
Levels of Exploration

Stephan Diehl and Andreas Kerren

University of Saarland, FR 6.2 Informatik,

PO Box 15 11 50, D-66041 Saarbr�u
ken

fdiehl, kerreng�
s.uni-sb.de

Abstra
t

Visualization of 
omputational models is at the heart

of edu
ational software for 
omputer s
ien
e and re-

lated �elds. In this paper we look at how generation of

su
h visualizations and the visualization of the genera-

tion pro
ess itself in
rease exploration. Four approa
hes

of in
reased exploration in formal language theory and


ompiler design are introdu
ed and for ea
h approa
h

we dis
uss an edu
ational system whi
h implements it.

1 Introdu
tion

In 
omputer s
ien
e and in parti
ular in 
ompiler de-

sign the theory and algorithms are very abstra
t and

usually 
omplex. Therefore visualizations are appropri-

ate for 
omputer s
ien
e instru
tion. Although 
ompiler

design is often 
onsidered a pra
ti
al �eld within 
om-

puter s
ien
e, most of its te
hniques are based on work

in theoreti
al 
omputer s
ien
e, e.g. formal languages,

automata theory and formal semanti
s. In re
ent years

we have developed several edu
ational software systems

for topi
s in 
ompiler design and theoreti
al 
omputer

s
ien
e. These systems have in 
ommon that they tea
h


omputational models by animating 
omputations of in-

stan
es of these models with example inputs. But they

di�er in the level of exploration.

Table 1 not only re
e
ts the in
reased 
exibility of the

software developed, but also the 
hronologi
al develop-

ment of software by group, as well as the order of pre-

sentation in this paper. Higher levels of exploration de-

mand more prerequisites and self-
ontrol by the learner.

Thus, in the edu
ational software the learner should

start with stati
 examples and as the learner advan
es

the level of exploration should be in
reased. Exer
ises

and textual hints in the edu
ational software should

guide the learner, to make sure he/she doesn't miss the

important issues.

Approa
h Input Computat- Generator

ional Model

Stati
 �xed �xed none

Intera
tive user �xed none

First-order

generative

user user yes

Se
ond-order

generative

user user yes

visualized

Table 1: Levels of exploration

2 Stati
 Approa
h

In the stati
 approa
h the exe
ution of an instan
e of

a 
omputational model is animated for a given, �xed

input.

The edu
ational software "Animation of Lexi
al Anal-

ysis" [1℄ has been developed with the authoring system

Asymetrix Multimedia ToolBook 3.0 and runs on Win-

dows 3.x/95/98/NT4. The software o�ers on the one

hand an intera
tive introdu
tion to the problems of lex-

i
al analysis, in whi
h the most important de�nitions

and algorithms are presented in graphi
ally appealing

form. Animations show how �nite automata are 
re-

ated from regular expressions, as well as, how �nite au-

tomata work. Currently there is only a German version

of the software.

First several animations show the fundamental 
ompo-

nents of a s
anner and the 
ooperation between parser

and s
anner. Then symbols and symbol 
lasses are ex-

plained. It is shown, how input symbols, lexi
al sym-

bols, symbol 
lasses and their internal representation

are 
onne
ted. Next an overview about formal lan-

guages and an introdu
tion to regular languages and

regular expressions are given.



Figure 1: Equivalen
e of transition diagram and NFA

Then transition diagrams, non-deterministi
 (NFA) and

deterministi
 (DFA) �nite automata are des
ribed.

There are animated examples for ea
h of these that 
an

be 
ontrolled by the user. The equivalen
e between reg-

ular expressions and NFA's is explained with an �xed

animated example (see Figure 1). The user 
an follow

the parallel pro
essing of a transition diagram and an

NFA with the same input string.

This software follows the stati
 approa
h, be
ause the

user 
annot enter own input strings. There are only an-

imations of �xed input examples, whi
h were designed

by the developer of the edu
ational software. The user


an start animations, stop them or initiate a ba
ktra
k-

ing. But if he/she is 
urious to know what happens for

a di�erent input string, there is no way to �nd out.

3 Intera
tive Approa
h

In the intera
tive approa
h an instan
e of a 
omputa-

tional model is animated for an example entered by the

user/learner.

An example for this approa
h is our appli
ation "An-

imation of Semanti
al Analysis" [6℄. It illustrates and

animates the basi
 tasks of semanti
al analysis by tex-

tual and graphi
al examples. It 
overs basi
 knowledge,

like the 
on
epts of s
oping and visibility, 
he
king of


ontext 
onditions (identi�
ation of identi�ers, 
he
king

of type 
onsisten
y), overloading of identi�ers and poly-

morphism. The 
orresponding algorithms for analysis


an be examined with own examples. As the system

des
ribed in the previous se
tion this system was im-

plemented using Multimedia ToolBook. The dynami
al


omponent, that allows users to enter their own exam-

ples, was developed in C using the appli
ation program-

ming interfa
e (API) of the windows system. First our

edu
ational software presents and des
ribes the de�ni-

Figure 2: Visualization of the 
he
king the 
ontext 
on-

ditions

tions of semanti
al analysis step by step. Afterwards

these are made 
lear on the basis of animated exam-

ples. Both happens 
ompletely intera
tive, i.e. the

users 
an navigate through a graphi
al environment by

mouse-
li
k. They 
an sele
t and deepen topi
s, whi
h

they are interested in. For these topi
s they 
an read

explanatory text and look at animations. Finally the

users have the possibility to enter examples, and to run

the presented algorithms graphi
ally on the dynami
ally

drawn abstra
t syntax trees of these examples. Exam-

ples 
an be input programs, expressions or spe
i�
ations

for operator overloading.

The s
reendump in Figure 2 shows a visualization of


he
king the 
ontext 
onditions of an example program,

that was entered by the user. The resulting syntax tree

is automati
ally drawn and displayed in the appli
a-

tion window. The user has in
uen
e on the tree lay-

out, he/she 
an 
hange the distan
es of sibling nodes,

neighbouring nodes and parents/
hild nodes. Further

there is the possibility to zoom and rotate the tree.

These features help to pla
e the tree in the window

optimally. Thus it is possible to 
hange the tree lay-

out in su
h a way that the tree �ts 
ompletely into the

window. This in
reases the 
larity with the animation.

All other graph items, as for instan
e small information

windows at the individual nodes, additional edges et
.,

are adapted dire
tly to the new layout.

The abstra
t syntax tree is almost 
ompletely displayed.

Also the type attributes of some nodes are shown. They

are 
al
ulated on the basis of the types of the built-in

operators, whi
h are used in the example program and

shown in an auxiliary window (bottom left). In this

software the 
omputational model is semanti
al analysis

of a program and the instan
es are 
he
king of 
ontext


onditions, overloading resolution and type inferen
e for



a language with parametri
 polymorphism. Although

the user 
an enter examples he/she 
an only sele
t one

of the three given semanti
al analysis methods, whi
h

are then animated for the entered examples.

4 First-Order Generative Approa
h

In the �rst-order generative approa
h the user enters

the spe
i�
ation of an instan
e of a given 
omputational

model. Then an intera
tive visualization of this instan
e

is generated and the user 
an enter an example input as

in the intera
tive approa
h.

As an example of the �rst-order generative approa
h we

des
ribe GANIMAM, our web-based generator for in-

tera
tive animations of abstra
t ma
hines [3℄. Figure 3

shows a snapshot of su
h an animation. Abstra
t ma-


hines provide intermediate target languages for 
om-

pilation. First the 
ompiler generates 
ode for the ab-

stra
t ma
hine, then this 
ode 
an be interpreted or

further 
ompiled into real ma
hine 
ode. By dividing


ompilation into two stages, abstra
t ma
hines in
rease

portability and maintainability of 
ompilers. The in-

stru
tions of an abstra
t ma
hine are tailored to spe-


i�
 operations required to implement operations of a

sour
e language or even better for languages of the same

language paradigm.

The user 
an enter a spe
i�
ation of an abstra
t ma-


hine, whi
h is then sent to the server. A CGI s
ript on

the server generates Java 
ode and using a Java Com-

piler it translates this 
ode into 
lass �les. In 
ombi-

nation with the GANIMAM base pa
kage 
lasses these


lass �les form an intera
tive Java applet. This applet


an be loaded over the internet and the user 
an enter

ma
hine programs, modify the layout of the di�erent

parts of the visualized abstra
t ma
hines and 
ontrol

the animation of the exe
ution of his abstra
t ma
hine

programs. The automati
 layout groups the di�erent

memories around the a

umulator (the 
hip in the mid-

dle). Sour
e 
ode and sta
ks are pla
ed to the right,

sta
ks to the left, lo
al variables above and registers be-

low the a

umulator. Asso
iated with the a

umulator

is an a

umulator window, whi
h shows the expressions

whi
h are 
urrently evaluated and the de�nitions of the

instru
tions or fun
tions whi
h are 
urrently exe
uted.

Double 
li
king with the right mouse button at an in-

stru
tion in the sour
e 
ode window, loads its de�nition

into the a

umulator window. Double 
li
king with the

left mouse button at an instru
tion sets the value of

the program 
ounter to the address of that instru
tion,

i.e. the exe
ution of the abstra
t ma
hine program is


ontinued at that address. Cli
king at a 
ell of a sta
k,

heap or register opens a window. In this window the

user 
an 
hange the value and type of that 
ell. For

registers only the value 
an be 
hanged.

Figure 3: S
reenshot of an animated abstra
t ma
hine

Annotations only help to visualize prin
iples whi
h we

know upfront. GANIMAM 
an also be used to dete
t

new prin
iples by experimenting with spe
i�
ations and

abstra
t ma
hine programs. Su
h an experimental ap-

proa
h 
an be used as part of an explorative edu
ational

software. It enables students to formulate hypotheses

and validate or invalidate them by 
hanging spe
i�
a-

tions or abstra
t ma
hine programs. This way he/she


an learn mu
h about the 
omputational model, here

abstra
t ma
hines, but not about their generation pro-


ess. The generation pro
ess is treated as a bla
k box.

5 Se
ond-Order Generative Approa
h

As in the �rst-order generative approa
h the user enters

a spe
i�
ation of an instan
e of a given 
omputational

model. But in the se
ond-order generative approa
h in

addition to visualizing the 
omputation also the genera-

tion pro
ess is shown as an intera
tive visualization.

Instead of visualizing the generation pro
ess for a 
er-

tain 
omputational model, we are 
urrently developing

a general framework to implement generators and their

visualizations. Our framework 
ombines several results

of 
urrent resear
h on algorithm animation and software

visualization. As a �rst test 
ase for our framework we

use the implementation and visualization of a lexi
al

analyzer generator.

Generators in 
ompiler design usually generate tables,

whi
h 
ontrol the implementation of the 
ompiler phase

together with a �xed driver. We 
an use this feature

to generate visualizations of the generators and the


ompiler phases generated by them. In order to rea
h

this goal, we develop a visualization 
ontrol language

GANILA, in whi
h the generators and the drivers 
an

be des
ribed. Then a GANILA 
ompiler produ
es im-

plementations of the generator and the driver from these

spe
i�
ations. In GANILA there is also the possibility

to 
onne
t program points with hypermedia do
uments.

Information, whi
h is available at run-time at this pro-

gram point, 
an be transferred to the do
ument. In lit-



erate programming a 
onne
ted stati
 do
ument is pro-

du
ed by the do
umentations of the program points. In


ontrast in our system the do
umentation of a program

point 
an be displayed, whenever the program point is

rea
hed during the animation.

Animated

P-generator

Animated

P-generator

Description D
+

Visualization
Annotations

Specification of

a P-generator written
in GANILA

Specification of

a P-generator written
in GANILA

Input

Output

Generated part of
Specification of phase P(D)

+
Visualization Annotations

Generated part of
Specification of phase P(D)

+
Visualization Annotations

GANILA

compiler

GANILA

compiler

Fixed part of
Specification of Phase

P(D) written in GANILA

Fixed part of
Specification of Phase

P(D) written in GANILA

GANILA

compiler

GANILA

compiler

Animated
Implementation
of phase P(D)

Animated
Implementation
of phase P(D)

Figure 4: Generation of animated generators and 
om-

piler phases

From the extended spe
i�
ations the GANILA 
ompiler

generates animations of the generator and of the gen-

erated 
ompiler phase, see Figure 4. In addition to an-

notating the spe
i�
ation of the 
ompiler phase, as de-

s
ribed in the �rst approa
h, we annotate the generator

and driver programs by marking program points with

'interesting events' and we de�ne views on their data

stru
tures, i.e. among other things the generated table.

For ea
h view we determine, how it handles ea
h event.

Figure 5: Intermediate and �nal NFAs for the RE (ajb)

�

.

The s
reendump in Figure 5 shows how the generation

pro
ess of an lexi
al analyzer is visualized. In this exam-

ple, it shows how the 
onversion of a regular expression

(ajb)

�

into an appropriate nondeterministi
 �nite state

automaton (RE ! NFA) is animated.

The generator has been integrated in an applet for visu-

alizing generation and 
omputation of �nite automata,

whi
h is used in our ele
troni
 textbook on the theory

of �nite automata (see Figure 6). The GaniFA applet

visualizes and animates the following algorithms:

Figure 6: S
reendump of the Ele
troni
 Textbook.

� Generation of a non-deterministi
 �nite automaton

(NFA) from a regular expression (RE) [11℄.

� Removal of "-transitions of a NFA [8, 11℄.

� Transformation of a deterministi
 �nite automaton

(DFA) from a NFA without "-transitions [8, 11℄.

� Minimization of a deterministi
 �nite automaton

(minDFA) [5℄.

� For ea
h of the above automata generated above, the

applet 
an visualize the 
omputation of the automa-

ton on an input word.

GaniFA is 
ustomizable through a large set of parame-

ters. In parti
ular, it is possible to visualize only some

of the algorithms and to pass a �nite automaton or a

regular expression as well as an input word to the ap-

plet.

6 Exploration and Learner Control

Many authors argue that learning software, in whi
h

the 
omputer appears as 
orre
tor, is dis
ouraging and

not very su

essful. The existing studies for this are

however partially 
ontradi
tory [9℄. From an edu
a-

tional perspe
tive there are a large number of theoreti-


al models, empiri
al studies and instru
tional proje
ts,

whi
h 
ome to 
ontradi
tory 
on
lusions. On the one

hand Paris and Newman argue in [7℄, that "in tradi-

tional instru
tion, the tea
her is predominantly a
tive

and the students are passive. This imbalan
e should be

reversed. Self-generated, self-organized, self-
ontrolled

and self-evaluated learning (in 
ontrast to learning that

is dire
ted by others and 
ontrolled by the tea
her) is

per
eived as an important, if not the essential, prereq-

uisite for understanding, insight and dis
overy". On the



other hand Brown and Van Lehn [2℄ maintain the state-

ment, that "self-organized learning and forms of low

tea
her-
ontrolled instru
tion may lead to substantial


on
eptual de�
its in students' knowledge". An answer

to the question, what the better instru
tion model is,

was given by Weinert and Helmke [10℄: "An old pie
e

of edu
ational wisdom is that no single method of in-

stru
tion is the best for all students and for all learning

goals, and that even very e�e
tive instru
tional pro
e-

dures 
an have de�
its with respe
t of single 
riteria".

Our approa
h o�ers a way for explorative, self-


ontrolled learning. The learner 
an fo
us on 
ertain

aspe
ts in the generated, intera
tive animation and see

what e�e
ts small modi�
ations in the spe
i�
ation

have. With the help of su
h observations he formulates

hypotheses and 
he
ks these empiri
ally. In the intera
-

tive approa
h su
h 
he
kable hypotheses are restri
ted

to the instan
e of the 
omputational model. In the �rst-

order generative approa
h also hypotheses about the


omputational model and in the se
ond-order genera-

tive approa
h about the generation pro
ess itself 
an be


he
ked.

More pre
isely, in our learning software the learner de-

s
ribes pro
esses by spe
i�
ations as exer
ise. In 
on-

ventional learning software su
h responses, i.e. answers

of an exer
ise, are 
he
ked for 
orre
tness, if this is pos-

sible at all. Possible errors are indi
ated to the learner,

and he/she is requested to revise his response. In 
om-

puter s
ien
e, many properties of 
omputational models


an not be 
he
ked be
ause of the halting problem. As

a 
onsequen
e we need alternative ways to provide feed-

ba
k for the learner.

In our approa
h an intera
tive animation is produ
ed

from the response (spe
i�
ation) of the learner. Then

the learner 
an test it on the basis of his/her own ex-

amples. In this way he 
an dete
t errors. There is no

anonymous, all-knowing authority, whi
h shows his er-

rors.

Su
h a visual experimental approa
h is not meant to

repla
e, but to enhan
e 
lassi
al tea
hing of theoreti-


al 
ontents. The a

eptan
e and e�e
tiveness of su
h

explorative learning software must be proven in pra
-

ti
e, i.e. in instru
tion. In 
ooperation with 
ognitive

psy
hologists we have done some and are 
urrently de-

veloping new experiments for su
h evaluations.

7 Con
lusion

In this paper we dis
ussed how generation of visualiza-

tions 
an be used in edu
ational software for 
omputer

s
ien
e and related �elds. For ea
h approa
h we pre-

sented an implementation of an edu
ational software

system. All software 
an be downloaded or tested on

our proje
t homepage [4℄. We have �nished the devel-

opment of the �rst three systems and these systems are

publi
ally available. The fourth system is under devel-

opment, but there is a fun
tional prototype implemen-

tation on our web page. It has been implemented using

a powerful framework for intera
tive, web-based algo-

rithm animations. We plan to use it not only to tea
h

�nite automata theory but also more 
omplex genera-

tion pro
esses in 
ompiler design.

Referen
es

[1℄ Braune, B., Diehl, S., Kerren, A., and Wilhelm, R.

Animation of the Generation and Computation of

Finite Automata for Learning Software. In Pro-


eedings of Workshop on Implementing Automata

(Potsdam, 1999).

[2℄ Brown, J. S., and Lehn, K. V. Towards a genera-

tive theory of \bugs". In Addition and subtra
tion:

Developmental perspe
tives, T. Romberg, T. Car-

penter, and J. Moses, Eds. Hillsdale, NJ: Lawren
e

Erlbaum Assso
iates In
., 1982.

[3℄ Diehl, S., and Kunze, T. Visualizing Prin
iples of

Abstra
t Ma
hines by Generating Intera
tive Ani-

mations. Future Generation Computer Systems 16,

7 (2000).

[4℄ Ganimal. Proje
t homepage. http://www.
s.uni-

sb.de/GANIMAL, 2000.

[5℄ Hop
roft, J., and Ullman, J. Introdu
tion to

Automata Theory, Languages and Computation.

Addison-Wesley, 1979.

[6℄ Kerren, A. Animation of the semanti
al analysis.

In Pro
eedings of 8. GI-Fa
htagung Informatik und

S
hule INFOS99 (in German) (1999), Informatik

aktuell, Springer.

[7℄ Paris, S. G., and Newman, R. S. Developmental

aspe
ts of self-regulated learning. Edu
ational Psy-


hologist 25 (1990).

[8℄ Rabin, M., and S
ott, D. Finite automata and their

de
ision problems. IBM J. Res. Dev 3/2 (1959).

[9℄ S
hulmeister, R. Foundations of Hypermedial

Learning Systems (in German). Addison Wesley,

Bonn, 1996.

[10℄ Weinert, F. E., and Helmke, A. Learning from

wise mother nature or big brother instru
tor: The

wrong 
hoi
e as seen from an edu
ational perspe
-

tive. Edu
ational Psy
hologist 30 (1995).

[11℄ Wilhelm, R., and Maurer, D. Compiler De-

sign: Theory, Constru
tion, Generation. Addison-

Wesley, 1995.


