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Abstract
The evolution of dependencies in information hierarchies can be modeled by sequences of compound digraphs
with edge weights. In this paper we present a novel approach to visualize such sequences of graphs. It uses radial
tree layout to draw the hierarchy, and circle sectors to represent the temporal change of edges in the digraphs. We
have developed several interaction techniques that allow the users to explore the structural and temporal data.
Smooth animations help them to track the transitions between views. The usefulness of the approach is illustrated
by examples from very different application domains.

Categories and Subject Descriptors (according to ACM CCS): E.1 [Data Structures]: Graphs and Networks

1. Introduction

Information hierarchies occur in many application domains
such as the hierarchical organization of companies, news
topics and subtopics, file/directory systems, products and
product groups of a department store, or phylogenetic trees
in biology. The evolution of dependencies in such infor-
mation hierarchies can be modeled by sequences of com-
pound digraphs with edge weights. While there has been a
lot of work on visualizing information hierarchies [RT81,
YFDH01, JS91, AH98, SZ00], only few researchers have
developed methods to visualize dependencies between ele-
ments in the hierarchy [NSC05, FWD∗03, ZMC05, Hol06],
see Section 4 for a more detailed discussion.

The TimeRadarTree approach presented in this paper sup-
ports the visualization of the evolution of weighted depen-
dencies in information hierarchies in a single diagram. To
this end the TimeRadarTree approach integrates three views
into one:

Interactive radial tree: It shows the whole hierarchy to an
interactively selectable level. By clicking at a node on the
circumference it is expanded, by clicking at an interme-
diate node, the subtree starting at that node is collapsed
and the node is put on the circumference. Expanding or
collapsing subtrees of the hierarchy can help to detect re-
lations at different levels of abstraction.

Inner Circle (Time Radar): Incoming edges of leaf nodes
or collapsed subtrees are shown as colored parts of a circle
sector related to that node or subtree. The color of each

part encodes the weight of the edge, i.e. the strength of
the dependency.

Outer Circles (Thumbnails): The smaller outer circles re-
lated with each hierarchy node show the outgoing edges
of the related node. The target node of each edge can be
inferred from its direction, shape, and color.

We have developed several interaction techniques that al-
low the users to explore the data. Smooth animations help
them to track the transitions between views. Thus, Time-
RadarTrees allow the user to detect when and how strong
elements of the hierarchy are related.

The rest of this paper is organized as follows: In Section 2
we introduce the different constituents of the TimeRadar-
Tree visualization by means of examples. Then, in Section 3
we illustrate the usefulness of our approach by looking at
data sets from various application domains. Related work is
discussed in Section 4. Finally, Section 5 gives some conclu-
sions and possible directions for further work.

2. TimeRadarTrees – step by step

We illustrate our visualization technique by starting with the
representation of a single graph and then adding features step
by step. As first example consider the node-link diagram of
a single, directed graph (short: digraph) shown in Figure 1.
Nodes are represented by circles, directed edges by arrows
from one node to another.

In TimeRadarTrees there is not a single representation of
a node or an edge, see Figure 2. But for each node its in-
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Figure 1: Node-link diagram of a graph.

coming edges are represented by sectors of the large circle
in the middle, while the smaller circles on the circumference
of the inner circle show the outgoing edges. These circles
are subdivided into sectors as follows. First, if we have n
nodes, the circle is divided into n equally-sized sectors. Each
of these sectors is associated with a certain node. In the ex-
ample, the lower left sector of all circles is associated with
node D. Next, each of the sectors is subdivided into a num-
ber of smaller sectors depending on the number of incoming
edges of the associated node. In the example, the three col-
ored sectors related to the node D in the inner circle repre-
sent the three incoming edges of node D, while the one big
colored sector related with node A indicates that node A has
only a single incoming edge, and finally, the white sectors
related to E and C show that these nodes have no incoming
edges at all.

Figure 2: TimeRadarTree of a single graph.

Note, that by looking only at the inner circle, we can not
identify the nodes where the incoming edges start from. This
information can be grasped by looking at the outer circles.
For example, by looking at the outer circle related to node
B, we see that there is only one outgoing edge, and this out-
going edge is drawn in the part of the circle associated with
the node D. In comparison with node-link diagrams, an im-
portant advantage of the TimeRadarTree visualization is that
there are no edge crossings leading to visual clutter.

While this sector-based representation might seem awk-
ward at first and it needs some training to read this repre-
sentation, it will turn out useful, once we add more features.
Let’s start by trying to visualize a sequence of graphs in-
stead of a single graph. As an example, we use the sequence
of graphs shown in Figure 3. Each graph of the sequence is
shown by a separate node-link diagram.

Figure 3: Node-link diagrams of a sequence of graphs.

Figure 4: TimeRadarTree of a sequence of graphs.

Figure 4 shows a TimeRadarTree representation of the
same sequence of graphs. Here the edges of each graph are
represented by sectors of the same ring. Actually, in this ex-
ample, the innermost circle corresponds to the first graph,
that we have seen before, the next graph of the sequence is
represented by the inner ring, and the third graph by the outer
ring. Looking at the lower left sector of the first graph, we
see for example, that there have been three incoming edges
for node D in the first graph, one in the second, and none
in the third. By looking at the lower left sectors of the small
outer circles, we see that two of the incoming edges of D
start from node A, and its third incoming edge starts from
node B. Furthermore, we see that the single incoming edge
in the second graph starts also from A. In comparison with
animated node-link diagrams, the integration of all graphs in
the sequence into a single diagram helps the user to preserve
the mental map.
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In a compound digraph, like the one shown in Figure 5,
the nodes of the graph are additionally related to leaves of
a hierarchy. In the example, the graph and the hierarchy
are both shown as node-link diagrams with additional edges
connecting the nodes of the graph with the leaf nodes of the
hierarchy.

Figure 5: Node-link diagram of a compound graph.

Figure 6: TimeRadarTree of a compound graph.

In Figure 6 the same compound graph is shown as a
TimeRadarTree using radial layout to embed the node-link
diagram of the hierarchy in the sector-based visualization of
the graph.

We can now combine both features, i.e. visualize se-
quences of compound graphs. Figure 7 shows them as a se-
quence of node-link diagrams, while Figure 8 combines the
two approaches discussed above to integrate all information
into a single TimeRadarTree diagram.

Another way to extend the visualization is to consider di-
rected graphs with edge weights as the one shown in the
node-link diagram in Figure 9. Instead of using numbers,
we can encode weights by colors – both in the node-link di-
agram as well as in the TimeRadarTree, see Figure 10.

Finally, by combining all the features that we discussed
above, we are able to visualize sequences of compound di-
graphs with edge weights in a single TimeRadarTree dia-
gram. Our TimeRadarTree visualization tool provides many

Figure 7: Node-link diagrams of a sequence of compound
graphs.

Figure 8: TimeRadarTree of a sequence of compound
graphs.

additional interactive features such as brushing, tool tips,
and a selection of predefined color scales to choose from.
The most important of these features is that the user can
interactively expand or collapse subtrees of the hierarchy.
Smooth animations help the user to keep track of the result-
ing changes of the visualization. Furthermore, to accomo-
date for the low resolution of sectors in the center of the
circle, the user can perform a circular shift of the time axis,
thus moving graphs from the inner rings to the outer rings
and vice versa.

Figure 9: Node-link diagram of a weighted graph.
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Figure 10: TimeRadarTree of a weighted graph.

3. Applications of TimeRadarTrees

To illustrate the usefulness of our visualization system, we
apply the TimeRadarTrees system to data sets of very differ-
ent domains.

3.1. Soccer Match Results

The world’s national soccer teams can be hierarchically or-
ganized by first subdividing them by continents, and then
further subdividing them by regions of these continents, for
example north, south, east, or west. The results of soccer
matches that took place within a given time interval can be
used to generate a graph in the following way: The number
of goals gA→B of team A against team B are represented
by a directed edge between A and B with the weight gA→B
and an edge leading from B to A with the weight gB→A,
i.e. the number of goals that team B has scored against A
in this match. It is important to differ between edges with
weight 0 and non-existing edges. Looking at many of these
subsequent graphs in a single view can provide important in-
sights of the national teams soccer playing quality. Figure 11
shows a sequence of 14 compound digraphs generated for
soccer matches between national teams of Central Europe
and South America from 1992 to 2005. The first observation
that one can make is that there have only been a few matches
between teams of Central Europe and South America. This
fact can be found out by having a closer look on the thumb-
nail circles. The thumbnail circles in the lower part only have
a few colored edges in their upper part, and the thumbnail
circles in the upper part have only a few colored edges in
their lower part. Only the teams of Germany and Brazil have
played against each other a bit more frequently. A second
observation is that the teams of South America played more
matches against each other than the teams of Central Europe
in the same period of time.

Color coding can be used to find out the teams which
scored many goals against other teams. Here we use the fol-
lowing color coding scheme: black indicates 0 goals, blue
indicates 1−2, green indicates 3−4, yellow indicates 5−8
goals, and red indicates more than 8 goals. Looking at Fig-

ure 11 again one can easily find out that Germany has a
red outgoing edge to the national team of Liechtenstein. A
detail-on-demand request for that edge provides the infor-
mation, that Germany won the match 9:1 on June 4th 1996.
Moreover it can be seen that the team of Brazil scored very
often and not surprisingly the team of Liechtenstein scored
very seldom.

TimeRadarTrees can also be used to just get an overview
of the evolution of incoming edges. Especially for this
dataset this means which teams have a good and which have
a bad defense. In Figure 11 it can be seen that the team of
Liechtenstein has many against goals. For the team of Aus-
tria we see that the situation of against goals worsens after
the year 2002. The outermost thin ring shows the average
weight for each of the teams which means the average num-
ber of against goals in the years from 1992 to 2005. Here
we can see that Liechtenstein has the biggest value (green)
followed by Venezuela. All other national teams have much
lower values (blue).

In Figure 12 we are not interested in the hierarchical struc-
ture but more in the graphs. We selected the Central Europe
part of the whole hierarchy and got a TimeRadarTree which
shows 9 national teams and their match results of the time
period 1992-2005. The inner big circle visualizes the goals
against, the outer smaller circles the scored goals against the
corresponding teams. We can immediately recognize that the
team of Liechtenstein is unsurprisingly the worst team with
respect to its soccer skills. Only a few black or dark colored
arcs show that the opponent teams was not able to score. A
closer look at the thumbnail view gives an insight that these
opponent teams were very weak ones by themselves.

Figure 12: A Comparison: Soccer matches of national teams
in Central Europe.

Figure 13 shows all against goals (incoming edges) of soc-
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Figure 11: A Comparison: Soccer matches between national teams of Central Europe and South America.

cer matches of all national teams in the world from 1992 to
2005. Here we can see that the teams from the Caribbean
and the teams from Oceania have the most against goals.
This is an indicator that these teams can not keep up with
the world’s best national teams during that 14 years period.
In the tool, the user can also interactively inspect the scored
goals (outgoing edges) of each national team by selecting a
leaf node on the circumference.

3.2. Triplet Codes in Gene Sequences

A genetic code consists of triplet codes called codons. Each
codon consists of three nucleotides namely Adenine(A), Cy-
tosine(C), Guanine(G), and/or Thymine(T), representing a
single amino acid. Thus, codons are a three letter code over
a four letter alphabet, and there are 43 = 64 different pos-
sibilities. For the visualization we use the prefix tree of the
codons as a hierarchy and the position of a codon in the gene
sequence forms a natural order. Furthermore, two codons are
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Figure 13: Soccer matches of national teams in the whole
world between 1992 and 2005.

related if they are neighbors in the genetic code. To under-
stand the distribution of the triplets over a longer part of the
gene sequence TimeRadarTrees can represent the data set in
a stacked view which can not keep the edge order any longer
but on the other hand it can visualize the absolute number of
incoming edges. This representation is similar to a bar chart
but in a radial style.

Figure 14 shows the first 10000 triplet codes of the DNA
of a salmonella in a stacked view. On the one hand we imme-
diately see that AAA(Lysine) and TTT (Phenylalanine) are
the most frequent codons. On the other hand, all codons
starting with the prefix AC occur less frequently. The ra-
dial tree layout of the codon hierarchy is very similar to the
codon wheel [Swa84] which is a widely used visualization in
genetic biology. It shows the correspondence of codons and
the amino acids they encode. In addition TimeRadarTrees
can show the frequency and the distribution of the codons
throughout the gene sequence.

3.3. Software Evolution

Next we look at the evolutionary coupling of software arti-
facts like modules, files, classes, and methods. The strength
of the evolutionary coupling of two artifacts is the num-
ber of times they have been changed together. With Time-
RadarTrees we can show in which time intervals two soft-
ware components have changed together very frequently and
to what extent. The number of changed lines can be color
coded and show which software artifacts have been changed
together very frequently and how many lines have been in-
volved in this change. Such a coupling between many hi-
erarchy levels can be a hint for a bad software system de-

Figure 14: The first 10000 triplets of the gene sequence of a
salmonella in a stacked view.

sign [ZDZ03]. To completely understand these phenomena
we have to inspect the source code of the corresponding soft-
ware artifacts.

The TimeRadarTree in Figure 15 visualizes the co-change
of files in the browser and the doc subdirectories of the
JEDIT software system (jedit.org). The color of an edge
indicates the size of the change in terms of the number of
changed lines of code. Small changes are indicated by blue,
bigger ones by green, and finally red indicates very large
numbers of changed code lines. In the example here we can
see that the files TODO.txt and CHANGES.txt have been
changed together very frequently but only small changes
have been done. Many of the files in the browser sub-
directory have been changed together and the green color
indicates that there are involved several lines of code. The
thumbnail can be used to find out that these files have been
mainly changed in the same transactions.

3.4. Export/Import Behaviour

Another interesting application area is the export/import be-
haviour of the world’s countries. Figure 16 gives an overview
about the exported fuel of the world’s countries. A part of
the worlds hierarchy is expanded so that the user can see
all the countries belonging to a part of Asia. Here red indi-
cates a large amount of exported fuel, while green indicates
only a small amount; yellow indicates the values in between.
It catches ones eye that Saudi Arabia is one of the world’s
biggest fuel exporter followed by the United Arab Emirates.
Jordan and Israel have not exported as much fuel as the ones
mentioned above.
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Figure 15: Commonly checked-in files of a part of the JEDIT
Open Source Project.

Figure 16: Exported fuel of the worlds countries in thousand
dollars.

4. Related Work

In this section we discuss some of the related work with re-
spect to the visualization of hierarchies, of dependencies in
hierarchies, and of chronological data.

Visualization of Hierarchies Information hierarchies can
be seen as a special kind of graphs, namely trees. As
a result, information hierarchies can be visualized as
node-edge diagrams using specialized graph layout algo-
rithms [RT81]. Radial layout does not only improve the
space-efficiency of these diagrams, but also enables new

navigation techniques [YFDH01]. Space-filling techniques
to visualize hierarchies include Treemaps [JS91], Informa-
tion Slices [AH98], or Sunburst [SZ00]. Note, that the latter
two approaches use circle sectors to represent nodes of the
tree, while we use circle sectors to represent edges, i.e. de-
pendencies.

Visualization of Dependencies in Hierarchies Many ap-
proaches try to encode dependencies between objects as di-
rected or undirected edges in node-link diagrams. In particu-
lar, specialized graph-drawing algorithms for compound di-
graphs have been developed [FT04, SM91, BM99]. The ap-
pearance of edges, for example, their color, shape, orien-
tation, thickness or connection, can represent the strength
of the dependencies. There are several approaches that
extend Treemaps [JS91] to also show different kinds of
relations [FWD∗03, ZMC05, BD06]. For example, Arc-
Trees [NSC05] is an interactive visualization tool for hier-
archical and non-hierarchical relations. It extends the hierar-
chical view of the Treemap approach with arc diagrams to
present relations. Hierarchical Edge Bundles [Hol06] show
relations by bundled edges between the nodes of a radial ici-
cle view, treemap or baloon layout.

Visualization of Chronological Data The The-
meRiver [HHWN02] visualization shows the thematic
changes of a collection of documents as a set of "rivers"
along a time line from left to right. Each river represents
a theme and the strength of the theme at a certain point
in time is depicted by the width of the river. Growing
Polygons [ET03] show unweighted relations by colored
sides of nested polygons. Inner polygons represent older
relation, outer polygons newer relations. TimeRadarTrees
are very similar to this approach, but use circles instead of
polygons, show directed instead of undirected relations, and
include the information hierarchy.

Discussion While one can certainly think of possible ex-
tensions of the approaches discussed above, to the best of
our knowledge none of the existing approaches has so far
been extended and applied to visualize dynamic, weighted
compound digraphs in a single, static image. In Table 1
we compare several relevant approaches. Only Timeline
Trees [BBD08] and TimeRadarTrees provide a compact,
crossing free representation of dynamic graphs.

5. Conclusions and Future Work

We have introduced the TimeRadarTree visualization as a
technique for exploring the evolution of dependencies in in-
formation hierarchies. We discussed the various features of
the visualization technique, and illustrated their usefulness
by applying it to data sets from very different domains.

We performed an formative evaluation of an early pro-
totype of the tool in form of a small user study with five
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Visualization
technique

Free of
crossings

Compact-
ness

Following
a path

Dynamic

Node-Link no no yes difficult

Matrix yes high difficult no

Timeline Trees yes high difficult yes

TimeRadarTrees yes high difficult yes

Hierarchical
Edge Bundles

no high difficult no

ArcTrees no medium difficult no

Graph Links on
Treemaps

no high difficult no

Table 1: Comparison of visualization techniques

PhD students not involved in the development of the tool.
We found that the participants learned quickly how to use
the tool and were able to explore the data set and make in-
teresting observations. Motivated by their feedback we plan
the following improvements of the system in the near fu-
ture: better user control of the animation, a zoom function
(similar to the inner-detail technique of Sunburst) to better
exploit radial distortion of the time radar as a focus+context
technique, and a prune function to remove subtrees and their
related data completely. We are currently performing a task-
oriented evaluation of the approach comparing it with a sim-
ilar non-radial visualization We hope to publish the results
in the near future.
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