural and evolutionary
information seems to cover indeed different dimensions of code dependence.
An explanation might be that many co-changes do not seem to relate to any
change of the structure of the code, as Fluri et al (2005) report in a case study.
But in general, it is yet unknown what the specific differences between the two
data sources are.

Combining structural and evolutionary information could be beneficial for
many applications, not only in software clustering. In the case of change im-
pact analysis and software clustering, structural information seems to play
the leading part while evolutionary dependencies only provide an extra. In
bug prediction, there exist first hints that evolutionary dependencies are more
important.

5.2 Other Types of Dependency

Not only structural and evolutionary data sources are integrated in soft-
ware engineering applications. For instance, in software clustering applica-
tions, structural information provides the foundation to integrate other data
sources like semantic coupling derived from identifier names and comments
(Bittencourt et al, 2010; Bavota et al, 2010) or dynamic code dependencies
observed during the execution of the software (Patel et al, 2009). But also co-
change information has been the starting point to integrate other dependency
information: Merging semantic and evolutionary coupling has been applied in
change impact analysis (Kagdi et al, 2010). Evolutionary and code clone de-
pendencies seem to complement each other when mining crosscutting concerns
(Canfora et al, 2006).

These studies show that various types of code dependencies can be suc-
cessfully combined in different applications. Moreover, Beck and Diehl (2011)
analyzed the congruence of code dependencies and modularity. They found
that not only different forms of structural dependencies and evolutionary de-
pendencies seem to play an important role, but also semantic similarity and
shared code-clones preferably connect classes of the same packages. Based on
these observations we conjecture that more consequently integrating these de-
pendency types will further improve the application at hand, for instance, the
results of a software clustering approach.
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5.3 Combination Strategies

When combining different dependency types, for instance, structural and evo-
lutionary dependencies, the choice of the combination strategy might be one of
the most crucial design decisions: We already observed differences when only
switching our combination strategy from union to weighted union. Various
strategies have been proposed—nearly every approach mentioned above uses
a different strategy. We will give an overview on these strategies and categorize
them in the following.

Merge the Results: A very simple strategy is to independently run the
algorithm on the two data sources and only merge the two results. For in-
stance, Kagdi and Maletic (2007) propose to unite or intersect the result sets
in change impact analysis. In a similar scenario, Wong and Cai (2009) multiply
the weights of two different predictions to merge the results. The main advan-
tage of these approaches is that we are able to optimize the algorithm for each
data source independently or even apply two totally different approaches. The
results, however, must have a simple structure so that a combination is pos-
sible. Hence, applying this approach to software clustering is difficult because
the result set is quite complex: If hierarchical clustering strategies are applied,
we would have to merge two hierarchies.

Concatenate the Analyses: After performing a normal analysis on a
single data source, we may use the result as the input for a second analysis
employing a different data source. Bittencourt et al (2010) as well as Patel
et al (2009) apply a second analysis in their clustering approach to those
classes that could not be assigned to a package in the first step. Similarly, the
second analysis can be used to filter or rank the results of a first analysis based
on structural information by applying evolutionary information (German et al,
2009; Hattori et al, 2008). These kinds of concatenation strategies lead to a
asymmetric combination of the two data sources; usually the data source of
the first analysis has the higher impact on the result. Hence, it is reasonable
to apply the more reliable or more conservative approach first, which often
seems to be the approach based on structural information.

Merge the Dependency Graphs: The approach we followed in the cur-
rent study was to merge the dependency graphs before performing the clus-
tering. We applied set operations like union, weighted union, and intersection
on the set of edges. Wierda et al (2006) also merge dependency graphs based
on union and intersection, however, structural dependency graphs from differ-
ent versions instead of dependency graphs from different data sources. Bavota
et al (2010) combine two similarity matrices, which is equivalent to uniting
two weighted complete graphs and averaging the edge weights. The change
prediction approach by Zhou et al (2008) involves a more elaborate depen-
dency merging strategy: They use different features of a relation to predict a
summarized information; in other words, they train a prediction algorithm to
combine n dependency types into one.

Merge the Underlying Information: Finally, it is also possible to merge
the information from different data sources that relate code entities to each
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other without actually coming up with a notion of code dependencies. For in-
stance, the transaction-based clustering approach by Sindhgatta and Pooloth
(2007) transforms the structural dependency information into transactions,
which can be used equivalently to co-change transactions. Another approach
is to describe each software entity as a feature vector whereas the features
may stem from totally different data sources (Andritsos and Tzerpos, 2005).
The hybrid concern mining approaches combine structural and evolutionary
information by interpreting the evolutionary changes in the structural depen-
dency graph and use these changes as seeds for identifying concerns (Breu and
Zimmermann, 2006; Adams et al, 2010).

The four categories of merging strategies show that it is possible to combine
the information from several data sources at different stages of the analysis.
While the strategy of merging the underlying information or the graph struc-
ture is conducted before running an analysis algorithm (e.g., a clustering algo-
rithm), the concatenation of analyses and the merging of results is applied after
at least one analysis. In consequence, the pre-analysis strategies rely on more
symmetric approaches because both data sources are handled equally in the
analysis process; the post-analysis merging strategies allow totally asymmetric
solutions. There exist different ways to implement a symmetric combination
strategy, which can be grouped based on the data structure they employ: fea-
ture vectors, transactions, or dependency graphs.

Our comparison of the weighted and non-weighted union strategy and the
optimization of union weights is a very first step towards the challenge of
choosing an appropriate merging strategy. But as already mentioned in Sec-
tion 4, there might exist much better combination strategies that we have not
explored yet. The presented review on strategies others used in their studies
at least provides a framework to systematically search for better solutions.
Nonetheless, a comparative evaluation of combination strategies for code de-
pendencies is still lacking.

6 Conclusion

The study shows a positive impact of evolutionary data on software clustering.
A clustering exclusively based on evolutionary dependencies, however, is only
successful if substantial evolutionary data is available. Evolutionary dependen-
cies often do not cover the set of classes sufficiently. This seems to be the main
reason for the better performance of the aggregated structural dependencies.

Thus, when clustering a system by only taking evolutionary dependencies
into account, it is most important to rely on extensive historical data that
covers the essential parts of the system. The main advantages over a purely
structural based clustering are that also non-source files can be considered
and that the approach works independent of the programming language (in
our study a light-weight parser was just used to identify classes).

An integration of the two data sources unites the advantages of the ap-
proaches at the cost of a more complex data acquisition: In addition to a
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parsed system core, the clustering approach is still able to handle non-source
files and non-parsed source files. The clustering quality increases in our exper-
iments, especially when strengthening duplicate dependencies. This confirms
the assumption by Andritsos and Tzerpos (2005) that integrating evolution-
ary dependencies may have a positive impact on the clustering result. Related
studies show similar improvements in other software engineering applications.

We filtered evolutionary dependencies successfully by confidence and sup-
port to increase the reliability of the dependencies. Thereby, filtering by con-
fidence works better than filtering by support. A slight filtering turns out to
be the best strategy when the clustering relies on evolutionary dependencies
exclusively. A stronger filtering provides better results if evolutionary data is
only an addition to structural data. Integrating unfiltered evolutionary depen-
dencies bears the risk of decreasing the clustering quality.

These data-centered experiments demonstrate how important the choice
and preprocessing of data sources in the domain of software clustering is.
Also supported by the results from related studies, we believe that studying
more data sources (e.g., dynamic dependencies, documentation, bug reports,
software metrics), other preprocessing techniques, as well as different data
combination strategies is essential for software clustering. Finally, the gained
insights will help to tailor and customize software clustering techniques for par-
ticular applications like program comprehension, software (re)modularization,
or software reuse.
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