
Levels of Exploration

Stephan Diehl and Andreas Kerren

University of Saarland, FR 6.2 Informatik,

PO Box 15 11 50, D-66041 Saarbr�uken

fdiehl, kerreng�s.uni-sb.de

Abstrat

Visualization of omputational models is at the heart

of eduational software for omputer siene and re-

lated �elds. In this paper we look at how generation of

suh visualizations and the visualization of the genera-

tion proess itself inrease exploration. Four approahes

of inreased exploration in formal language theory and

ompiler design are introdued and for eah approah

we disuss an eduational system whih implements it.

1 Introdution

In omputer siene and in partiular in ompiler de-

sign the theory and algorithms are very abstrat and

usually omplex. Therefore visualizations are appropri-

ate for omputer siene instrution. Although ompiler

design is often onsidered a pratial �eld within om-

puter siene, most of its tehniques are based on work

in theoretial omputer siene, e.g. formal languages,

automata theory and formal semantis. In reent years

we have developed several eduational software systems

for topis in ompiler design and theoretial omputer

siene. These systems have in ommon that they teah

omputational models by animating omputations of in-

stanes of these models with example inputs. But they

di�er in the level of exploration.

Table 1 not only reets the inreased exibility of the

software developed, but also the hronologial develop-

ment of software by group, as well as the order of pre-

sentation in this paper. Higher levels of exploration de-

mand more prerequisites and self-ontrol by the learner.

Thus, in the eduational software the learner should

start with stati examples and as the learner advanes

the level of exploration should be inreased. Exerises

and textual hints in the eduational software should

guide the learner, to make sure he/she doesn't miss the

important issues.

Approah Input Computat- Generator

ional Model

Stati �xed �xed none

Interative user �xed none

First-order

generative

user user yes

Seond-order

generative

user user yes

visualized

Table 1: Levels of exploration

2 Stati Approah

In the stati approah the exeution of an instane of

a omputational model is animated for a given, �xed

input.

The eduational software "Animation of Lexial Anal-

ysis" [1℄ has been developed with the authoring system

Asymetrix Multimedia ToolBook 3.0 and runs on Win-

dows 3.x/95/98/NT4. The software o�ers on the one

hand an interative introdution to the problems of lex-

ial analysis, in whih the most important de�nitions

and algorithms are presented in graphially appealing

form. Animations show how �nite automata are re-

ated from regular expressions, as well as, how �nite au-

tomata work. Currently there is only a German version

of the software.

First several animations show the fundamental ompo-

nents of a sanner and the ooperation between parser

and sanner. Then symbols and symbol lasses are ex-

plained. It is shown, how input symbols, lexial sym-

bols, symbol lasses and their internal representation

are onneted. Next an overview about formal lan-

guages and an introdution to regular languages and

regular expressions are given.



Figure 1: Equivalene of transition diagram and NFA

Then transition diagrams, non-deterministi (NFA) and

deterministi (DFA) �nite automata are desribed.

There are animated examples for eah of these that an

be ontrolled by the user. The equivalene between reg-

ular expressions and NFA's is explained with an �xed

animated example (see Figure 1). The user an follow

the parallel proessing of a transition diagram and an

NFA with the same input string.

This software follows the stati approah, beause the

user annot enter own input strings. There are only an-

imations of �xed input examples, whih were designed

by the developer of the eduational software. The user

an start animations, stop them or initiate a baktrak-

ing. But if he/she is urious to know what happens for

a di�erent input string, there is no way to �nd out.

3 Interative Approah

In the interative approah an instane of a omputa-

tional model is animated for an example entered by the

user/learner.

An example for this approah is our appliation "An-

imation of Semantial Analysis" [6℄. It illustrates and

animates the basi tasks of semantial analysis by tex-

tual and graphial examples. It overs basi knowledge,

like the onepts of soping and visibility, heking of

ontext onditions (identi�ation of identi�ers, heking

of type onsisteny), overloading of identi�ers and poly-

morphism. The orresponding algorithms for analysis

an be examined with own examples. As the system

desribed in the previous setion this system was im-

plemented using Multimedia ToolBook. The dynamial

omponent, that allows users to enter their own exam-

ples, was developed in C using the appliation program-

ming interfae (API) of the windows system. First our

eduational software presents and desribes the de�ni-

Figure 2: Visualization of the heking the ontext on-

ditions

tions of semantial analysis step by step. Afterwards

these are made lear on the basis of animated exam-

ples. Both happens ompletely interative, i.e. the

users an navigate through a graphial environment by

mouse-lik. They an selet and deepen topis, whih

they are interested in. For these topis they an read

explanatory text and look at animations. Finally the

users have the possibility to enter examples, and to run

the presented algorithms graphially on the dynamially

drawn abstrat syntax trees of these examples. Exam-

ples an be input programs, expressions or spei�ations

for operator overloading.

The sreendump in Figure 2 shows a visualization of

heking the ontext onditions of an example program,

that was entered by the user. The resulting syntax tree

is automatially drawn and displayed in the applia-

tion window. The user has inuene on the tree lay-

out, he/she an hange the distanes of sibling nodes,

neighbouring nodes and parents/hild nodes. Further

there is the possibility to zoom and rotate the tree.

These features help to plae the tree in the window

optimally. Thus it is possible to hange the tree lay-

out in suh a way that the tree �ts ompletely into the

window. This inreases the larity with the animation.

All other graph items, as for instane small information

windows at the individual nodes, additional edges et.,

are adapted diretly to the new layout.

The abstrat syntax tree is almost ompletely displayed.

Also the type attributes of some nodes are shown. They

are alulated on the basis of the types of the built-in

operators, whih are used in the example program and

shown in an auxiliary window (bottom left). In this

software the omputational model is semantial analysis

of a program and the instanes are heking of ontext

onditions, overloading resolution and type inferene for



a language with parametri polymorphism. Although

the user an enter examples he/she an only selet one

of the three given semantial analysis methods, whih

are then animated for the entered examples.

4 First-Order Generative Approah

In the �rst-order generative approah the user enters

the spei�ation of an instane of a given omputational

model. Then an interative visualization of this instane

is generated and the user an enter an example input as

in the interative approah.

As an example of the �rst-order generative approah we

desribe GANIMAM, our web-based generator for in-

terative animations of abstrat mahines [3℄. Figure 3

shows a snapshot of suh an animation. Abstrat ma-

hines provide intermediate target languages for om-

pilation. First the ompiler generates ode for the ab-

strat mahine, then this ode an be interpreted or

further ompiled into real mahine ode. By dividing

ompilation into two stages, abstrat mahines inrease

portability and maintainability of ompilers. The in-

strutions of an abstrat mahine are tailored to spe-

i� operations required to implement operations of a

soure language or even better for languages of the same

language paradigm.

The user an enter a spei�ation of an abstrat ma-

hine, whih is then sent to the server. A CGI sript on

the server generates Java ode and using a Java Com-

piler it translates this ode into lass �les. In ombi-

nation with the GANIMAM base pakage lasses these

lass �les form an interative Java applet. This applet

an be loaded over the internet and the user an enter

mahine programs, modify the layout of the di�erent

parts of the visualized abstrat mahines and ontrol

the animation of the exeution of his abstrat mahine

programs. The automati layout groups the di�erent

memories around the aumulator (the hip in the mid-

dle). Soure ode and staks are plaed to the right,

staks to the left, loal variables above and registers be-

low the aumulator. Assoiated with the aumulator

is an aumulator window, whih shows the expressions

whih are urrently evaluated and the de�nitions of the

instrutions or funtions whih are urrently exeuted.

Double liking with the right mouse button at an in-

strution in the soure ode window, loads its de�nition

into the aumulator window. Double liking with the

left mouse button at an instrution sets the value of

the program ounter to the address of that instrution,

i.e. the exeution of the abstrat mahine program is

ontinued at that address. Cliking at a ell of a stak,

heap or register opens a window. In this window the

user an hange the value and type of that ell. For

registers only the value an be hanged.

Figure 3: Sreenshot of an animated abstrat mahine

Annotations only help to visualize priniples whih we

know upfront. GANIMAM an also be used to detet

new priniples by experimenting with spei�ations and

abstrat mahine programs. Suh an experimental ap-

proah an be used as part of an explorative eduational

software. It enables students to formulate hypotheses

and validate or invalidate them by hanging spei�a-

tions or abstrat mahine programs. This way he/she

an learn muh about the omputational model, here

abstrat mahines, but not about their generation pro-

ess. The generation proess is treated as a blak box.

5 Seond-Order Generative Approah

As in the �rst-order generative approah the user enters

a spei�ation of an instane of a given omputational

model. But in the seond-order generative approah in

addition to visualizing the omputation also the genera-

tion proess is shown as an interative visualization.

Instead of visualizing the generation proess for a er-

tain omputational model, we are urrently developing

a general framework to implement generators and their

visualizations. Our framework ombines several results

of urrent researh on algorithm animation and software

visualization. As a �rst test ase for our framework we

use the implementation and visualization of a lexial

analyzer generator.

Generators in ompiler design usually generate tables,

whih ontrol the implementation of the ompiler phase

together with a �xed driver. We an use this feature

to generate visualizations of the generators and the

ompiler phases generated by them. In order to reah

this goal, we develop a visualization ontrol language

GANILA, in whih the generators and the drivers an

be desribed. Then a GANILA ompiler produes im-

plementations of the generator and the driver from these

spei�ations. In GANILA there is also the possibility

to onnet program points with hypermedia douments.

Information, whih is available at run-time at this pro-

gram point, an be transferred to the doument. In lit-



erate programming a onneted stati doument is pro-

dued by the doumentations of the program points. In

ontrast in our system the doumentation of a program

point an be displayed, whenever the program point is

reahed during the animation.

Animated

P-generator

Animated

P-generator

Description D
+

Visualization
Annotations

Specification of

a P-generator written
in GANILA

Specification of

a P-generator written
in GANILA

Input

Output

Generated part of
Specification of phase P(D)

+
Visualization Annotations

Generated part of
Specification of phase P(D)

+
Visualization Annotations

GANILA

compiler

GANILA

compiler

Fixed part of
Specification of Phase

P(D) written in GANILA

Fixed part of
Specification of Phase

P(D) written in GANILA

GANILA

compiler

GANILA

compiler

Animated
Implementation
of phase P(D)

Animated
Implementation
of phase P(D)

Figure 4: Generation of animated generators and om-

piler phases

From the extended spei�ations the GANILA ompiler

generates animations of the generator and of the gen-

erated ompiler phase, see Figure 4. In addition to an-

notating the spei�ation of the ompiler phase, as de-

sribed in the �rst approah, we annotate the generator

and driver programs by marking program points with

'interesting events' and we de�ne views on their data

strutures, i.e. among other things the generated table.

For eah view we determine, how it handles eah event.

Figure 5: Intermediate and �nal NFAs for the RE (ajb)

�

.

The sreendump in Figure 5 shows how the generation

proess of an lexial analyzer is visualized. In this exam-

ple, it shows how the onversion of a regular expression

(ajb)

�

into an appropriate nondeterministi �nite state

automaton (RE ! NFA) is animated.

The generator has been integrated in an applet for visu-

alizing generation and omputation of �nite automata,

whih is used in our eletroni textbook on the theory

of �nite automata (see Figure 6). The GaniFA applet

visualizes and animates the following algorithms:

Figure 6: Sreendump of the Eletroni Textbook.

� Generation of a non-deterministi �nite automaton

(NFA) from a regular expression (RE) [11℄.

� Removal of "-transitions of a NFA [8, 11℄.

� Transformation of a deterministi �nite automaton

(DFA) from a NFA without "-transitions [8, 11℄.

� Minimization of a deterministi �nite automaton

(minDFA) [5℄.

� For eah of the above automata generated above, the

applet an visualize the omputation of the automa-

ton on an input word.

GaniFA is ustomizable through a large set of parame-

ters. In partiular, it is possible to visualize only some

of the algorithms and to pass a �nite automaton or a

regular expression as well as an input word to the ap-

plet.

6 Exploration and Learner Control

Many authors argue that learning software, in whih

the omputer appears as orretor, is disouraging and

not very suessful. The existing studies for this are

however partially ontraditory [9℄. From an edua-

tional perspetive there are a large number of theoreti-

al models, empirial studies and instrutional projets,

whih ome to ontraditory onlusions. On the one

hand Paris and Newman argue in [7℄, that "in tradi-

tional instrution, the teaher is predominantly ative

and the students are passive. This imbalane should be

reversed. Self-generated, self-organized, self-ontrolled

and self-evaluated learning (in ontrast to learning that

is direted by others and ontrolled by the teaher) is

pereived as an important, if not the essential, prereq-

uisite for understanding, insight and disovery". On the



other hand Brown and Van Lehn [2℄ maintain the state-

ment, that "self-organized learning and forms of low

teaher-ontrolled instrution may lead to substantial

oneptual de�its in students' knowledge". An answer

to the question, what the better instrution model is,

was given by Weinert and Helmke [10℄: "An old piee

of eduational wisdom is that no single method of in-

strution is the best for all students and for all learning

goals, and that even very e�etive instrutional proe-

dures an have de�its with respet of single riteria".

Our approah o�ers a way for explorative, self-

ontrolled learning. The learner an fous on ertain

aspets in the generated, interative animation and see

what e�ets small modi�ations in the spei�ation

have. With the help of suh observations he formulates

hypotheses and heks these empirially. In the intera-

tive approah suh hekable hypotheses are restrited

to the instane of the omputational model. In the �rst-

order generative approah also hypotheses about the

omputational model and in the seond-order genera-

tive approah about the generation proess itself an be

heked.

More preisely, in our learning software the learner de-

sribes proesses by spei�ations as exerise. In on-

ventional learning software suh responses, i.e. answers

of an exerise, are heked for orretness, if this is pos-

sible at all. Possible errors are indiated to the learner,

and he/she is requested to revise his response. In om-

puter siene, many properties of omputational models

an not be heked beause of the halting problem. As

a onsequene we need alternative ways to provide feed-

bak for the learner.

In our approah an interative animation is produed

from the response (spei�ation) of the learner. Then

the learner an test it on the basis of his/her own ex-

amples. In this way he an detet errors. There is no

anonymous, all-knowing authority, whih shows his er-

rors.

Suh a visual experimental approah is not meant to

replae, but to enhane lassial teahing of theoreti-

al ontents. The aeptane and e�etiveness of suh

explorative learning software must be proven in pra-

tie, i.e. in instrution. In ooperation with ognitive

psyhologists we have done some and are urrently de-

veloping new experiments for suh evaluations.

7 Conlusion

In this paper we disussed how generation of visualiza-

tions an be used in eduational software for omputer

siene and related �elds. For eah approah we pre-

sented an implementation of an eduational software

system. All software an be downloaded or tested on

our projet homepage [4℄. We have �nished the devel-

opment of the �rst three systems and these systems are

publially available. The fourth system is under devel-

opment, but there is a funtional prototype implemen-

tation on our web page. It has been implemented using

a powerful framework for interative, web-based algo-

rithm animations. We plan to use it not only to teah

�nite automata theory but also more omplex genera-

tion proesses in ompiler design.

Referenes

[1℄ Braune, B., Diehl, S., Kerren, A., and Wilhelm, R.

Animation of the Generation and Computation of

Finite Automata for Learning Software. In Pro-

eedings of Workshop on Implementing Automata

(Potsdam, 1999).

[2℄ Brown, J. S., and Lehn, K. V. Towards a genera-

tive theory of \bugs". In Addition and subtration:

Developmental perspetives, T. Romberg, T. Car-

penter, and J. Moses, Eds. Hillsdale, NJ: Lawrene

Erlbaum Asssoiates In., 1982.

[3℄ Diehl, S., and Kunze, T. Visualizing Priniples of

Abstrat Mahines by Generating Interative Ani-

mations. Future Generation Computer Systems 16,

7 (2000).

[4℄ Ganimal. Projet homepage. http://www.s.uni-

sb.de/GANIMAL, 2000.

[5℄ Hoproft, J., and Ullman, J. Introdution to

Automata Theory, Languages and Computation.

Addison-Wesley, 1979.

[6℄ Kerren, A. Animation of the semantial analysis.

In Proeedings of 8. GI-Fahtagung Informatik und

Shule INFOS99 (in German) (1999), Informatik

aktuell, Springer.

[7℄ Paris, S. G., and Newman, R. S. Developmental

aspets of self-regulated learning. Eduational Psy-

hologist 25 (1990).

[8℄ Rabin, M., and Sott, D. Finite automata and their

deision problems. IBM J. Res. Dev 3/2 (1959).

[9℄ Shulmeister, R. Foundations of Hypermedial

Learning Systems (in German). Addison Wesley,

Bonn, 1996.

[10℄ Weinert, F. E., and Helmke, A. Learning from

wise mother nature or big brother instrutor: The

wrong hoie as seen from an eduational perspe-

tive. Eduational Psyhologist 30 (1995).

[11℄ Wilhelm, R., and Maurer, D. Compiler De-

sign: Theory, Constrution, Generation. Addison-

Wesley, 1995.


