
On the Congruence of Modularity and Code Coupling

Fabian Beck Stephan Diehl
Computer Science

University of Trier, Germany
{beckf,diehl}@uni-trier.de

ABSTRACT
Software systems are modularized to make their inherent
complexity manageable. While there exists a set of well-
known principles that may guide software engineers to de-
sign the modules of a software system, we do not know which
principles are followed in practice. In a study based on 16
open source projects, we look at different kinds of coupling
concepts between source code entities, including structural
dependencies, fan-out similarity, evolutionary coupling, code
ownership, code clones, and semantic similarity. The con-
gruence between these coupling concepts and the modular-
ization of the system hints at the modularity principles used
in practice. Furthermore, the results provide insights on how
to support developers to modularize software systems.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Software science

General Terms
Design, Experimentation, Measurement

1. INTRODUCTION
Applying the age-old warfare strategy of divide and con-

quer to a software system, its complexity can be managed
by modularizing it into smaller parts. Every non-trivial soft-
ware system is modularized on different levels of abstraction
and employing different techniques. For instance, classes en-
close related functionalities, packages summarize classes into
subsystems, components provide reusable units of source
code, or aspects represent cross-cutting features.

When modularization came up, Parnas [19] introduced
the concept of information hiding, which became a funda-
mental paradigm for designing software systems. Shortly
thereafter, Stevens et al. [23] proposed the principle of low
coupling and high cohesion: While modules should only be
loosely coupled, the elements of a module are supposed to
be highly cohesive. Moreover, Conway [11] observed that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

modularity of a product is connected with the structure of
the organization that designs the product. These principles
and theories put forward different criteria to modularize a
system. But we do not know which design principles are
really used in practice.

In this paper we want to approach this question and val-
idate known design principles by looking at the different
types of relationships that connect the entities of a software
system. These relationships, which we call code couplings,
may explain the design decisions that constitute the modu-
larization of a system. In particular, we will compare a set
of different code coupling concepts to the package structures
of Java systems. This comparison will be based on a metric
that measures the congruence between coupling and mod-
ularity. We will show that different principles impact the
studied software systems, but none of them dominates the
modular structures.

In the rest of this paper, we first briefly review different
principles on modularizing software systems as well as dif-
ferent code coupling concepts (Section 2). Then, we present
our study analyzing the relationship between the coupling
concepts and the modularization of the systems (Section 3):
We contrast the information contained in the coupling con-
cepts (Section 3.1). Based on a measure of congruence be-
tween the coupling concepts and modularity, we compare
the coupling types to find out which concepts impact the
modularization most (Section 3.2). By classifying the mod-
ules of the systems, we furthermore derive coupling patterns
for different module types (Section 3.3). While the discus-
sion shows some limitations of the study, it also raises possi-
ble implications of the results for designing and maintaining
software systems (Section 4). Finally, we present related
research (Section 5) and conclude the paper (Section 6).

2. MODULARITY AND COUPLING

“For human beings, the only way to manage
a complex system or solve a problem is to break
it up.” [3]

Modularizing a system to manage its complexity is not
unique to software engineering, but is part of every engi-
neering or design process. Baldwin and Clark [3] summa-
rize this idea in an interdisciplinary theory on modularity.
They argue that a well-modularized system or design allows
concurrently working on different parts in parallel, makes a
larger complexity manageable, and hides uncertainties into
modules.

2.1 Modularity Principles
In software engineering, different design principles were

proposed on how to create a good modular structure of soft-
ware systems. We will briefly outline these principles in the
following.

2.1.1 Low Coupling and High Cohesion (P1)
Stevens et al. propose to focus on the data communication

dependencies of a program [23]. The target characteristic of
good modularization is that the elements of each single mod-
ule are highly cohesive (i.e., connected by many dependen-
cies), while elements belonging to different modules should
be low coupled (i.e., connected by few dependencies)—short,
low coupling and high cohesion. This principle might be con-
sidered as the default approach when analyzing or retrieving
the modularization of a software system.

2.1.2 Information Hiding (P2)
Parnas introduced the principle of information hiding [18,

19]—hiding design decisions inside modules. Slim interfaces
should represent the facade of the module. The design starts
with identifying a set of important design decisions that may
change during development. Each of these decisions should
be encapsulated in an independent module. As a result of
this process, changes in the software system should be lim-
ited within the boundaries of a module. Information hiding
later on became one of the main principles of the object
oriented paradigm [16].

2.1.3 Conway’s Law (P3)
Conway formulated a general law on the congruence be-

tween organizations and the products they design [11]: “[. . .]
organizations which design systems [. . .] are constrained
to produce designs which are copies of the communication
structures of these organizations.”

Conway’s law does not directly state guidelines to modu-
larize a software system. Nevertheless, it implies the princi-
ple that the design of a system, and hence its modularization
as a part of the design, should match the structure of the
organization. Otherwise, the intended design would conflict
with the social preconditions and may not be enforceable in
practice.

2.1.4 Others (P4)
Besides these three often cited principles, there are other

explicit modularity principles or principles that at least im-
pact modularity.

a) Martin [15] introduced three package design principles:
the reuse-release equivalence principle, the common-reuse
principle, and the common-closure principle. These prin-
ciples propose that the package reflects the granule of
reuse, release, and change.

b) Architectural styles like client-server or pipes-and-filters
provide a tight framework for modularization; layered
architectures impose rules on the structural dependencies
of the modules.

c) The idea of separating concerns, which led to the develop-
ment of aspect-oriented programming [25], could govern
the modular structure of a software system in form of
non-cross-cutting concerns.

d) Domain knowledge is one of the key strategies to identify
classes in object-oriented analysis [16].

In summary, various principles exist on how to modularize
software systems. They focus on different aspects of software
engineering: While the principle of low coupling and high
cohesion looks at the source code, information hiding and
Conway’s law take the development process into account.
In turn, others reflect the domain the software is part of
(identification of classes) or consider the ecosystem around
the software (common-reuse principle). It is reasonable to
assume that these principles are not independent but inter-
act with each other. A consistent theory or framework to
formally summarize or compare these principles, however,
does not exist.

2.2 Code Coupling Concepts
If applied, modularity principles, as those discussed above,

leave traces in the structure and evolution of a software sys-
tem. Since modularizing a system means grouping its ele-
ments based on their connecting properties, the principles
are closely related to the relationships of code entities. We
will use the general term coupling to refer to such a rela-
tionship. While the frequently used term dependency im-
plies a cause and effect of the connecting property, the term
coupling is not necessarily directed and is neutral with re-
spect to causality. Please note, that code coupling has here
a different meaning than the term coupling as used in the
principle of low coupling and high cohesion (P1): While, in
the principle, it only denotes cross-module relationships, we
will use the term in general for relationships.

In this study, we focus on object-oriented software sys-
tems, namely, systems mainly written in Java. Such systems
are modularized into packages that themselves may include
further packages. These hierarchically organized packages
form a mid-level of abstraction and will be considered as
the modularization of a system in this study.

Classes and interfaces are the basic elements of a pack-
age. As a matter of simplification, we will use the term
class interchangeable for classes and interfaces. Together
with a coupling concept, the classes form a graph data struc-
ture. The package modularization defines a hierarchy on the
classes. Formally, this data structure can be described as
a five-tupel G = (C, P, E, I, µ)—called a directed weighted
compound graph—where C is the set of classes, P is the
set of packages, E ⊂ C × C is the set of directed couplings,
I ⊂ (C ∪ P) × (C ∪ P) contains the inclusion edges of the
package hierarchy, and µ : E → R+

0 is the coupling weight
function. Furthermore, ((C ∪ P), I) forms a tree with leaves
C and inner vertices P .

Quite a number of different coupling concepts have been
proposed in software engineering literature. In the follow-
ing we will introduce the set of coupling concepts that we
will analyze in our study. We will also discuss possible rela-
tionships between the coupling concepts and the modularity
principles as conjectures.

2.2.1 Structural Dependencies (SD)
A method calls another method, a class extends another

class, or a class aggregates objects of another class—all this
creates a direct dependency between two classes. These
static structural code dependencies are most frequently used
when analyzing or leveraging code coupling.

In our study we distinguish the following three types of
structural dependencies.

SD.Inh Two classes are coupled (directed) if one class extends the
other class. If coupled, the coupling weight is 1.

SD.Agg Two classes are coupled (directed) if one class aggregates
another by having class variables using the other class. The cou-
pling weight is the number of class variables relying on the other
class.

SD.Use Two classes are coupled (directed) if one class uses the
other class in a method as a local variable, a method parameter, or
by calling a method of the other class. The coupling weight is the
number of methods using the other class.

We use the tool DependencyFinder to retrieve these struc-
tural dependencies from compiled Java bytecode.

Conjecture: Structural dependencies are a straightforward
approach to measure the data communication for the prin-
ciple of low coupling and high cohesion (P1). Introduced
prior to object-oriented design, it is, however, not clear how
to rate the different types of the object-oriented structural
dependencies when applying the principle.

2.2.2 Fan-Out Similarity (FO)
Structural dependencies might not only directly couple

two code entities but also indirectly: Two entities connected
to the same set of other entities might indicate a similar
purpose or functionality of these two entities. We refer to
these indirect structural couplings as fan-out similarity.

A feature vector describes the fan-out for each class. Each
feature represents the number of direct structural dependen-
cies (SD) to a particular class. If two vectors of two classes
are similar, the classes reference similar other classes. To
quantify the similarity, we employ the cosine similarity mea-
sure, which computes the angle between the vectors but does
not take their lengths into account [24].

We again distinguish three types of structural informa-
tion. Orthogonally, external fan-out similarity (abbreviated
E), which is based on references to external libraries, con-
trasts internal fan-out similarity (abbreviated I), which only
considers the dependencies between the classes of the sys-
tem.

FO.InhE, FO.IhnI Two classes are coupled (undirected) if they
extend the same class or implement a similar set of interfaces. The
coupling weight is the cosine similarity of the inheritance feature
vectors.

FO.AggE, FO.AggI Two classes are coupled (undirected) if they
aggregate a similar set of classes. The coupling weight is the cosine
similarity of the aggregation feature vectors.

FO.UseE, FO.UseI Two classes are coupled (undirected) if they
use a similar set of classes. The coupling weight is the cosine simi-
larity of the usage feature vectors.

Conjecture: Rather than optimizing coupling and cohe-
sion (P1), grouping together similar classes with respect to
fan-out similarity aligns the structural dependencies of the
grouped classes. High similarity regarding external fan-out
shows the common use of the same external functionality,
which might hint at being covered by the same concern
(P4c)—cross-cutting concerns have been detected based on
this idea [8].

If we assume that a class of the system reflects a design de-
cision, then, depending on the same class means depending
on that design decision. Following the principle of informa-
tion hiding (P2), the two elements depending on the same
internal class should be placed into the same module to hide
the design decision. Hence, similar internal fan-out similar-
ity could be an indicator for information hiding as Schwanke
argues [22].

2.2.3 Evolutionary Coupling (EC)
If two classes are frequently changed together during de-

velopment, this reveals an implicit dependency. Since this
information stems from the evolution of the software, we
call the coupling concept evolutionary coupling, which is
also known as co-change coupling or logical coupling.

We measure evolutionary coupling in terms of two estab-
lished measures, support and confidence. The support value
of a coupling counts how often the two coupled software ar-
tifacts were changed together. Additionally, the confidence
value of a coupling normalizes the support by the total num-
ber of changes of one of the artifacts. While support is a
symmetric metric, confidence is not because of its asym-
metric normalization (see [4] for details). Support and con-
fidence produce two coupling variants that relate the same
classes but differ concerning their weights.

EC.Sup Two classes are coupled (undirected) if they were changed
together during development. The coupling weight reflects the
number of common changes (support).

EC.Conf Two classes are coupled (directed) if they were changed
together during development. The coupling weight reflects the
number of common changes relative to the number of changes of
the first compared class (confidence).

We use the approach by Zimmermann and Weißgerber [28]
to extract the evolutionary class dependency graphs from
the version archives. As common when mining software
repositories, we omit large transactions (transactions includ-
ing more than 25 classes) to reduce noise.

Conjecture: Information hiding (P2) argues that hiding
design decisions increases the changeability of a system be-
cause changing a design decision causes only local changes
in one module [19]. Hence, information hiding should rather
lead to local changes, which result in local evolutionary cou-
pling. Conversely, if the changes are local, this could also
have other reasons, for instance, a strict module ownership
policy, where each package has an owner who is responsible
for it.

2.2.4 Code Clones (CC)
Code clones are fragments of code that are equivalent or

similar. They introduce another concept of coupling: For
example, changing a cloned code fragment often requires to
change the other fragments of the clone group, too.

Comparing two classes, we take their overlap in terms of
cloned code into account to get a similarity measure. Liviery
et al. [14] introduced a coverage metric for this purpose. We
employ this metric in a slightly adapted version:

µcc(c1, c2) =
‖cc(c1, c2)‖
‖c1‖+ ‖c2‖

where ‖c‖ is the size of class c measured in number of to-
kens and cc(c1, c2) denotes the set of code fragments covered
by common clones between classes c1 and c2.

We use the code clone detection API JCCD [5] and apply
two configurations: The first one detects Type I clones—
exact matches of code fragments ignoring code layout and
comments. The second one detects Type II clones—code
fragments that are equivalent when generalizing from identi-
fier names and also ignoring code layout and comments [20].

CC.I Two classes are coupled (undirected) if they share Type I
clones. The coupling weight is the clone coverage µcc

CC.II Two classes are coupled (undirected) if they share Type II
clones. The coupling weight is the clone coverage µcc

Conjecture: It may sound strange that the bad smell of
duplicated code should indicate a good design principle. But
code clones are often introduced for good reasons, for ex-
ample, performance improvement, forking, generative pro-
gramming, or reducing dependencies [20]. Depending on
the purpose, code clones may disguise other couplings. For
instance, copied code could replace an inheritance connec-
tion (SD.Inh) or a method call that would otherwise lead to
a usage dependency (SD.Use) or a similar fan-out (FO).

2.2.5 Code Ownership (CO)
The main author of a code entity is the expert to be con-

tacted when there is a problem or question concerning this
code. If two code entities have the same author or authors,
they could be covered by the same expertise.

To compare classes based on their owner, we list the devel-
opers who have ever changed a particular class and trans-
form this list into a binary vector. In a more elaborate
approach, we proportionally quantify the code ownership:
For each class, the number of changes made by a particu-
lar author is divided by the total number of changes. Both
metrics produce couplings relating the same classes but with
different weights.

CO.Bin Two classes are coupled (undirected) if they share com-
mon authors. The coupling weight is the cosine similarity of the
binary ownership vectors.

CO.Prop Two classes are coupled (undirected) if they share com-
mon authors. The coupling weight is the cosine similarity of the
proportional ownership vectors.

Conjecture: Bowman and Holt [7] argue that, if two code
entities have a common author, communication between the
developers of two entities is likely. Hence, code ownership
similarity is a way to map parts of the communication struc-
ture of the development team into the source code. Referring
to Conway’s Law (P3), the design of the system is said to
follow this communication structure.

2.2.6 Semantic Similarity (SS)
Interpreting the source code of classes as plain text doc-

uments, the classes are coupled, like text documents, by
their common vocabulary. In this case, the vocabulary con-
sists of the identifiers used in the code and the words in
the comments. Standard information retrieval methods for
semantically relating documents can be applied.

Each class is described as a bag of words which is trans-
formed into a vector where each dimension counts the num-
ber of occurrences of a particular term. To counterbalance
the importance of frequently occurring terms across docu-
ments, we apply the tf-idf measure. Furthermore, we use
latent semantic indexing (LSI) to consider related terms as
a concept and to reduce noise.

SS.Tfidf Two classes are coupled (undirected) if they share a sim-
ilar vocabulary. The coupling weight is the cosine similarity of the
tf-idf document vectors.

SS.LSI Two classes are coupled (undirected) if they share a similar
vocabulary. The coupling weight is the cosine similarity of the LSI
document vectors.

In particular, we implemented an approach very similar
to the one used by Kuhn et al. to cluster source code docu-
ments [13]: From the source code of a class including com-
ments, we excluded the license text and, much more impor-
tant in our scenario, the package name and the names of
its ancestor packages. The preprocessing splits camel-case
words into their components, removes meaningless words
based on Java key words and a list of English stop words, and

normalizes the words by reducing them to their stem based
on the Porter algorithm. The resulting document vector is
balanced by applying tf-idf, and finally transformed into an
LSI model with 30 dimensions. We applied the Python APIs
stemming and gensim to implement the process.

Conjecture: Among the presented coupling concepts, the
domain knowledge incorporated in the package design (P4d)
might be best reflected in the vocabulary used in the source
code text. The terms describing a domain concept should
also appear in the code as identifier names or in comments.
The problem, however, could be that, besides these domain-
related terms, many other circumstances influence the vo-
cabulary, like reference to other code entities, information
on the author, applied design patterns that bring in a cer-
tain terminology, etc.

3. STUDY
Based on the source code and its accompanying informa-

tion, it is hard to directly conclude what principles were
used to design the modular structure of a software system.
Hence, we abstract the software project by reducing it to a
set of different coupling concepts between the classes of the
system. Analyzing the coupling concepts and their impact
on modularity builds the foundation for indirectly drawing
conclusions on principles applied. In particular, we want to
empirically answer three questions:

• How do the different coupling concepts relate to each
other? (Section 3.1)

• What is the impact of each coupling concept on the
modularization? (Section 3.2)

• Are there specific differences in this impact for different
package types? (Section 3.3)

The study examines the modularity of 16 open source
software projects—Table 1 provides a complete list. Each
of these projects is mainly written in Java and hosted at
sourceforge.net. We selected a broad spectrum of applica-
tion types, varying from small to mid-size projects. The
number of packages that directly contain classes shows the
size of the hierarchy, the number of classes provides an es-
timate of the size of the project. CVS or SVN repositories
provide data about the development history of the projects.
For the studied projects, the available development activ-
ity spans 10 months to up to 9 years or 126 to up to 4602
check-in transactions (only counting the transactions where
relevant Java classes were checked in) involving up to 23 de-
velopers. To extract the coupling information, we mirrored
the repositories and downloaded a compiled version of the
software in form of a jar file. The structural dependencies
(SD) as well as the fan-out references (FO) were derived
from the jar file. By the date of release, we determined the
corresponding version of the Java source code. This ver-
sion is used to retrieve the code clone information (CC) and
the semantic similarity (SS). Finally, the extraction of evo-
lutionary coupling (EC) and code ownership coupling (CC)
required to process the whole repository from the first check-
in up to the version corresponding to the selected release.
We used the released jar file as a reference to determine the
set of classes considered for analysis (excluding contained
third-party libraries). Other classes possibly contained in
the repository like test classes, experimental functionality,

Table 1: Properties of the sample of software projects and their repositories.

Project Description Version #Pack. #Classes Repos. Time frame #Trans. #Dev.

Checkstyle coding conventions 5.1 21 261 SVN 2001-06-22 – 2010-02-16 1335 6

Cobertura test coverage 1.9.4.1 19 99 SVN 2005-02-12 – 2010-03-03 226 6

CruiseControl continuous integration 2.8.4 27 295 SVN 2001-03-26 – 2010-09-16 1615 10

iText PDF library 5.0.5 24 402 SVN 2007-12-20 – 2010-11-02 817 7

JabRef BibTeX management 2.6 37 499 SVN 2003-10-16 – 2010-04-14 1348 23

JEdit text editor 4.3.2 28 488 SVN 2001-09-03 – 2010-05-09 2927 23

JFreeChart chart library 1.0.13 37 587 SVN 2007-06-19 – 2009-04-20 551 2

JFtp FTP client 1.0 7 78 CVS 2002-02-06 – 2003-03-23 155 5

JHotDraw GUI framework 7.6 65 679 SVN 2006-11-22 – 2011-01-09 302 2

JUnit regression testing 4.5 23 119 CVS 2007-12-07 – 2008-08-08 126 2

LWJGL gaming library 2.7.1 27 564 SVN 2002-08-09 – 2011-02-10 1557 11

PMD code problems 4.2 47 565 SVN 2002-06-24 – 2008-03-26 2041 18

Stripes web framework 1.5.5 19 238 SVN 2005-09-07 – 2011-01-04 812 7

SweetHome3D interior design 3.1 8 167 CVS 2006-04-11 – 2011-02-13 1807 1

TV-Browser program guide 2.7.6 62 485 SVN 2003-04-25 – 2010-12-19 4602 12

Wicket web framework 1.2.2 86 622 SVN 2004-12-21 – 2006-08-27 3456 12

SD
Inh

0.012 0.009 0.0014 0.0041 0.015 0.0045 0.0047 0.058 0.053 0.071 0.022 0.024 0.0048 0.011 0.12 0.094

0.012
SD
Agg 0.31 0.0018 0.015 0.028 0.0007 0.0065 0.011 0.056 0.04 0.022 0.025 0.0019 0.0027 0.052 0.039

0.009 0.31
SD
Use

0.00024 0.022 0.013 5.6e−05 0.014 0.017 0.043 0.019 0.0066 0.0073 0.0009 0.0007 0.034 0.025

0.0014 0.0018 0.00024
FO
InhE

0.044 0.064 0.11 0.073 0.0029 0.052 0.061 0.14 0.14 0.097 0.15 0.17 0.13

0.0041 0.015 0.022 0.044
FO

AggE 0.30 0.047 0.15 0.092 0.095 0.059 0.063 0.057 0.032 0.15 0.13 0.12

0.015 0.028 0.013 0.064 0.30
FO
UseE

0.15 0.07 0.17 0.13 0.13 0.10 0.10 0.11 0.18 0.22 0.21

0.0045 0.0007 5.6e−05 0.11 0.047 0.15
FO
InhI

0.13 0.30 0.085 0.12 0.042 0.044 0.18 0.21 0.25 0.24

0.0047 0.0065 0.014 0.073 0.15 0.07 0.13
FO
AggI 0.23 0.064 0.045 0.09 0.077 0.0021 0.032 0.13 0.13

0.058 0.011 0.017 0.0029 0.092 0.17 0.30 0.23
FO
UseI

0.093 0.084 0.071 0.067 0.17 0.19 0.29 0.31

0.053 0.056 0.043 0.052 0.095 0.13 0.085 0.064 0.093
EC
Sup 0.42 0.15 0.17 0.015 0.049 0.23 0.19

0.071 0.04 0.019 0.061 0.059 0.13 0.12 0.045 0.084 0.42
EC
Conf

0.19 0.20 0.043 0.068 0.28 0.22

0.022 0.022 0.0066 0.14 0.063 0.10 0.042 0.09 0.071 0.15 0.19
CO
Bin

0.93 0.0097 0.069 0.14 0.13

0.024 0.025 0.0073 0.14 0.057 0.10 0.044 0.077 0.067 0.17 0.20 0.93
CO
Prop

0.0084 0.065 0.15 0.14

0.0048 0.0019 0.0009 0.097 0.032 0.11 0.18 0.0021 0.17 0.015 0.043 0.0097 0.0084
CC
I

0.82 0.32 0.24

0.011 0.0027 0.0007 0.15 0.15 0.18 0.21 0.032 0.19 0.049 0.068 0.069 0.065 0.82
CC
II

0.33 0.26

0.12 0.052 0.034 0.17 0.13 0.22 0.25 0.13 0.29 0.23 0.28 0.14 0.15 0.32 0.33
SS
Tfidf

0.83

0.094 0.039 0.025 0.13 0.12 0.21 0.24 0.13 0.31 0.19 0.22 0.13 0.14 0.24 0.26 0.83
SS
LSI

Figure 1: Correlation between coupling graphs.

or unused legacy code are skipped. For simplification, we
ignored anonymous and inner classes by considering them
just as parts of the containing class.

3.1 Dimensions of Coupling
The first part of our analysis will compare the differ-

ent coupling concepts themselves, yet ignoring the modular
structure of the system. We may consider each concept as
one dimension to describe a software system. If two con-
cepts share some information, these dimensions would not
be orthogonal, but correlated.

3.1.1 Method
For a project, each coupling concept provides a graph on

the same set of classes. To compare the concepts, we de-
scribe each concept as a vector. A dimension of such a vector
represents a pair of classes; its value reflects the weight of
the edge between the two classes or is zero if there is no edge

for this combination. Hence, a project consisting of n classes
is described as an n2-dimensional vector for each coupling
concept. Concatenating theses vectors for all projects, we
get a summarized vector ~vco describing the coupling concept
co. To equally weigh each project, we align the number of
dimensions by randomly sampling 20,000 dimensions (with
repetition) for each project. Finally, the Pearson correlation
of two vectors ~vco1 and ~vco2 provides a measure of similarity
for two concepts co1 and co2.

3.1.2 Results
We computed the pairwise correlation for all combinations

of coupling concepts and visualize the resulting correlation
matrix in Figure 1. High values indicate a strong (positive)
correlation between two coupling concepts, which means, if
two classes are coupled by the first concept, it is likely that
they are also coupled by the second concept and vice versa.

The first, quite surprising observation is that the matrix
is sparsely filled with high correlations—only few combina-
tions of concepts near the diagonal are strongly correlated.
These strong relationships can be identified as similarities
between metrics measuring variants of the same concept,
for instance, the two code ownership metrics CO.Bin and
CO.Prop. But it is not always true that variants of the
same concept provide similar data as the inheritance depen-
dencies show: SD.Inh is only weakly correlated to the other
variants of the structural dependencies. Such a statistical in-
dependence advocates to consider inheritance dependencies
as an independent concept.

Off the diagonal, we mostly observe very weak correla-
tions, which indicates that the coupling concepts indeed pro-
vide different coupling information. Though based on the
same underlying information, structural dependencies are
not considerably correlated with fan-out similarity. Ana-
lyzing the few somewhat stronger cross-concept correlations
(0.10 – 0.35), we observe some interesting relationships:

• Ownership couplings (CO) correlate with evolutionary
couplings (EC). An explanation is that both are based
on the check-in information. Two files can only be
coupled by evolution if they share at least one common
author.

• Coupling by code clones (CC) shares some informa-
tion with internal and external inheritance and us-

age fan-out (FO.InhE, FO.UseE, FO.InhI, FO.UseI)
but clearly less with aggregation fan-out (FO.AggE,
FO.AggI). The relationship to inheritance could be
caused by code that implements or overrides the same
methods in the same or similar way in two sibling
classes of the inheritance hierarchy. Furthermore, the
references used in code clones are necessarily equal and
lead to a certain usage similarity, but do not directly
imply similar aggregation.

• Semantic similarity (SS) is linked to most other cou-
pling metrics, only structural aggregation and usage
dependencies form an exception (SD.Agg, SD.Use).
Since this similarity is based on the raw source code
text, it partly aggregates other source code based cou-
pling concepts (SD, FO, CC). Often the name of the
author is also mentioned in the source code, which ex-
plains the correlation to code ownership (CO). For the
correlation to evolutionary coupling (EC), we could
not find an evident explanation.

In summary, the correlation matrix shows that the different
coupling concepts are quite independent and thus each rep-
resents different coupling information. The correlations be-
tween metrics for variants of the same concept confirm the
grouping of the metrics—except inheritance dependencies,
they should not be equated with other structural dependen-
cies.

3.2 Coupling-Modularity Congruence
The central part of this study is to relate the different

coupling concepts to the modularity of the software systems.
Thus, we have to find a measure of the congruence between a
coupling concept and the modularization. This comes down
to the problem of how to relate a graph structure (the cou-
pling graph) and a hierarchy (the modularization).

3.2.1 Method
Usually, the extent to which the structure of a system

matches its call graph is measured by coupling and cohesion
as proposed by the modularity principle of low coupling and
high cohesion (P1). Since we capture each concept as a
graph G = (C, P, E, I, µ) (Section 2.2), we are able to apply
the same approach to measuring the congruence between
coupling and modularity for all coupling concepts. Hence, in
the following, coupling and cohesion are general properties
independent of a coupling concept and do not extend the
terms used in the modularity principle of low coupling and
high cohesion.

An edge connecting two classes of the same package con-
tributes to the cohesion of the package and moreover to the
cohesion of the whole system. Just as well, an edge con-
necting two classes of different packages contributes to the
coupling. This model, however, disregards the hierarchical
structure of the packages. A more elaborate model also con-
siders the distance of two packages in the hierarchy. Now, an
edge e partly accounts to coupling and cohesion depending
on the distance it spans.

cohesion(e) =
weight(e)

distance(e)

coupling(e) = weight− cohesion(e)

The distance function distance(e) counts the number of
intermediate nodes on the shortest path through the package
hierarchy that connects the source and target of an edge e.
Thus, the distance is 1 if the source and target class are
in the same package, 2 if, for instance, the source is in a
sub-package of the package of the target, etc. The sum of
cohesion and coupling always is equal the weight of the edge.

To express coupling and cohesion for a set of classes C ⊆ C
(e.g., a package or the whole system), we sum up the re-
spective cohesion and coupling values for all outgoing edges
out(C) and incoming edges in(C) of the classes in the set.

cohesion(C) =
∑

e∈out(C)

cohesion(e) +
∑

e∈in(C)

cohesion(e)

coupling(C) =
∑

e∈out(C)

coupling(e) +
∑

e∈in(C)

coupling(e)

Finally, the cohesion in relation to the coupling expresses
the congruence of the coupling graph and the modular struc-
ture of the system for a set of classes C, which we denote as
coupling-modularity congruence (short, congruence).

congruence(C) =
cohesion(C)

cohesion(C) + coupling(C)

High congruence values indicate high consistency between
coupling and modularity. If the coupling graph is totally in-
dependent of the modularity the congruence, however, is not
zero but larger because ∀e ∈ E : cohesion(e) > 0. Hence,
we have to compute the congruence of such a graph for ev-
ery project to get a project-specific baseline of the congru-
ence metric. To this end, we take the complete graph which
fulfills the independence of the coupling structure and the
modularity—every other graph fulfilling the independence
condition is just a modularity-independent random sample
of the complete graph.

The congruence metric measures the quality of the cou-
pling information with respect to modularity in the graph
but not the richness or density of this information. This is
intended because we do not want to mix quality and density.
Nevertheless, we need a further metric to also measure the
density of the congruence information.

The congruence density is high for a set of classes C if
the congruence information is good for each class of the
set. Hence, we take the average of this class-specific con-
gruence to get a density measure, which we denote as av-
erage class coupling-modularity congruence (short, average
congruence).

congruenceavg(C) =
1

|C|
∑
c∈C

congruence({c})

When there is no information available for a class c, hence
out({c}) = in({c}) = ∅, the function congruence({c}) is
undefined because cohesion({c}) and coupling({c}) are un-
defined. In that case, we consider instead the respective
baseline value for {c} to define the average.

3.2.2 Results
To analyze the relationship between coupling concepts and

modularity, we compute the congruence and average congru-
ence for all combinations of projects and coupling concepts,

●●

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0
co

up
lin

g−
m

od
ul

ar
ity

 c
on

gr
ue

nc
e

●

● ●

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

cl
as

s
co

up
lin

g−
m

od
ul

ar
ity

 c
on

gr
ue

nc
e

Figure 2: Coupling-modularity congruence and average class coupling-modularity congruence.

in each case considering all classes of the project. Summa-
rized by concept, the result hence is a distribution of con-
gruence values. We present these distributions as box plot
diagrams in Figure 2—one diagram for congruence, the other
for the average congruence. Such box plot diagrams sketch
a distribution by plotting its main characteristic values: the
median (horizontal line), the two mid-quartiles (filled box),
and the outliers (dashed lines and circles).

The results of structural dependencies (SD) show high
coupling-modularity congruence values clearly exceeding the
baseline congruence. Hence, structural dependencies seem
to preferably link classes of the same or neighboring pack-
ages. Among the three variants, the inheritance dependen-
cies (SD.Inh) provide the best results. Taking also the infor-
mation density into account, the average congruence values
of structural dependencies are also among the overall best
results. The usage dependencies gain against the aggrega-
tion dependencies.

For the fan-out similarity (FO), we observe large differ-
ences between external and internal fan-out. While the in-
ternal fan-out provides good congruence values, only the in-
heritance variant of the external fan-out (FO.InhE) is able
to compete. External aggregation (FO.AggE) and usage
fan-out (FO.UseE) do not seem to be a relevant criterion
for modularity because they do not notably top the baseline
values. The overall best congruence is reached by taking the
internal inheritance fan-out (FO.InhI) into account. This
fan-out similarity is also among the best average congruence
values. Similar to the structural dependencies, again the us-
age information (FO.UseI) gains with respect to density and,
together with the inheritance information (FO.InhI), shows
competitive results for internal fan-out.

Evolutionary coupling (EC) is also congruent to the mod-
ularity of the systems—the congruence metric shows about
equally high values as for structural aggregation and usage
dependencies (SD.Agg, SD.Use). The difference between the
two variants of the concept of evolutionary coupling is small
but consistently better for the confidence metric (EC.Conf)
than for the support metric (EC.Sup). Relating the com-
mon number of changes to the number of total changes as

it is done in the confidence metric here shows a positive
effect. With respect to density, the results for both evolu-
tionary coupling metrics are very good—the median even is
the highest compared to all other concepts.

Code ownership similarity (CO) does not impact modular-
ity as clearly as most other analyzed coupling concepts. The
congruence and average congruence only slightly exceed the
baseline. This is, by the way, no problem of granularity—
ignoring the lowest levels of packages, the congruence does
not improve with respect to the baseline.

Instances of the same Type I clone can be often found
in the same package as indicated by the high congruence
values for this metric (CC.I). This is not true to the same
extent for the more lax Type II clones (CC.II). Surprisingly,
the density of Type I clones is high enough to also provide
good average congruence values. Here, the inherently denser
Type II clone information shows at least medium results.

Finally, the semantic similarity (SS) turns out to only be
a second class factor for modularity. Though the congru-
ence and average congruence clearly rise above the baseline,
they cannot compete with the high values of other concepts.
Notably, the more elaborate LSI variant of the semantic
similarity (SS.LSI) consistently falls below the simpler tf-
idf variant (SS.Tfidf). The negative impact of loosing some
information by dimension reduction seems to outweigh the
positive effect of noise reduction.

In general, we got the best coupling-modularity congru-
ence for structural dependencies (SD), internal fan-out simi-
larity (FO.*I), evolutionary coupling (EC), and Type I code
clones (CC.I). Among the structural information, inheri-
tance information outperforms for structural dependencies
as well as for fan-out similarity especially with respect to
quality. Since inheritance is nearly uncorrelated to the other
structural information (Section 3.1), we observe here differ-
ent highly congruent independent coupling concepts.

3.3 Module Type Congruence
The third and last part of the study investigates whether

there are individual differences in the coupling-modularity
congruence between different types of modules. A variation

●
S

D
.In

h
S

D
.A

gg
S

D
.U

se
F

O
.In

hE
F

O
.A

gg
E

F
O

.U
se

E
F

O
.In

hI
F

O
.A

gg
I

F
O

.U
se

I
E

C
.S

up
E

C
.C

on
f

C
O

.B
in

C
O

.P
ro

p
C

C
.I

C
C

.II
S

S
.T

fid
f

S
S

.L
S

I
ba

se
lin

e

0.0

0.2

0.4

0.6

0.8

1.0

core (11)
co

up
lin

g−
m

od
ul

ar
ity

 c
on

gr
ue

nc
e

●

●

●

●

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0

text (10)

co
up

lin
g−

m
od

ul
ar

ity
 c

on
gr

ue
nc

e

●

●

●

●

●

●

●

●

●

●

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0

io (7)

co
up

lin
g−

m
od

ul
ar

ity
 c

on
gr

ue
nc

e

●

●

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0

gui (6)

co
up

lin
g−

m
od

ul
ar

ity
 c

on
gr

ue
nc

e

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0

util (6)

co
up

lin
g−

m
od

ul
ar

ity
 c

on
gr

ue
nc

e

S
D

.In
h

S
D

.A
gg

S
D

.U
se

F
O

.In
hE

F
O

.A
gg

E
F

O
.U

se
E

F
O

.In
hI

F
O

.A
gg

I
F

O
.U

se
I

E
C

.S
up

E
C

.C
on

f
C

O
.B

in
C

O
.P

ro
p

C
C

.I
C

C
.II

S
S

.T
fid

f
S

S
.L

S
I

ba
se

lin
e

0.0

0.2

0.4

0.6

0.8

1.0

data (4)

co
up

lin
g−

m
od

ul
ar

ity
 c

on
gr

ue
nc

e

Figure 3: Coupling-modularity congruence for the most frequently occurring package types.

Table 2: Package types.

Type Description

core implements the core functionality

data encapsulates data and manages data structures

event handles temporal events, actions, messages or exceptions

graphics draws 2D or 3D graphics

gui creates and controls the graphical user interface

io reads or writes data from/to a device

text parses, transforms, or creates textual data

util provides supporting functionality

could indicate that different design principles are used in
different contexts.

3.3.1 Method
The first step towards such a module type congruence is

to manually classify the packages of the software systems
into distinctive types. We identified a set of package types
that repeatedly appear in the projects (Table 2) and applied
this classification to the main packages of the 16 software
projects—sub-packages of the classified ones are assumed
to belong to the same type. Some packages could not be
unambiguously assigned to a type, but they can be safely
omitted because the following analysis process does not rely
on a complete classification.

For each project, we evaluate congruence(Ct) where Ct is
the set of classes included in a package assigned to type t to
get a congruence value specific for a package type. We sum-
marize each package type by considering all projects that at
least contain 6 classes of this type.

3.3.2 Results
We present the results of this analysis by showing box

plots of the six most frequently found package types (Fig-

ure 3). Each box plot depicts one type, the value in paren-
theses refers to the number of projects this type was de-
tected in. The interpretation of the congruence values again
depends on the baseline, and thus, the diagrams cannot be
compared without considering the slightly different baseline
values.

The box plot diagrams roughly show similar patterns com-
pared to each other. This pattern reflects most of the ob-
servations we already described in the previous part of the
study (Section 3.2). Hence, these general results virtually
sustain for the different package types. Even utility pack-
ages, which are said to follow different laws than other pack-
ages [26], show this pattern together with considerably high
congruence values. Nevertheless, there are small differences
between the package types:

• Packages of type io and gui are exceptionally congru-
ent with respect to the internal inheritance fan-out
similarity (FO.InhI). Together with a high congruence
value for SD.Inh this could hint at a special significance
of inheritance in these packages.

• Overall the core packages show somewhat lower con-
gruence values compared to the baseline. Here, factors
that could not be grasped by the selection of coupling
concepts might impact their design.

• For text packages, some metrics particularly exceed
the baseline, including structural dependencies (SD),
internal fan-out similarity (FO.*I), and evolutionary
coupling (EC). This type of package seems to be par-
ticularly related to these coupling concepts.

4. DISCUSSION
So far, we have analyzed the results of the study with re-

spect to the congruence of the coupling concepts and mod-

ularity. To finally get back to the modularity principles in-
troduced in Section 2.1, we will next discuss the limitations
of the results and interpret the results with respect to these
principles. Beyond that, we will provide an outlook on how
the results could be directly leveraged in applications re-
garding modularity.

4.1 Threats to Validity
The generalizability of the results is limited by the re-

stricted set of software projects as well as by other design
decisions of the study. The 16 software projects are open
source systems written in Java and consist of up to 86 pack-
ages and up to 679 classes. Closed source projects might
lead to different results especially with respect to evolution-
ary and code ownership couplings because they might fol-
low a fundamentally different development process. Larger
open-source projects may as well be organized differently.
Furthermore, the results cannot be directly transferred to
non-object-oriented systems because, there, concepts like in-
heritance do not exist.

We looked at modularity at a mid-level of abstraction and
equate module with package. Hence, our results only apply
to this level. For example, grouping methods into classes
could follow totally different standards.

Though we covered many important coupling concepts,
we did not exhaustively include all established concepts, for
instance, dynamic dependencies or coupling by bug reports.
Furthermore, the applied metrics are only heuristics to mea-
sure the respective concept. Although we tried to use estab-
lished metrics, there could exist more appropriate metrics.
Analogously, the introduced congruence metric might be un-
suitable.

4.2 Modularity Principles
We must beware of over-interpreting the results with re-

spect to modularity principles because we can only conjec-
ture about the relationship of the principles to the coupling
concepts. A high congruence for a particular concept might
be caused by the application of a modularity principle, but
could also be the consequence of another, unknown property.
Furthermore, low congruence values do not necessarily indi-
cate the absence of a particular modularity principle, but
could also stem from weaknesses in measuring the princi-
ple by this concept. Nevertheless, the following implications
can be considered as circumstantial evidence on the practi-
cal relevance of modularity principles and might be used as
hypotheses for future research.

The high congruence values for structural dependencies
(SD) suggest that the principle of low coupling and high co-
hesion (P1) is used to modularize software systems in prac-
tice as one of the dominating principles. The particularly
high congruence values for inheritance (SD.Inh) together
with its independence of the other structural dependencies
(Section 3.1) highlights the role of inheritance. It appears to
be the prevailing structural dependency type to implement
the principle.

Also Information hiding (P2) seems to play a major role
in the analyzed projects as the high congruence values for
internal fan-out similarity (FO) and evolutionary coupling
(EC) suggest. Again inheritance (FO.InhI) is outstanding
as it provides the overall best coupling-modularity congru-
ence result and might also be a distinguished aspect in the
application of information hiding.

Code ownership (CO) does not play an important role
in the package design of the investigated projects. A likely
conclusion is that the impact of Conway’s Law (P3) is small
in contrast to other principles.

The external fan-out similarity (FO.*E), which we as-
sume to be related to the separation of concerns (P4c), no-
tably impacts modularity only with respect to inheritance
(FO.InhE). The low result matches the observation that of-
ten concerns cross-cut the hierarchical structure of the sys-
tem [25]. It would be interesting to also take aspects into
account and compare the congruence of aspect-oriented and
non-aspect-oriented systems with respect to external fan-
out.

The role of domain knowledge (P4d) is hard to judge from
the results of our study. The semantic similarity (SS) pro-
vides medium congruence. On the one hand, we may assume
that domain knowledge is irrelevant and the medium con-
gruence is just a result of the correlation to other high con-
gruent coupling concepts (Section 3.1). On the other hand,
we may assume that domain knowledge is a driving factor,
but it is not appropriately reflected in the applied metric.

Finally, code clones (CO) clearly relate to the modular
structure of the systems and are frequent enough to also
provide medium data density (average congruence). Hence,
they may significantly impact modularity principles, but we
do not know their relation to the principles because code
clones could hide different types of code coupling.

Concerning the module-type-specific properties, we were
surprised by the stable congruence patterns that we observed
for different types (Section 3.3). This is an indicator, that
the the same modularity principles or guidelines are applied
regardless of the package type.

4.3 Modularity Applications
Many tasks and problems in software engineering are re-

lated to modularity. First of all, finding a good modular-
ization is a major part of designing a software system. The
initial modularization might degenerate during the develop-
ment process or could prove to be flawed so that a later re-
modularization would be necessary. In general, documenting
the modularization is helpful for navigating and understand-
ing the code.

Tools based on code couplings might support the devel-
oper in these modularity-related applications. Such tools,
however, often considered coupling a one-dimensional con-
cept, for instance, equating coupling with structural depen-
dencies. In contrast, our results clearly show that coupling
consists of several dimensions (Section 3.1), many of them
impacting the modularity (Section 3.2). Exploiting combi-
nations of coupling concepts could improve modularity tools
like tools for software clustering, aspect mining, or compo-
nent extraction. For instance, in the domain of software
clustering, combining a few data sources has been already
successfully applied [2, 4, 6]. Moreover, it is to assume that
other applications of coupling data besides modularity are
neither dominated by one coupling concept and could also
profit from integrating different coupling concepts.

In detail, this study contains some findings that might be
of particular interest for designing automatic modularization
tools:

• It seems to be useful to discriminate structural depen-
dencies (SD) further. At least inheritance (SD.Inh)
should be considered as an independent concept be-

cause otherwise aggregation and usage dependencies
might weaken the high impact of the inheritance de-
pendencies.

• Including the highly congruent and dense Type I clone
information (CO.I) is likely to have a positive effect
because clones may disguise parts of the relevant cou-
pling information.

• Using fan-out information (FO), it could be beneficial
to discern external and internal fan-out because of its
clearly different congruence to modularity that we ob-
served in this study.

The conjectured relationships between the code coupling
concepts and the modularity principles provide the oppor-
tunity to check whether the development team follows a cer-
tain principle. This could be a useful instrument for moni-
toring the development process. The congruence results of
our study provide a reference of how modularity relates to
coupling concepts in other projects.

We did not observe large differences for the coupling-
modularity congruence between different package types (Sec-
tion 3.3). This supports the decision of many existing au-
tomatic modularization approaches to handle all types of
modules alike.

5. RELATED WORK
Abreu and Goulão [1] present an approach to find out

whether coupling and cohesion are the driving forces for
the modularity of a software system. They optimized the
modularization with respect to this principle. The result-
ing modularization significantly exceeded the metric value
of the original modularization. The authors conclude that
“the ideal of minimal coupling and maximal cohesion [. . .]
does not match practitioners’ reality at least in what con-
cerns the modularity of object-oriented systems.” Based on
our new results, we can qualify this statement further: Cou-
pling and cohesion still seem to be an important factors for
modularity, but there appear to be other about equally im-
portant ones.

Sarkar et al. [21] discuss different principles used in mod-
ule design, namely, similarity of purpose, published API,
compilability, extendibility, testability, acyclic dependen-
cies, and module size. They propose a set of metrics to
quantify to what extent a modular structure follows these
principles. The results of their case study validate the met-
rics with respect to measure modularity improvements. The
applied metrics thoroughly investigate different kinds of cou-
plings based on structural dependencies. By concluding that
a single metric is not sufficient to estimate the quality of a
modularization, they back our result that code coupling is a
multi-dimensional construct. In contrast to our work, they
focus on creating modularity quality metrics but do not aim
at comparing different coupling concepts.

Evaluating different code coupling concepts to automat-
ically retrieve the modular structure of a system by clus-
tering, Beck and Diehl [4] compared structural dependen-
cies and evolutionary couplings. They retrieved better re-
sults for structural dependencies because of a higher data
density. Combining structural dependencies and evolution-
ary couplings improved the clustering result. Andritsos and
Tzerpos [2] added meta information like developer, direc-
tory, number of lines of code, and the time stamp of the file

to structural dependencies and were also able to improve the
quality of the clustered modularization. Wierda et al. [27]
showed how combining structural dependencies from mul-
tiple versions can be used to improve the clustering result.
Bittencourt et al. [6] enhance the assignment of new classes
to modules by enqueing semantic similarity and structural
dependencies in the assignment process. These different
improvements in automatically modularizing software sys-
tems by integrating different coupling concepts already ex-
ploit the multi-dimensionality of code couplings. Our study
predicts that more rigorously integrating coupling concepts
could lead to further improvements.

Comparisons between coupling concepts have been con-
ducted not only to explain or construct modules. For in-
stance, Cataldo et al. [9] found that high congruence between
code couplings and the communication between developers
leads to better productivity—for structural dependencies as
well as for evolutionary couplings. In a further study [10],
they focus on the impact of different coupling types on fail-
ures and conclude that evolutionary and work-related cou-
plings have a higher impact on failures than structural de-
pendencies.

The introduced congruence metric is similar to some met-
rics applied in software clustering. If we assume the pack-
age structure to be flat instead of hierarchical, our metric
is closely related to the clustering factor metric used in the
software clustering tool Bunch [17], to the score of a cluster
defined for the EVM metric [12], or to the intra modular
coupling density [1].

6. CONCLUSION
This work is a first step towards understanding, based on

conjectured relationships to code couplings, how modularity
principles are used in practice. We compared a broad spec-
trum of coupling concepts on a substantial set of software
projects. The introduced measure of congruence connects
code coupling and modularity while also taking the hierar-
chical structure of the modularization into account. The
results of the study provide hints how modularity principles
are applied in object-oriented open source software systems
today. These findings could be used as hypotheses for future
research. The study furthermore yields recommendations to
enhance existing modularization approaches and tools.

Overall, we observed that none of the principles is ex-
clusively dominating the modularity of the studied systems.
Among the coupling concepts, a similar internal inheritance
fan-out, in other words, the sibling relation in the internal
inheritance hierarchy has the highest impact on modularity.

Acknowledgment
We like to thank Benjamin Biegel, Artur Lipinski, and Alex-
ander Voskoboinik, who helped us retrieve the various kinds
of coupling data.

7. REFERENCES
[1] F. B. Abreu and M. Goulão. Coupling and Cohesion

as Modularization Drivers: Are We Being
Over-Persuaded? In CSMR ’01: Proceedings of the
Fifth European Conference on Software Maintenance
and Reengineering, pages 47–57. IEEE Computer
Society, 2001.

[2] P. Andritsos and V. Tzerpos. Information-Theoretic
Software Clustering. IEEE Transactions on Software
Engineering, 31(2):150–165, 2005.

[3] C. Y. Baldwin and K. B. Clark. Design Rules, Vol. 1:
The Power of Modularity. The MIT Press, 1st edition,
Mar. 2000.

[4] F. Beck and S. Diehl. Evaluating the Impact of
Software Evolution on Software Clustering. In WCRE
’10: Proceedings of the 17th Working Conference on
Reverse Engineering, pages 99–108. IEEE Computer
Society, 2010.

[5] B. Biegel and S. Diehl. Highly Configurable and
Extensible Code Clone Detection. In WCRE’10:
Proceedings of the 17th Working Conference on
Reverse Engineering, pages 237–241. IEEE Computer
Society, 2010.

[6] R. A. Bittencourt, G. J. S. Santos, D. D. S. Guerrero,
and G. C. Murphy. Improving Automated Mapping in
Reflexion Models using Information Retrieval
Techniques. In WCRE’10: Proceedings of the 17th
Working Conference on Reverse Engineering, pages
163–172. IEEE Computer Society, 2010.

[7] I. T. Bowman and R. C. Holt. Software Architecture
Recovery Using Conway’s Law. In CASCON ’98:
Proceedings of the 1998 Conference of the Centre for
Advanced Studies on Collaborative Research, pages 6+.
IBM Press, 1998.

[8] S. Breu and T. Zimmermann. Mining Aspects from
Version History. In ASE ’06: Proceedings of the 21st
IEEE/ACM International Conference on Automated
Software Engineering, pages 221–230. IEEE Computer
Society, 2006.

[9] M. Cataldo, J. D. Herbsleb, and K. M. Carley.
Socio-Technical Congruence: a Framework for
Assessing the Impact of Technical and Work
Dependencies on Software Development Productivity.
In ESEM ’08: Proceedings of the Second ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement, pages 2–11. ACM,
2008.

[10] M. Cataldo, A. Mockus, J. A. Roberts, and J. D.
Herbsleb. Software Dependencies, Work Dependencies,
and Their Impact on Failures. IEEE Transactions on
Software Engineering, 35(6):864–878, Nov. 2009.

[11] M. Conway. How do Committees Invent? Datamation
Journal, pages 28–31, 1968.

[12] M. Harman, S. Swift, and K. Mahdavi. An Empirical
Study of the Robustness of two Module Clustering
Fitness Functions. In GECCO ’05: Proceedings of the
2005 Conference on Genetic and Evolutionary
Computation, pages 1029–1036. ACM Press, 2005.

[13] A. Kuhn, S. Ducasse, and T. Girba. Enriching Reverse
Engineering with Semantic Clustering. In WCRE ’05:
Proceedings of the 12th Working Conference on
Reverse Engineering, pages 133–142. IEEE Computer
Society, 2005.

[14] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue.
Very-Large Scale Code Clone Analysis and
Visualization of Open Source Programs Using
Distributed CCFinder: D-CCFinder. In ICSE ’07:
Proceedings of the 29th International Conference on

Software Engineering, pages 106–115. IEEE Computer
Society, 2007.

[15] R. C. Martin. Agile Software Development, Principles,
Patterns, and Practices. Prentice Hall, 1st edition,
Oct. 2002.

[16] B. Meyer. Object-Oriented Software Construction, 1st
editon. Prentice-Hall, 1988.

[17] B. S. Mitchell and S. Mancoridis. On the Evaluation
of the Bunch Search-Based Software Modularization
Algorithm. Soft Computing, 12(1):77–93, Aug. 2007.

[18] D. L. Parnas. Information Distribution Aspects of
Design Methodology. In IFIP Congress (1), pages
339–344, 1971.

[19] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules. Communications
of the ACM, 15(12):1053–1058, Dec. 1972.

[20] C. K. Roy and J. R. Cordy. A Survey on Software
Clone Detection Research. Technical report, Queen’s
University at Kingston, Ontario, Canada, 2007.

[21] S. Sarkar, G. M. Rama, and A. C. Kak. API-Based
and Information-Theoretic Metrics for Measuring the
Quality of Software Modularization. IEEE
Transactions on Software Engineering, 33(1):14–32,
2007.

[22] R. W. Schwanke. An Intelligent Tool for
Re-Engineering Software Modularity. In ICSE ’91:
Proceedings of the 13th International Conference on
Software Engineering, pages 83–92. IEEE Computer
Society, 1991.

[23] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured Design. IBM Systems Journal,
13(2):115–139, 1974.

[24] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Addison Wesley, May 2005.

[25] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
Degrees of Separation: Multi-Dimensional Separation
of Concerns. In ICSE ’99: Proceedings of the 21st
International Conference on Software Engineering,
pages 107–119. ACM, 1999.

[26] Z. Wen and V. Tzerpos. Software Clustering based on
Omnipresent Object Detection. In IWPC ’05:
Proceedings of the 13th International Workshop on
Program Comprehension, pages 269–278, Washington,
DC, USA, 2005. IEEE Computer Society.

[27] A. Wierda, E. Dortmans, and L. L. Somers. Using
Version Information in Architectural Clustering - A
Case Study. In CSMR ’06: Proceedings of the
Conference on Software Maintenance and
Reengineering, pages 214–228. IEEE Computer
Society, 2006.

[28] T. Zimmermann and P. Weißgerber. Preprocessing
CVS Data For Fine-Grained Analysis. In MSR ’04:
Proceedings of the 1st International Workshop on
Mining Software Repositories, pages 2–6. IEEE
Computer Society, 2004.

