
How Humans merge UML-Models

Rainer Lutz, David Würfel and Stephan Diehl
Department of Computer Science

University of Trier
Trier, Germany

lutzr@uni-trier.de, s4dawuer@uni-trier.de, diehl@uni-trier.de

Abstract—So far, research on model merging has mostly
focused on algorithmic problems. But, there are various sit-
uations when software engineers have to compare and merge
different models manually or at least make important decisions.
In this paper, we provide insights into the process of how users
compare and merge visual models. To this end, we observed
people’s activities when manually merging UML class diagrams
and analyzed the recorded data following the Grounded Theory
approach. To illustrate the usefulness of our results we derived
some guidelines for tool design.

Keywords-merging; model; UML; grounded theory;

I. INTRODUCTION

There are various situations when software engineers
have to compare and merge different models. For example,
several teams may have independently modeled the same
system or different aspects or parts thereof, or new and
old versions of the same model exist, or models have been
automatically or manually reverse engineered from source
code. Model comparison and merging may also be used to
identify common architectural principles in the models of
different systems or help to integrate those systems. In this
paper we look at models in form of UML class diagrams, but
many of our findings may also apply to other graph-based,
visual models in software engineering.

In recent years, tools have been developed for configu-
ration management to automatically or semi-automatically
merge different versions of the same model [1], [2]. Also,
some UML tools allow to load several models into the same
view and then manually merge them. In the words of Barrett
et al. [3]: “Put bluntly, the state of model merge tools is
abysmal.” But, how should such tools look like? What kind
of information, what visualizations, what functionalities,
what interactions should they provide? These questions fi-
nally lead to the more fundamental research question: “How
do software engineers merge UML models?”

In this paper, we provide some insights into the process of
how users compare and merge visual models. Finally, our
results should enable more informed design of interactive
tools for model merging and serve as a starting point for
further empirical studies. To this end, we observed people’s
activities when manually comparing and merging UML class
diagrams using pens and paper-based diagrams. This allowed
us “to view their process independently of the confounds of

a specific” tool [4]. To systematically analyze the recorded
data we followed the Grounded Theory [5] approach, an
established qualitative research method in social sciences.

The contributions of our work are a qualitative theory of
human model merging activities and derived guidelines for
tool design.

II. EXPERIMENTAL DESIGN

In our experiment the participants had to merge two given
UML class diagrams. While this task followed straightfor-
ward from our research questions, it was less obvious what
diagrams to use for the experiment.

A. UML Class Diagrams

In a group discussion guided by the different UML model
elements we came up with a catalog of alternative ways to
model the same or similar aspects. This catalog includes the
following alternative representations:
● same semantics, different names
● same names, different semantics
● different level of abstraction
● same element is part of different classes
● abstract class instead of interface
● use of explicit collection classes
● association instead of operation/aggregation/classes
● direction of associations
● primitive type instead of separate class
● inheritance in contrast to delegation
Next, we browsed through a pile of UML diagrams

produced by students of our software engineering course. As
part of their homework exercise they modeled an automatic
parking barrier. From these diagrams we selected 2 pairs of
matchable diagrams which covered many of the alternatives
of the catalog. As a side effect, we also modified and
extended the catalog. Moreover, we designed two UML
models of a restaurant based on an example in a UML
textbook to cover additional alternatives of the catalog.

B. Procedure

In total we recruited 13 participants for our study: one
professional software developer, two undergraduates, six
graduates and four PhD students. All participants were male
at an average age of 29 years. According to their own

diehl_2
Text-Box
Preprint. The final version of this paper will appear in the Proc. of ESEM 2011



assessment in a post-study questionnaire, they have good
to advanced UML experience and advanced experience in
object-oriented programming.

With 7 participants we performed single-person Thinking
Aloud sessions [6], [7] following the speech-communication
approach of Boren and Ramey [8] using probing questions to
remind the participant to verbalize their thoughts. With the
remaining 6 participants we performed two-person sessions
following the constructive interaction (aka. co-discorvery)
approach [9].

The participants/groups were asked to merge both two
parking-barrier UML class diagrams randomly selected from
the two pairs mentioned above and the two restaurant UML
models. There were no explicit questions to be answered and
the test persons were allowed to ask clarifying questions.
Thus, all participants were free to develop and follow their
own strategies.

Figure 1. Annotation of UML class diagrams

As shown in Figure 1, the participants got a short re-
quirements specification, a set of color pens, and three A3
sheets of paper: two with the printed diagrams and one to
draw their merged model on. The sessions were recorded
(video and audio). In addition, we were prepared to make
some notes of unexpected events during the sessions. Finally,
after completing both tasks, the participants had to fill in a
questionnaire to collect general information about the test
persons and more qualitative data relating to the research
question.

C. Data Analysis

After the experiment, we had videos, merged models, and
annotated original diagrams, as well as the questionnaire
data. To systematically analyze the video data, we followed
the Grounded Theory [5] methodology (GT):

1) Transcribe videos: identify time intervals, describe
activities within each time interval;

2) Identify concepts (naming of phenomena/activities),
annotate time intervals with concepts, and group con-
cepts into categories (GT: open coding);

3) Identify further categories and their subcategories
(classification); determine relations between cate-
gories; describe each category and define its properties
(GT: axial coding);

4) Identify core category and arrange other categories
around core category to form a “theory” (GT: selective
coding).

Based on this theory we derived guidelines for tool design.

III. RESULTS

We conducted ten experiments and gathered more than
7.5 hours of video data with an average duration of about
47 minutes per video. Those recordings were reviewed
by two of the authors independently. In order to capture
all activities and comments of the test persons, both re-
searchers transcribed all video recordings to text files, i.e.,
for each experiment there exist two independently created
transcriptions. A single transcription is basically a table that
lists time stamps along with the according description as
shown for the excerpt in Table I. Moreover, we annotated
prominent activities and comments with early interpretations
and hypotheses. For the three co-discovery experiments we
also included an identifier for each test person.

Table I shows a transcription of a four minute period
of a single test person. During that period he investigated
specific parts of both restaurant models, which are depicted
in Figure 2 along with several marks to show similarities
or differences. Please note that not all of them were drawn
during the four minute time period. Next, we describe this
excerpt in more detail.

In a previous more coarse grained analysis the test person
marked the RecipeBook class with a red color to indicate
that this element is missing in the first class diagram (R1).
Now, when he performs more detailed investigations, he
recognizes the recipeBook attribute of the Cook class
in R1 and matches it with the according class of the second
diagram (R2) by highlighting both purple (A). Shifting his
focus of attention to the recipe book he defers the current
problem, starts investigating and comparing how this feature
is realized in both diagrams, and identifies distinct structural
differences. Nevertheless, in a next step, he concentrates on
marking similarities between both recipe book versions (B).
This done, he returns to the Cook class, quickly investigates
the prepare() method, and switches to the relationships
between Cook and Chef. There, he figures out that a Chef
is a specialization of a Cook in R1. In contrast, R2 does
not provide such a relationship although the two individual
classes share the same functionality (C). Further investiga-
tion of those classes uncovers that there is no corresponding
element in R1 for the addRecipe() method—neither for
the Cook nor the Chef class of R2. Therefore, he underlines



Time Action/Comments
A 00:29:09 Investigating Cook classes → discovering a recipeBook as attribute of Cook in R1 and changing the mark (from red to purple)
B 00:29:28 Investigating Recipe/RecipeBook classes → R2 contains the more sophisticated one → different realization (generic vs. specific

lists) → obvious/distinct differences → marking of all important inner similarities (those that are important for the realization of
a recipe book) with blue lines and circles → matching of the name of the association between Cook and Recipe with three
add...() methods of the RecipeBook class and the association itself with the aggregations between RecipeBook and the
three recipe classes (Appetizer, MainDish, Dessert)

C 00:30:53 Back in the Cook class → via prepare() method investigation of relationship between Cook and Chef → inheritance (R1)
vs. two individual classes, but with same functionality (R2)

D 00:31:29 No explicit match for the addRecipe() method of classes Cook and Chef (R2) exists in R1 → underlining with red color
E 00:31:56 Comparison of supervisor feature → different realization → reflexive association in R1, separate Supervisor class in R2 →

marking of this matching with four blue diagonal lines one for the supervises relationship (R1), the Supervisor class (R2),
and both Chef classes

F 00:32:37 Advantage of R2 is that only a Chef is allowed to be a Supervisor, in R1 such special relationships are not defined → drawback
of R2 is the redundancy of classes (Cook and Chef)

Table I
EXCERPT OF TRANSCRIPTION

this method with a red color (Figures 1 and 2) (D). Next, he
compares the realization of the supervisor feature and finds
out that it is modeled implicitly with a reflexive association
in R1 while R2 uses an explicit Supervisor class. Again,
he concentrates on visualizing similarities (E). As a last step,
he tries to identify advantages and disadvantages of each
realization (F) and finishes his investigations concerning this
part of the diagrams.

Transcriptions like the excerpt shown in Table I are not
as detailed as possible, i.e., they do not always cover the
exact wording of a test person (or each specific activity).
But, our goal was not to transcribe the recordings to text
files and afterwards put the videos away as it might be
possible with voice recordings. Instead, we believe that for
a detailed analysis you have to use both the transcriptions
to navigate through a large amount of data and pick out
a specific phenomenon, and the video recordings itself to
further investigate that phenomenon. Especially interactions
between a test person’s comments and the performed activ-
ities can be analyzed in more detail by watching the video
and, moreover, are hard to capture in a simple transcription.

For further reduction of the data, we analyzed our tran-
scriptions line-by-line and annotated them with concepts in
order to name the phenomenon/activity (GT: line-by-line
coding). In particular, we walked through the text files,
watched the according videos, and labeled the discovered
incidents with a concept. Before we did the last step, we
compared each incident with the existing concepts (GT: con-
stant comparison) to determine whether it already occurred
during the analysis or a new concept is needed.

For the example above we identified the concepts shown
in Table II. Due to space limitations, we only take a closer
look at three of these concepts.

Con1: A test person identified similar features in both
models that were implemented implicitly in the first diagram
and explicitly in the second one or vice versa. In this context
the term explicit implies that additional classes were used
to realize a certain feature, while implicit means that this

ID Name of Concept Timestamps
Con1 Identification of explicit/implicit realizations A,E
Con2 Identification of semantic differences B
Con3 Identification of structural differences B,C
Con4 Identification of distributed features B
Con5 Marking of explicit and implicit realizations A,E
Con6 Marking of distributed features B
Con7 Marking of missing methods D
Con8 Switching to related problem B
Con9 Switching to original problem C
Con10 Reconsideration of previous decisions A
Con12 Uncovering weaknesses C
Con13 Studying of advantages and disadvantages F

Table II
CONCEPTS IN THE EXAMPLE.

can be achieved without them. For instance, in Figure 2 a
specific RecipeBook class was modeled in R2, while a
simple attribute of the type Set is used in R1.

Con8: This concept describes the activity when test per-
sons moved to a different, but related problem and deferred
the current one. In most cases they returned to the original
task after the newly discovered problem was solved (Con9).

Con12: Especially when comparing the models, test
persons sometimes uncovered weaknesses concerning the
design of a diagram. As a further step participants often
studied and compared advantages and disadvantages in case
they had already identified corresponding elements in the
source diagrams (Con13).

The first iteration of our analysis exposed over 180 con-
cepts, which were grouped into categories and subcategories
during further steps. In addition, we derived properties to
describe different characteristics of a category (GT: open
coding, axial coding).

IV. FINDINGS

While we identified and developed the categories bottom-
up, we describe them top-down for better comprehensibility.
Before we present our results in detail, we want to outline
how a typical merging of UML class diagrams is performed.



Figure 2. Excerpts of annotated restaurant UML class diagrams. Here, different colors and shapes indicate different types of similarities and differences.

After reading the requirements specification, participants
started investigating both source diagrams in order to gather
basic information about included features and the corre-
sponding domain. Next, they compared the diagrams and
concentrated on identifying similar elements, which was also
visualized within the models themselves. Therefore, they nav-
igated through both models based on the visually represented
relationships. Similar elements were investigated in a more
detailed step to discover further similarities and possible
differences, and to study advantages and disadvantages.
Based on this information test persons developed rationales
that helped combining the source diagrams. In addition,
new/own ideas might be considered to improve the merged
diagram. Finally, test persons checked whether all elements
have been investigated and some even validated the newly
created UML class diagram.

When merging UML class diagrams, the most important
step is to figure out what to merge—to ask questions like
“Are there any obvious similarities or differences about the
models?” or “How is this specific feature realized in the
other diagram?”. In other words, the goal is to compare the
models, identify corresponding elements (matchings), and
use this information to finally merge the source diagrams.
Therefore, participants ran through two phases. During the
comparison phase the source diagrams were compared and
matchings were identified. In contrast, the merging phase
covers activities in order to develop a merged diagram.
Comparing is the essential process of model merging and,
therefore, evolved as core category during our analysis. To
record information gathered during comparison some test
persons developed different kinds of annotation and visual-
ization techniques. Next, we present a detailed description

of the Comparison category and, furthermore, discuss its
relationship to the Visualization category.

A. The Core Category

Cat1: Comparison. During the comparison phase the
source diagrams are examined for both similarities and
differences. The gathered information is essential for sub-
sequent steps like visualization or merging. Please note that
the comparison phase is mainly a continuous process at the
beginning of an analysis. Later, it may alternate with the
merging phase because specific elements need to be studied
and compared in detail. Generally, test persons tended to
start with a global overview or a coarse grained comparison
and proceeded until they reached a certain fine grained level,
where they investigated local similarities (e.g., the content
of classes). Coarse grained comparison covers classes and
their relationships, while fine grained investigations consider
attributes, methods, or even return types and edge labels.
Depending on a test persons strategy, finer grained investi-
gations were done directly or at a later time, for example,
during the merging phase. Especially the first impression that
arises from a global comparison can shape further strategies,
for instance, where to begin with detailed investigations or
which classes might possibly match.

Thinking about how to compare UML class diagrams
and which strategies to follow one may assume that this
problem can be reduced to a simple “Find 10 differences”
game. In practice, diagrams to be merged often contain
less differences than similarities. But especially at a coarse
grained level, test persons concentrated on the identifica-
tion of similarities rather than differences, which might be
considered as an inconvenient strategy at first. And even



further, differences that were considered to be uncritical
were sometimes completely ignored. Nevertheless, identi-
fying differences is an essential step, particularly, when it
comes to merging both diagrams.

Comparison includes two subcategories, which are intro-
duced hereafter.

Cat1.1: Identification of Matchings: This subcategory com-
prises strategies for the analysis and assessment of the
similarities between both source diagrams. The identification
of matchings provides a basis for subsequent procedures
including the identification of (local) differences, the visu-
alization of matchings, and the development of a merged
model. After basic information about the diagrams, their
purpose, and the related domain were gathered, test per-
sons started identifying corresponding elements, so called
matchings. These matchings equate elements of the first
diagram to elements of the second one. You may think of
any reasonable assignment, e.g., not only two classes can
be matched, but also a class with a group of classes, an
attribute, or a relationship (Table I). In general, test persons
tended to identify a basic set of mostly coarse grained
(class-based) matchings—either consciously or intuitively—
before they proceeded with a detailed analysis, fine grained
investigations, or even the merging process. Especially at
the beginning, a common strategy was to find coarse grained
matchings and only perceive potential differences, which did
not essentially contribute to such a matching decision.

This category can further be divided into four subcat-
egories. The Identification of Name and Layout Similarities
may be considered as simple strategies, which can be used
in a fast and straightforward way, while the Identification
of Semantic and Structural Similarities are more complex,
therefore, require more effort but generally result in more
detailed information. The order in which the strategies are
presented here is not arbitrary, but roughly reflects the
frequency of their usage in our experiments. Furthermore,
these strategies were also applied in a combined manner.
For instance, test persons who could not make a decision
based on name similarities only, tried to identify semantic
and/or structural similarities additionally.

Cat1.1.1: Identification of Name Similarities: The simplest
way to match elements is to compare their names/identifiers.
Here, some participants found it sufficient for two names
to have only substrings in common or even looked for
synonyms, while others preferred identical strings. However,
this strategy was most frequently used and often chosen as
the initial one. Especially when classes and their relation-
ships were examined (class level), it was combined with
other strategies to acquire a set of coarse grained matchings.
Nevertheless, some test persons also matched elements with
similar name but with different functionality.

Cat1.1.2: Identification of Layout Similarities: Mostly used
in early stages of the comparison phase to support a global
overview. The main purpose of layout similarities is to

identify similar elements based on their relative positions.
This may also work for local, class internal investigations
where positioning mainly reflects the order of attributes,
methods, etc.. In general, identification of layout similarities
was combined with other strategies particularly name or
semantic based ones and was rarely explicitly mentioned
during our experiments. Nevertheless, this strategy might
provide a crucial criterion for a matching.

Cat1.1.3: Identification of Semantic Similarities: The most
frequently used complex strategy is the identification of se-
mantic similarities. The exact definition of semantic similar-
ities might be different for each test person, but, in general,
elements were compared with respect to their functionalities,
their responsibilities, or their purpose. Elements that share
such semantic similarities were defined as matching—mostly
independent from their actual realization. For instance, con-
fer Timestamp B in Table I where both recipe book variants
were matched based on their purpose. This shows that
matched elements may differ to some extent. However, they
were often reinvestigated in a further analysis.

Cat1.1.4: Identification of Structural Similarities: To iden-
tify structural similarities, participants had to investigate
the relationships of the considered elements from a global
point of view. Although structural similarities were rarely
identified explicitly, they were often used to support the other
strategies, especially semantic similarities. On the other
hand, at least at the beginning of their analysis, some test
persons tended to ignore structural properties. As with name
similarities, elements that were considered to be similar with
respect to structural properties might differ in functionality.

Next, we discuss the relation to the Visualization category.
Identification of Matchings only comprises strategies to iden-
tify matchings and does not cover any visualization aspects.
However, some test persons decided to annotate elements of
the source diagrams with information gathered during their
analysis in order to keep this information for later use.

In general, matchings were visualized based on the test
person’s individual approach directly after they had been
identified. Most participants used different colors, shapes,
and/or line types to visualize matchings. Especially colors
were used in two ways: different colors either indicated
different matchings or different types of matchings. For
the latter, test persons basically distinguished between three
types of matchings: (1) elements with the same UML type
(e.g., class-to-class matchings), (2) elements that can be
matched with more than one element (distributed features,
1:n matchings), and (3) explicit/implicit realizations as de-
scribed in Section III.

Cat1.2: Identification of Differences: This subcategory
includes strategies for the analysis of differences between
both source diagrams and the included elements. Differences
were often discovered implicitly during the identification of
matchings, i.e., they are mostly based on a local comparison
of a specific matching. From a global point of view, test



persons tended to search for matchings until no further one
can be identified, the rest was defined to be the difference.
Although matchings seem to be of higher priority the
identification of differences is essential for the comparison
of UML class diagrams.

As with similarities, we divided Identification of Differ-
ences into several subcategories, which again are introduced
ordered by the frequency of their usage, beginning with the
most frequently used one.

Cat1.2.1: Identification of Missing Elements: An element
is called missing if it exists in only one source diagram, i.e.,
no matching element could be identified in the other model.
Usually, test persons did not aim to find missing elements,
they remained after the identification of matchings. Later,
during the merging phase participants had to decide if those
elements shall be added to the merged diagram.

Cat1.2.2: Identification of Design Differences: Differences
in design, modeling, or realization are generally based
on previously identified semantic matchings. With respect
to a later merging step, it is important to identify such
differences and study related advantages and disadvantages.
This subcategory covers among others concepts like Con1,
Con3, and Con4 (Table II). As described at the end of Sec-
tion III, we used properties to cover different characteristics
of a category. Here, depending on a test person’s strategy,
elements with similar features were investigated with respect
to their level of detail, distribution, and/or structure. Level of
detail covers both elements of the same type, for example,
a single method of the first diagram can be matched with
several methods of the second one and different type like
the identification of explicit/implicit realizations (Con1).
Distribution describes situations when features are spread
over several elements in the first diagram and agglomerated
in a single element of the second one. Finally, structure
means that elements can be connected to the rest of the
diagram in different ways although they model the same
features.

Cat1.2.3: Identification of Semantic Differences: Espe-
cially in the merging phase, semantic differences are often
crucial to create the new diagram. Test persons had to
decide whether a certain feature will be integrated or not.
Again, this strategy is mainly based on previously identified
matchings and, thus, considers local differences with respect
to functionality or purpose. The bigger these differences, the
more reasonable is a detailed analysis to gather advantages
and disadvantages of a certain element or feature.

Cat1.2.4: Identification of Name Differences: Name dif-
ferences were often identified along with matchings that
are not based on name similarities. Especially during the
merging phase, it may be beneficial to be aware of them,
because participants faced the problem to assign a name to
an element.

Cat1.2.5: Identification of Layout Differences: Like layout
similarities, differences were mostly discovered during early

stages of the comparison phase especially on a global level.
Different layouts may complicate the comprehension and the
comparison of the source diagrams [10] and, therefore, it is
important to be aware of them. As with most differences,
these were rarely identified explicitly, i.e., test persons
discovered them while examining the models for similarities.

As with matchings, we briefly discuss the relation to the
Visualization category because Identification of Differences
does not cover any strategies for their visualization. Due
to the fact that differences were rarely discovered explicitly,
participants tended to mark similarities only and, thus, out-
line differences implicitly. If differences were visualized ex-
plicitly, it was mainly done on a local level between elements
of previously identified matchings with the intention to
save this information for further steps. But, considering the
example above (Table I, Timestamp A), some test persons
also marked missing classes on a global level.

Navigation
(Cat3)

Administration
(Cat6)

Merging
(Cat4)

Rationales
(Cat5)

Comparison
(Cat1)

Visualization
(Cat2)

Figure 3. Relations between top level categories. Continuous arrows
encode preconditions and dashed arrows depict supportive relations.

B. Integrating Categories

As described by Corbin and Strauss [11], for developing
Grounded Theory the core category needs to be linked to
all of the other categories that were identified during the
previous coding steps (GT: selective coding). This subsection
briefly introduces those categories and explains how they are
related to the Comparison category and to each other.

Figure 3 depicts basic relations between the top level
categories. There, we distinguish two types of edges. Con-
tinuous arrows show a precondition relation between two
categories, i.e., a process of the source category has to
be completed in order to proceed with strategies of the
target category. Dashed arrows encode supportive relations,
which might not be essential for the target category, but
may facilitate a certain process. Please note, that an edge is
drawn when at least two subcategories are related to each
other. In other words, an edge does not necessarily mean
that all subcategories are linked.

Cat2: Visualization. Besides the visualization of match-
ings and differences this category covers additional strategies
to visualize and record collected information. This informa-
tion may support both a further, more detailed comparison
and the merging process itself (cf. Fig. 3). In general, test
persons tended to apply visualization strategies more often



when the complexity of the diagrams increased. Further-
more, visualization may also be applied on different levels
of granularity. Next, we introduce the subcategories:

Cat2.1: Auxiliary Gestures were applied by almost all test
persons. Their main purpose was to focus elements or keep
track of a certain observation (like when reading a book and
using a finger to keep track of the current line). Gestures
were used in different situations, for instance, to support the
navigation through a single diagram or the investigation of
elements and possible matchings. Besides pointing gestures
participants also applied a temporary grouping of elements
through grabbing or circle gestures.

Cat2.2: Visualization of the Progress: A widely used
technique that requires a permanent annotation of the source
diagrams was the visualization of the current merging
progress. Test persons tried to facilitate their navigation
through the source diagrams by focusing on elements that
had not been processed. To this end, they tended to simply
strike out elements within the source diagrams that were
covered in a previously completed merging step (cf. Fig. 3).
Some participants also distinguished added and discarded
elements.

Cat2.3: Grouping of Elements was done for different
reasons, in a temporary or permanent way. For example,
most test persons identified matchings based on distributed
features (1:n matching). In order to visualize such a match-
ing, they decided to group the respective elements and
treated them as a single element. From a global point of
view, grouping was mainly used to abstract from a certain
level of detail, to simplify the actual problem, or to augment
the source diagrams with additional, but helpful information
(cf. Fig. 3). In a Divide-And-Conquer manner some test
persons divided the source diagram into groups, which were
analyzed separately at first and afterwards the relationships
in between them.

Cat3: Navigation. Besides navigating through a single
diagram, participants mostly faced the problem to traverse
both diagrams at the same time. In other words, during
the comparison and merging phases strategies for naviga-
tion had to be synchronized to some extent. For instance,
while merging, participants had to navigate from previously
considered elements to the next matching synchronously.
Therefore, Navigation is essential for most processes of
model merging and closely coupled with Comparison and
Merging (cf. Fig. 3). In particular, this category comprises
strategies that were mainly developed and used implicitly
during the overall process and may also be combined.

Cat3.1: Selection of a Starting Point: Before test persons
were able to analyze the source diagrams, they often faced
the problem of how to determine a starting point. Especially
at the beginning of the comparison and merging phases,
initial elements or matchings had to be chosen in order to
navigate through the diagram. Therefore, the properties of
this subcategory reflect three different ways to determine

a starting point. Elements were preferably chosen as such
when they were positioned closer to the upper left corner,
provided essential features, or showed obvious similarities
or differences.

Cat3.2: Structure-Based Strategies describe the actual
navigation within the source diagrams, i.e., how participants
moved from one element to another. A structure-based
navigation was applied on different levels of granularity
and, thus, may be adapted, but is generally grounded on
the underlying visual graph structure. In other words, test
persons followed relationships between classes to determine
the next element to consider. This was of course not always
done as strictly as by a traversal algorithm, but, nevertheless,
a depth first search strategy was often applied. Inside classes
test persons mainly proceeded in a list-based manner. In
case a synchronized navigation within both source diagrams
was needed, test persons often resort to auxiliary pointing
gestures.

Cat3.3: Supporting Strategies: In addition, some test
persons also developed approaches to simplify the navigation
in order to keep track of the actual problem. In particular,
they often used some kind of group based navigation, where
they moved from one group to another after they had
partitioned the diagrams (Cat2.3, Fig. 3). Less common was
the approach of moving along different levels of granularity.
For example, participants started to investigate only classes,
followed by their relationships, and, finally, their content.

Cat3.4: Interrupting Strategies describe situations when
participants followed a certain navigation strategy, but for
some reason paused this procedure, investigated a different
part of a source diagram, and, finally, returned to the original
problem. Test persons navigated to a different element due
to the following reasons: (1) Difficulties while merging the
diagrams could make participants switch to an element that
was easier to handle. (2) Test persons were distracted by a
more interesting or detailed element. (3) When participants
had treated an element that did not have any more relation-
ships to follow (leaf node), they often switched to the next
closest element (in terms of distance in the layout).

Cat4: Merging. This category comprises only strategies
that were applied during the merging phase in order to
combine the source diagrams and, therefore, merging is the
final step of the overall process and essential to yield the
new model. Merging implies that a comparison of the corre-
sponding elements has been already performed, matchings
identified, and rationales for their further treatment derived.
In addition, previously made visualizations may support
the merging process. Please note that Merging is rarely a
continuous process, instead test persons tended to constantly
alternate between the comparison and merging phases.

Cat4.1: Merging Decisions: Based on the information
provided by Comparison and Rationales (cf. Fig. 3), test
persons were able to decide whether elements shall be
integrated into the merged diagram or discarded. In general,



merging decisions were applied on any level of granularity
and can be classified into one of the following subcategories:
(1) choosing an element, (2) adding a missing element, or (3)
discarding a missing element. When choosing an element,
test persons resorted to previously identified matchings (e.g.,
idCartNo ↔ persNo in Figure 2) and derived rationales
in order to decide, which element shall be added to the
merged diagram. Missing elements are only part of one
diagram and, depending on previously elaborated rationales,
participants either added this element to the new model or
discarded it. Discarded elements may be crossed out within
the source diagrams to visualize the overall progress.

Cat4.2: Drawing the Merged Diagram: This subcategory
covers the actual drawing of the merged diagram, which
implies that all merging decisions had already been done in
a previous step and test persons adhered to them. In general,
we differentiate between local and global drawing strategies,
which may also be used in combination. In the former
case, elements were integrated into the merged diagram
directly after the respective merging decision was made.
When applying global strategies, participants draw several
class boxes with its name only and might connect them with
simple lines in order to achieve a basic layout or to keep
track of the identified matchings. After elements were drawn
the overall progress might be visualized (cf. Fig. 3).

Cat4.3: Introducing New/Own Ideas: Own ideas were
introduced due to the following reasons and were applied
on different levels of granularity: First, the merged diagram
had to be adjusted in order to preserve a certain feature,
semantics, and/or validity of the model. Second, test persons
discovered features that are neither available in the source
diagrams nor achievable through merging or, in contrast,
appear in both models, but were considered unnecessary for
any reason. Furthermore, we observed that participants of
co-discovery experiments found it more common, often due
to more intense discussions, to add or remodel features.

Cat4.4: Changing the Merged Diagram: Merging decisions
could turn out to be erroneous, for instance, further inves-
tigations affected previous decisions. Therefore, it might be
necessary to modify the merged diagram and discard parts
of the current model.

Cat5: Rationales. By analyzing and assessing the de-
sign of the source diagrams based on previously identified
matchings, test persons developed different rationales, which
emerged as an important precondition for Merging (cf.
Fig. 3). Especially when considering merging decisions,
such rationales could occur at various points in time and,
thus, might not be related directly to the final merging
step. Moreover, some rationales were combined with or
were influenced by each other. Due to subjective influences
different rationales may exist for the same result.

Cat5.1: Simplicity: Test persons preferred the simplest
realization as long as the demanded feature was included.
In particular, they checked for or even developed a solution

that reflects the requirements as good as possible without
retaining additional or unnecessary features.

Cat5.2: Functionality: This subcategory covers cases when
participants wanted to preserve (additional) features, which
might not be a requirement at first. This may be done for
different reasons, e.g., in order to retain a certain flexibility,
which supports a further development or to differentiate
features. Some test persons simply tried to integrate as many
features as possible into the merged diagram.

Cat5.3: External Influences are rationales, which go be-
yond the information that is provided by the source dia-
grams. Test persons resorted to own experiences with the
underlying domain, the reality and/or the implementation.
External influences were stated the most and also affected
other rationales or supported generating own ideas.

Cat5.4: Previous Decisions: Elements were also be chosen
based on previous merging decisions. For instance, ele-
ments of the same diagram were usually easier to handle,
because their relationship was already defined. Therefore,
test persons tended to adopt such elements, relationships,
or even whole parts of a diagram if they could not identify
differences at a first glance or merging of both diagrams was
hardly possible.

Cat5.5: Weak Design: From time to time, test persons dis-
covered design weaknesses or even errors within the source
diagrams. While this may be their subjective impression
in the former case, errors are more critical. In order to
create a correct solution, the respective elements were either
discarded or, less common, improved by own ideas.

Cat5.6: Uncritical Differences: When test persons identi-
fied differences that were uncritical according to their own
opinion, they often chose a simple, obvious, or generic so-
lution. In general, the more fine grained their investigations,
the higher the probability to define differences as uncritical.

Cat5.7: Unnecessary Elements: An element may be de-
fined as unnecessary and, thus, was often discarded for
two reasons: First, its functionality was clear, but it did
not contribute important features, e.g., as a consequence of
Simplicity . Second, participants were not able to work out
the exact purpose of a specific feature.

Cat5.8: Terminology: Especially when features of matched
elements were very similar (or even identical), test persons
often chose elements based on their names/identifiers. To
this end, they referred to criteria like comprehensibility or
programming guidelines.

Cat6: Administration. During the overall process par-
ticipants also performed what we call administrative tasks.
Although they were not always essential for a successful
model merging, they could facilitate it and aided to solve
problems. Figure 3 shows that Administration supports Com-
parison, Rationales, and Merging.

Cat6.1: Information Gathering is an important process of
each analysis to familiarize with the task and the provided
materials. In general, information belong to one of the



following areas: (1) Basic information about the source
diagrams themselves, their features and purpose, and the
corresponding domain. Participants gathered such informa-
tion mostly at the beginning of their analysis to get a first
impression and a global overview. (2) Besides matchings
and differences test persons also generated additional infor-
mation while comparing the source diagrams. For instance,
they studied advantages and disadvantages of a certain
realization, which was important to find rationals (cf. Fig. 3).
(3) Test persons tended to reflect about own ideas. Not all of
these ideas were later integrated into the new diagram, but,
nevertheless, this information supported the merging pro-
cess. (4) Some participants planed and developed individual
strategies explicitly, before they began with their analysis.
Using this information during the overall merging process
seemed to make them focus better on the actual task.

Cat6.2: Review and Validation: In order to merge the
source diagrams correctly, participants resorted to review
and validation strategies. Particularly at the end of the ex-
periments, test persons tended to review the source diagrams
to find forgotten elements. Less common was a validation of
the merged model in terms of semantics and UML syntax,
which could lead to changes of already integrated elements.

V. GUIDELINES

To demonstrate the usefulness of the theory described
above, we derived initial guidelines for tool design.

Support individual workflow: While we tried to capture
the essence of the merging process in our theory, there have
been many individual differences in the way the participants
compared and merged models. Thus, a tool for interactively
merging UML class diagrams should not restrict users to a
certain workflow. Furthermore, it should provide a variety
of features users may choose from.

Allow extensions: Besides the actual merging all aimed to
improve the merged model to some extent by introducing
own ideas. Therefore, a tool should provide at least basic
UML modeling features and not only focus on merging itself
(Cat4.3).

Support annotations: Category 2 covers a variety of dif-
ferent visualization and annotation techniques, which should
be integrated in some form into a tool. Furthermore, we
observed that some participants did not want to incorporate
complex ideas directly into the merged model. The possi-
bility to add comments to both the source diagrams and the
merged diagram could help the users to capture their ideas
for later use (Cat6.1).

Support grouping: Interactive model merging tools should
support grouping to match single elements with groups.
Grouping can also be used to reduce the complexity of
the source diagrams and to enable the users to work more
efficiently [12]. (Cat2.3).

Raise awareness: Participants tended to work on a pre-
ferred source diagram and sometimes overlooked or ignored

important differences. Therefore, a tool should point users
to such differences in order to make them aware of possible
problems without distracting their workflow. Furthermore, a
tool may also indicate alternative matches to make the users
reflect on their previous decisions (Cat5.4).

Provide algorithmic support: At least at the beginning of
their analysis, test persons mainly identified matchings based
on straightforward strategies like name or layout similarities.
Thus, a primitive name based matching algorithm could
already help to simplify the problem (Cat1.1).

Help to keep track: The test persons came up with various
gestures and markings to keep track of where they were
in the merging process. Thus, a tool should record the
interaction history and allow the users to go back and forth.
Furthermore, users should be able to interrupt operations
and the tool should later on remind them of incomplete
operations (Cat3.4).

VI. RELATED WORK

Our extensive literature research did not reveal any work
on how humans manually merge UML class diagrams,
therefore, we review here related work in a broader context
including model driven configuration management, layout of
UML class diagrams, and our research method, the grounded
theory.

Begel and Simon [13] conducted a study using grounded
theory on professional novices in software development. In
contrast to our study, they made a long term observation
of their subjects in their normal work environment and
were rather focusing on the amount of time subjects spent
on doing typical software development tasks than on what
subjects do.

Crabtree et al. [14] were using a grounded theory ap-
proach for gaining insights in how people verbalize software
processes. They make elaborate use of the grounded theory
by Strauss and Corbin [11] to present a well-founded map of
codes in great detail for understanding of how participants
proceed with respect to their research question.

Yusuf et al. [12] extended the eye-tracking study by
Guehénéuc [15] and explored human comprehension of
UML class diagrams. They found that “experts tend to
navigate/explore from the center of the diagram to the edges
whereas novices tend to navigate/explore from top-to-bottom
and left-to-right”. This phenomenon also appeared in our
analysis.

Purchase et al. empirically investigated the layout and aes-
thetics of UML diagrams including user preferences [10] and
preferable syntactic notations for better comprehension [16].
Sun and Wong [17] used Gestalt Theory to justify a large
number of criteria for the layout of UML class diagrams.

The use of UML in general and its advantages in profes-
sional software engineering were surveyed by Nugroho and
Chaudron [18]. Their respondents “believe that the corre-
spondence between UML models and the implementation is



important” and “the use of UML is perceived to be most in-
fluential in improving the quality of software in terms of un-
derstandability and modularity respectively.”. Furthermore,
“amongst other factors, incompleteness in UML models is
considered more often leading to implementation problems
and more often driving deviations in the implementation”,
which allows us to state that it seems reasonable to indi-
vidually create several UML class diagrams (of the same or
coherent software artifacts) and merge them in a next step
to afford a maximum degree of completeness.

VII. THREATS TO VALIDITY

The diagrams used in our study are based on both student
exercises and an adjusted example from a textbook. There-
fore, they might not reflect UML class diagrams created by
professional software engineers. Furthermore, not all design
elements such as stereotypes or association classes were
covered by our diagrams. With one exception, all of our
test persons were students and not professional software
architects. People, who have to merge models every day, may
have developed additional strategies or abandoned inefficient
ones.

VIII. CONCLUSION

In this paper we presented insights in how software
engineers compare and merge visual models. Therefore,
we designed two pairs of comparable class diagrams and
conducted a combined thinking aloud/constructive interac-
tion study. Following the grounded theory methodology, we
analyzed the gathered data in order to find concepts and
derive categories from those. These categories and their
relations provide a map of various activities our test persons
performed when trying to merge the source diagrams. In
particular, we identified Comparison as the core category and
grouped all other categories around it. In order to support
future work on tool design, we derived initial guidelines
based on our findings.

REFERENCES

[1] U. Kelter, J. Wehren, and J. Niere, “A Generic Differ-
ence Algorithm for UML Models,” in Software Engineering
2005, Fachtagung des GI-Fachbereichs Softwaretechnik, 8.-
11.3.2005 in Essen. GI, 2005, pp. 105–116.

[2] P. Selonen, “A Review of UML Model Comparison Ap-
proaches,” in Proceedings of the 5th Nordic Workshop on
Model Driven Engineering, 27-29 August 2007, Ronneby,
Sweden, 2007, pp. 37–51.

[3] S. Barrett, P. Chalin, and G. Butler, “Model merging falls
short of software engineering needs,” in Proceedings of
the Workshop on Model-Driven Software Evolution, Athens,
Greece, 2008.

[4] P. Isenberg, A. Tang, and M. S. T. Carpendale, “An ex-
ploratory study of visual information analysis,” in Proceed-
ings of the 2008 Conference on Human Factors in Computing
Systems, 2008, Florence, Italy, April 5-10, 2008. ACM, 2008,
pp. 1217–1226.

[5] B. G. Glaser and A. L. Strauss, The discovery of Grounded
Theroy: Strategies for Qualitative Research. Aldine Trans-
action, 1967.

[6] K. Ericsson and H. Simon, “Verbal reports as data,” Psycho-
logical Review, vol. 87, no. 3, pp. 215–251, 1980.

[7] J. Nielsen, Usability Engineering. Academic Press, 1993.

[8] M. Boren and J. Ramey, “Thinking aloud: Reconciling theory
and practice,” IEEE Transactions on Professional Communi-
cation, vol. 43, no. 3, pp. 261–278, 2000.

[9] N. Miyake, “Constructive interaction and the iterative process
of understanding,” Cognitive Science, vol. 10, no. 2, pp. 151–
177, 1986.

[10] H. C. Purchase, J.-A. Allder, and D. A. Carrington, “Graph
layout aesthetics in UML diagrams: User preferences,” J.
Graph Algorithms Appl., vol. 6, no. 3, pp. 255–279, 2002.

[11] A. L. Strauss and J. Corbin, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.

[12] S. Yusuf, H. H. Kagdi, and J. I. Maletic, “Assessing the
comprehension of UML class diagrams via eye tracking,” in
15th International Conference on Program Comprehension,
June 26-29, 2007, Banff, Alberta, Canada. IEEE Computer
Society, 2007, pp. 113–122.

[13] A. Begel and B. Simon, “Novice software developers, all over
again,” in Proceeding of the Fourth international Workshop
on Computing Education Research, ser. ICER ’08. ACM,
2008, pp. 3–14.

[14] C. A. Crabtree, C. B. Seaman, and A. F. Norcio, “Exploring
language in software process elicitation: A grounded theory
approach,” in Proceedings of the Third International Sympo-
sium on Empirical Software Engineering and Measurement,
October 15-16, 2009, Lake Buena Vista, Florida, USA. IEEE
Computer Society, 2009, pp. 324–335.

[15] Y.-G. Guéhéneuc, “Taupe: towards understanding program
comprehension,” in Proceedings of the 2006 conference of
the Centre for Advanced Studies on Collaborative Research,
October 16-19, 2006, Toronto, Ontario, Canada. IBM, 2006,
pp. 1–13.

[16] H. C. Purchase, L. Colpoys, M. McGill, D. A. Carrington, and
C. Britton, “UML class diagram syntax: An empirical study of
comprehension,” in Australasian Symposium on Information
Visualisation, InVis.au,Sydney, Australia, 3-4 December 2001.
Australian Computer Society, 2001, pp. 113–120.

[17] D. Sun and K. Wong, “On evaluating the layout of UML class
diagrams for program comprehension,” in Proceedings of the
13th International Workshop on Program Comprehension, 15-
16 May 2005, St. Louis, MO, USA. IEEE Computer Society,
2005, pp. 317–326.

[18] A. Nugroho and M. R. V. Chaudron, “A survey into the
rigor of UML use and its perceived impact on quality and
productivity,” in Proceedings of the Second International
Symposium on Empirical Software Engineering and Measure-
ment, October 9-10, 2008, Kaiserslautern, Germany. ACM,
2008, pp. 90–99.


