
Dynamic Graph Drawing of Sequences of
Orthogonal and Hierarchical Graphs

Carsten Görg1, Peter Birke1, Mathias Pohl1 and Stephan Diehl2

1 Saarland University, FR Informatik, D-66041 Saarbrücken, Germany
2 Catholic University Eichstätt, Informatik, D-85072 Eichstätt, Germany

goerg@cs.uni-sb.de, diehl@acm.org

Abstract. In this paper we introduce two novel algorithms for draw-
ing sequences of orthogonal and hierarchical graphs while preserving the
mental map. Both algorithms can be parameterized to trade layout qual-
ity for dynamic stability. In particular, we had to develop new metrics
which work upon the intermediate results of layout phases. We discuss
some properties of the resulting animations by means of examples.

1 Introduction

In many applications graphs are not drawn once and for all, but change over
time. In some cases all changes are even known beforehand, e.g. if we want
to visualize the evolution of a social network based on an email archive, or as
in this paper the evolution of program structures stored in software archives.
In these kinds of applications each graph can be drawn being fully aware of
what graphs will follow. Unfortunately, to the best of our knowledge there exist
only two algorithms that take advantage of this knowledge, namely TGRIP [6]
and Foresighted Layout [8]. See Section 6 for a discussion of these and other
approaches. While the former was restricted to spring embedding, the latter is
actually a generic algorithm.

Recently we introduced Foresighted Layout with Tolerance (FLT) [7] for
drawing sequences of graphs while preserving the mental map and trading layout
quality for dynamic stability (tolerance). The algorithm is generic in the sense
that it works with different static layout algorithms with related metrics and
adjustment strategies. As an example we looked at force-directed layout. In this
paper we apply FLT to orthogonal and hierarchical layout, which means that
we have to develop adjustment strategies and metrics for these. We also improve
FLT by introducing the importance-based backbone as a generalization of the
supergraph of a sequence of graphs.

2 Improved adjusted Foresighted Layout

In our previous work the supergraph, which is the union of all graphs in a graph
sequence played a crucial role. The reason for using the supergraph was that
it provided all information about the graph sequence and that its layout could

be used as a sketch for all graphs in the sequence. However, the supergraph is
restrictive, as it induces a layout for all nodes without taking into account that
they are of different relevance for the sequence.

To improve that model we now introduce the concept of a backbone of a
sequence. Therefore we need a function that defines the importance of a node in
the sequence g1, . . . , gn. In the following we assume that gi = (Vi, Ei).

Definition 1 (Backbone). Given a sequence of graphs g1, . . . , gn, and a map-
ping importance : V → N, then VB = {v ∈ ⋃n

i=1 Vi | importance(v) ≥ δB} and
EB = {(u, v) ∈ ⋃n

i=1 Ei | u, v ∈ VB} define the backbone B = (VB, EB) of a
graph sequence g1, . . . , gn with respect to a threshold δB ∈ N.

This concept of the backbone is a generalization of the concept of the su-
pergraph: The backbone is less restrictive and is adjusted to the given graph
sequence. But setting δB = 0 will create a backbone that is equal to the super-
graph.

Dependent on the choice of the importance function, the backbone repre-
sents different base models. There are several possibilities for choosing an im-
portance function: We can define the function depending on the structure of
the sequence (for example the number of occurrences of a node in the sequence:
importance(v) = |{i | v ∈ Vi}| for a graph sequence g1, . . . , gn). If we know
enough about the semantics of the graphs, we can instead choose an importance
function that takes this information into account, i.e. we can use application-
domain specific importance functions.

The improved algorithm for foresighted layout that uses the backbone instead
of the supergraph now looks as follows:

Algorithm 1 Improved Foresighted Layout with Tolerance
Compute global layout L for the backbone B of g1, . . . , gn

for i := 1 to n do
Li := L|gi

li := adjust(. . .)
end for
animate graph sequence

In this improved version the global layout does not provide initial layout
information for nodes v ∈ Vi − VB , i.e. those that are not part of the backbone.
So the adjustment functions have to assign initial positions to these nodes.

3 Orthogonal Foresighted Layout with Tolerance

Brandes et al. presented in [2] an orthogonal graph drawing algorithm that
produced an orthogonal layout with few bends in the Kandinsky model while
preserving the general appearance of a given sketch. The angle and the bend
changes can be controlled by parameters α and β. In this section, we show
how to extend this approach so that it fits in our framework, i.e. it applies the

backbone concept and is guided by metrics. We assume that the reader is familiar
with the Kandinsky network [2, 13].

First we present the general algorithm. After computing the orthogonal lay-
out for the given backbone and obtaining the corresponding quasi-orthogonal
shape, we build a sketch Si for each graph of the sequence and adjust it through
the adjustOrth() algorithm. The sketch is a combination of the previous graph’s
layout and the backbone’s layout restricted to the current graph. If a conflict
between the layout of the backbone and the previous graph exists, we choose
the one of the backbone.

Algorithm 2 Orthogonal Foresighted Layout with Tolerance
Compute orthogonal layout L0 for the backbone B of g1, . . . , gn

Q0 := quasiOrthogonalShape(L0)
for i := 1 to n do

Si := (L0⊕Li−1)|gi // (Li⊕Lj)(x) is defined as Li(x) if x ∈ dom(Li) and Lj(x) otherwise.

(Qi, Li) := adjustOrth(Si, gi, Li−1, Qi−1)
end for
animate graph sequence

The adjustOrth() algorithm first computes the extended network of the sketch.
Since the sketch was restricted to the current graph gi, we only have to han-
dle insertions of new nodes and edges. The insertion of a new node creates a
new vertex-node in the Kandinsky network. How to insert new edges adjacent to
vertex-nodes with a degree greater than 0 is presented in [2]. The insertion of
a new edge adjacent to a vertex-node with a degree of 0 does not create a new
face-node.

We initialize the locally (for every edge) used parameters α and β. Then we
compute the quasi-orthogonal shape as described in [2]. To compare this shape
with that of the previous graph, we define a new metrics for quasi-orthogonal
shapes. To this end, we extend the definition of a quasi-orthogonal shape given
in [2]. With Q(f, i) we denote the i-th tuple of Q(f), with edge(Q, f, i) the value
of the edge field, with a(Q, f, i) the value of the angle field, and with b(Q, f, i)
the value of the bend field of Q(f, i). The value of the edge field of the successor
tuple of Q(f, i) is succEdge(Q, f, i) = edge(Q, f, (i + 1) mod |Q(f)|).

Definition 2 (Quasi-orthogonal-shape metrics).
Let Q be the set of quasi-orthogonal shapes. The function diffα : Q×Q → P(E),

(Q1, Q2) �→ {e = edge(Q1, f, i) | ∃f ′, j : e = edge(Q2, f
′, j) ∧

succEdge(Q1, f, i) = succEdge(Q2, f
′, j) ∧ a(Q1, f, i) �= a(Q2, f

′, j)}
defines the set of edges with the same successor edge, but with different angles
in two quasi-orthogonal shapes. The function diffβ : Q×Q → P(E),

(Q1, Q2) �→ {e = edge(Q1, f, i) | ∀f ′, j with e = edge(Q2, f
′, j) :

b(Q1, f, i) �= b(Q2, f
′, j)}

defines the set of edges with different bends in two quasi-orthogonal shapes.
Then the function ∆α with ∆α(Q1, Q2) = |diffα| is called angle metrics and the
function ∆β with ∆β(Q1, Q2) = |diffβ | is called bend metrics.

If the angle metrics does not fulfill the given angle threshold and there is an α
that is lower than the maximal value (the maximal value 6 · |Vi| results from the
construction of the Kandinsky network and [13]), we increment the corresponding
α. We deal analogously with the bend metrics and β. The construction of the
modified Kandinsky network implies that incrementing β could lead also to a
change of angle between two edges. If angle stability is more important than
bend stability, then both β and α have to be incremented if the bend metrics
does not fulfill the given bend threshold.

The last step concerns compaction. To be able to preserve the edge length of
the sketch Si, we extend the compaction algorithm from [9] by edges of prescribed
length. This extension is done straightforwardly by extending the length function:
let e = (u, v) be an edge and (ux, uy) the position of u in Si, then

length′(e) =
{ |ux − vx| + |uy − vy|, if e is fixed

length(e), otherwise

An edge can be fixed if it is in the current graph as well as in the previous
one, and if the values of the corresponding bend fields are equal. We compute
the final layout by applying the extended compaction algorithm. If the metrics
does not fulfill the given threshold we fix one more edge if there are any left.

Algorithm 3 adjustOrth(Si, gi, Li−1, Qi−1) predecessor dependent
Ni := compute extended network(Si, gi)
∀e ∈ Ei : αe := 0, βe := 0
repeat

Qi := quasiOrthogonalShape(Ni, α, β)
if ∆α(Qi, Qi−1) > δα ∧ ∃e ∈ diffα(Qi, Qi−1) : αe < 6 · |Vi| then

∀e ∈ diffα : inc(αe)
end if
if ∆β(Qi, Qi−1) > δβ ∧ ∃e ∈ diffβ(Qi, Qi−1) : βe < 6 · |Vi| then

∀e ∈ diffβ : inc(βe)
end if

until done
fixedEdges := ∅
repeat

Li = compact(Qi, Si,fixedEdges)
if ∆(Li−1, Li) > δ ∧ fixedEdges ⊂ {Ei ∩ Ei−1} − {diffβ} then

extend fixedEdges by one edge of {Ei ∩ Ei−1} − {diffβ}
end if

until done
return (Qi, Li)

So far, we have seen how to apply orthogonal layout to the predecessor layout
strategy. But it is also possible to apply it to the simultaneous layout strategy.
In this case the backbone layout is used as sketch and we use global parameters
α and β instead of local ones to achieve a more uniform adjustment of angles
and bends over the whole sequence. The adjustOrth() algorithm first computes

the quasi-orthogonal shapes for all graphs. If the condition for the angle metrics
∃i : ∆α(Qi−1, Qi) > δα ∧ α < 6 · |Vi| is not fulfilled, i.e. there is a tuple of
successive shapes which do not hold the angle metrics condition and there is some
space for improvement, α is increased. Analogously, β is changed depending on
the bend metrics. To compute the final layouts we proceed as in the predecessor-
dependent layout algorithm.

4 Hierarchical Foresighted Layout with Tolerance

The computation of a hierarchical layout of a graph following the Sugiyama
approach needs several phases: First all nodes are distributed in discrete layers
(the ranking phase), then the nodes of each layer are arranged, and finally the
layout is computed from the layers and their arrangements. One of the problems
that occur when trying to apply FLT to hierarchical layout is that there is
no option for global layout adjustment such as temperature annealing in the
force-directed approach. Instead, we have to divide the adjustment in standard
foresighted layout into two different adjustments: an adjustment for the ranking
phase and an adjustment for the rank sorting phase. However, after the ranking
adjustment has been performed, we cannot apply standard metrics, as the graphs
are not fully layouted. Therefore we will introduce a new kind of metrics which
only concerns the rankings of two graphs.

4.1 Predecessor dependent layout

In this section we describe the two different adjustment steps of hierarchical
foresighted layout. Starting from the input sequence, we compute the backbone
first. As the nodes of the backbone are of highest importance, we try to preserve
the mental map of the graph sequence by fixing these nodes to a certain rank
for the entire graph sequence. A good approach is to fix the node to the median
of all local rankings, which are computed in advance. So we achieve an optimal
rank for at least one graph.

Definition 3 (Average ranking). A ranking R : V → N is a mapping from a
node set to the set of natural numbers. Given a sequence of graphs g1, . . . , gn with
rankings R1, . . . , Rn, the average ranking R̄ : V → N is defined by the median of
all Ri(v).

After that, we compute local rankings for each graph, with respect to the
ranking of the backbone. In the second phase, we try to arrange the nodes on
each rank, such that we preserve the mental map, but try to reduce the edge
crossings at the same time. The general algorithm for hierarchical foresighted
layout using the predecessor dependent adjustment is shown in Algorithm 4.

Rank assignment In this section we describe how the ranks are adjusted.
We compute a new ranking by sorting gi topologically, but all nodes of the
backbone are ranked to their given backbone rank. If the metrics of the rank

Algorithm 4 Hierarchical Foresighted Layout with Tolerance
Compute backbone B of g1, . . . , gn

Compute average ranking R0 of B
for i := 1 to n do

Rl
i := R0|gi

Ri := adjustRank(Rl
i, Ri−1, gi)

(li, σi) := adjustOrder(gi, Ri−1, Ri, σi−1, li−1) // with dom(σ0) = ∅ and dom(l0) = ∅
end for
animate graph sequence

distance (which we describe below) between the current and the previous ranking
exceeds the given threshold δR, we fix the rank of one more node to the rank of
the previous layout. We choose a node with maximal importance from the node
set with the following properties: the nodes are contained in the current and
previous graph, but not in the backbone. Then we compute a new topological
sorting. We repeat this process until the given threshold is no longer exceeded or
until all nodes have fixed ranks. In the second case, we stop with a result which
has minimal rank distance.

Algorithm 5 adjustRank(Rl
i, Ri−1, gi) predecessor dependent

compute Ri by sorting gi topologically with respect to Rl
i

repeat
if ∆R(Ri−1, Ri) > δR then

add node v ∈ {w | w ∈ (Vi ∩ Vi−1)− dom(Rl
i) and ∀u ∈ (Vi ∩ Vi−1)− dom(Rl

i) :
importance(w) ≥ importance(u)} to Rl

i and let Rl
i(v) = Ri−1(v)

compute Ri by sorting gi topologically with respect to Rl
i

end if
until (Vi ∩ Vi−1) − dom(Rl

i) = ∅ ∨ ∆R(Ri−1, Ri) ≤ δR

return Ri

Mental distance on ranks As described in our previous work, we use several
metrics to check the mental distance between two layouted graphs. In the layer-
assignment phase of hierarchical layout we need a metrics to check the distance
between two layer-assignments, but layered graphs do not provide all necessary
information for a standard metrics. The only known value is in which layer a node
belongs. Therefore we introduce a new kind of metrics for the mental distance,
the rank metrics.

Definition 4 (Rank metrics). Let (g,R) be a graph g with a ranking R. Then
the function ∆R that maps ((g,R), (g′, R′)) to a positive real number is called a
rank metrics. In particular, ∆R ((g,R,), (g′, R′)) = 0 means that g and g′ have
a non-distinguishable ranking.

It turns out that there is only a small degree of freedom in the choice of a
reasonable rank metrics. A very general approach for such a metrics could be
the distance-rank metrics.

Definition 5 (Distance-rank metrics). Given (g,R) and (g′, R′), the func-
tion ∆D with

∆D ((g,R), (g′, R′)) =
∑

v∈V ∩V ′
|R(v) − R′(v)|

is called distance-rank metrics.

The definition of the distance-rank metrics could be changed by using the
term (R(v) − R′(v))2 instead of R(v) − R′(v) . This change would cause the
metrics to be more sensitive to nodes that jump over several ranks.

Arrangement of layers In this phase we try to minimize edge crossings while
staying as close as possible to the predecessor arrangement of layers. Therefore
we define an order in each layer.

Definition 6 (Order within ranks). Given a ranking R of a graph g = (V,E),
the function σ : V → N denotes the order within ranks, if the following property
holds: ∀v, w ∈ V : R(v) = R(w) ⇒ σ(v) �= σ(w). From the function σ we derive
the partial order <σ on nodes: v <σ w ⇔ σ(v) < σ(w).

Algorithm 6 computes an initial order σi of nodes which fulfills the following
relative orderedness conditions with respect to its predecessor (for i > 1):

1. ∀v, w ∈ Vi ∩ Vi−1 ∧ Ri(v) = Ri−1(v) ∧ Ri(w) = Ri−1(w) :
v <σi

w ⇐⇒ v <σi−1 w
2. ∀v ∈ Vi ∩ Vi−1 ∧ Ri(v) �= Ri−1(v) :∣∣∣σi(v) − σi−1(v)

|{w|Ri−1(w)=Ri−1(v)}| · |{w | Ri(w) = Ri(v)}|
∣∣∣ ≤ 1

The first condition states that the relative order of the nodes in the same rank in
the current and predecessor graph is preserved. The second condition says that
nodes which have changed their rank from the predecessor to the current layout
preserve their relative layout position.

Then we compute σ̂i by smoothly sorting the layers of gi, where <σ̂i
restricted

to the j-th layer {v|Ri(v) = j} forms a total order. As there exists no constraints
for σ1, σ̂1 is obtained by sorting the layers of g1.

The layers of gi can be sorted either by the barycenter heuristic or the median
heuristic (see [1]). Sorting smoothly with respect to sortmax means using an
arbitrary comparison-based sorting algorithm3 where a ≤ b · sortmax is used
instead of a ≤ b. Similarly to simulated annealing, we can use linear, logarithmic
or exponential decrease of the factor sortmax.

Definition 7 (Final layout). Given a ranking R and an order of ranks σ of
graph g, then L(R, σ) is the final hierarchical layout of g.

Computing the final layout includes all remaining phases after sorting the
ranks and yields the absolute positions of all nodes and edges. Thus we can now
check whether the mental map is preserved using some standard metrics. If not,
we decrease sortmax and start over.
3 e.g. bucketsort is one of the rare cases that does not belong to this class.

Algorithm 6 adjustOrder(gi, Ri−1, Ri, σi−1, li−1) predecessor dependent
sortmax := 1
σi := initialOrder(σi−1, Ri−1, Ri)
repeat

σ̂i := smoothSort(gi, σi, Ri, sortmax)
li := L(Ri, σ̂i)
dec(sortmax)

until ∆(li−1, li) ≤ δ ∨ sortmax < 0
return (li, σ̂i)

4.2 Simultaneous layout

In this section we illustrate how to apply the simultaneous adjustment strategy to
hierarchical layout. The predecessor adjustment strategy of the previous section
tries to adjust a layout as much as possible with respect to its predecessor. In
contrast the simultaneous adjustment strategy provides a uniform adjustment
of all graphs.

The main problem in applying the simultaneous adjustment strategy to hier-
archical layout arises in the rank assignment phase. A possible approach in the
rank phase would be to perform a topological sorting on all graphs simultane-
ously. But this requires that in each iteration one node in each graph is ranked
and the mental distance on ranks has to be checked. If the check fails, backtrack-
ing has to be performed and the rank of the last node that was ranked has to
be fixed. Indeed, this approach is not a good choice for the layer assignment of
large graph sequences – in that case it is more efficient to limit the simultaneous
adjustment strategy to the layer assignment phase and to use the predecessor
dependent rank assignment phase.

The goal of the simultaneous arrangement of layers is to preserve the relative
node order in ranks over the whole sequence. Nodes which change their ranks
should preserve at least their relative position. To achieve this goal we compute
a global enumeration σ∗ of the nodes which is consistent throughout the entire
graph sequence. Therefore we build the supergraph, layout it using a static
hierarchical layout algorithm and after that we retrieve the desired enumeration
by projecting the nodes on the x-axis and reading them from left to right.

A local improved enumeration σ′ can be derived from σ∗ by adjusting the
enumeration such that nodes which have changed their rank preserve their rela-
tive position (as described in Section 4.1, second relative orderedness condition).
Using σ∗ and σ′ we define σ = (σ1, . . . , σn):

σi =

σ∗
1 , if i = 1

σ∗
i , i > 1 and ∆(L(Ri, σ

∗
i),L(Ri−1, σi−1)) < ∆(L(Ri, σ

′
i),L(Ri−1, σi−1))

σ′
i, otherwise

Starting with this initial order, we now use the same iteration as in Algorithm 6,
except that we use a global sortmax-variable.

Algorithm 7 adjustOrder((g1, . . . , gn), (R1, . . . , Rn)) simultaneous
sortmax := 1
σ∗ := initialGlobalOrder((g1, . . . , gn))
σ′ := initialLocalAdjustedOrder(σ∗, (R1, . . . , Rn))
σ := initialSimultaneousOrder(σ∗, σ′, (R1, . . . , Rn))
repeat

for i := 1 to n do
σ̂i := smoothSort(gi, σi, Ri, sortmax)
li := L (Ri, σ̂i)

end for
dec(sortmax)

until ∀i : ∆(li−1, li) ≤ δ ∨ sortmax < 0
return (l1, . . . , ln)

5 Examples

In Figure 1 we show snapshots from three different animations of the same
graph sequence, which consists of evolving Hesse-graphs. (Hesse-graphs represent
divisibility on natural numbers: there is an edge between v and w, if w is divisible
by v.) In the graphs 1 to 15 the nodes representing these numbers are inserted
successively. In graph 16, node 1 is deleted and node 16 is inserted. In Figure 1a)
the ad-hoc approach is shown: for each graph a new layout is computed by using
a static layout algorithm. The mental map is poorly preserved as all nodes change
their ranks and more than half of the nodes also change their order within the
ranks. In Figure 1b) the predecessor dependent layout strategy with δR = 0 and
a small δ is shown: the mental map is well preserved. No node changes its rank,
and the order within the ranks is stable as well. But the local layouts are worse
as there are more edge crossings. In Figure 1c) the predecessor dependent layout
strategy with δR = 2 and a large δ is shown: the left graph is equal to that
produced by the ad-hoc approach. But in the next graph, all nodes contained
in the backbone do not change their rank. So it is a good compromise between
preserving the mental map and achieving local layout quality.

Our second example is taken from the real world: the CVS-miner developed
in our group. Figure 2 shows two call graphs before and after an “Inline Method”
refactoring. After the refactoring the function getResults() calls the function
getDiffNumber() directly instead of through parseIt(). A closer look at the
source code reveals that the code of the functions parseIt() and parseItCPP()
has been inserted into getResults().

6 Related Work

Most work on dynamic graph drawing [4] is related to the online problem, which
means that only information about the previous graphs in a sequence is used
for computing a layout. This includes work on hierarchical graph drawing [12],
spring embedding [3], and certain kinds of directed graphs [5].

a)

b)

c)

Fig. 1. Layouts of graphs 15 and 16 of evolving Hesse-graph using a) ad-hoc layout,
b) FLT with small δ, δR = 0 and c) FLT with large δ, δR = 2.

To the best of our knowledge, the only two approaches that consider all
graphs in the sequence are Foresighted Layout and TGRIP.

TGRIP [6, 10] is an extension of the spring embedder GRIP for large graphs.
The basic idea is very intuitive: time is modeled by springs in the third dimen-
sion. To this end each graph of the sequence is layouted in a 2D plane. Nodes
representing the same vertex in subsequent graphs are connected by additional
springs, but each node can only move within the 2D plane to which it belongs.
In contrast to Foresighted Layout, this approach does not allow using different
mental map metrics, because the metrics is built into the heuristic for minimizing
the forces.

AA

B C

D

A

D

a) b)

Fig. 2. Call graphs before and after a refactoring: The labeled nodes represent the
following functions: A is DiffParser.getResults(), B is DiffParser.parseItCPP(),
C is DiffParser.parseIt() and D is DiffType.getDiffNumber(). The colors of the
nodes encode the package to which the method belongs.

7 Conclusions

While implementing FLT for spring embedding was relatively simple, applying
the approach to orthogonal and hierarchical layout turned out to require many
more changes to the static layout algorithms.

Phased Algorithms Both algorithms work in phases, and we had to introduce
new metrics which work on the results of these phases instead of on the final
layouts. When the mental distance of two intermediate results exceeds a given
threshold, then we restrict the search space either locally, i.e. for some nodes or
edges, or globally, i.e. for all nodes or edges.

Global Restrictions For spring embedding, the global temperature was re-
duced, which resulted in allowing fewer position changes of all nodes. Similarly,
for hierarchical layout the variable sortmax influences all nodes in the sorting
phase.

Local Restrictions In the ranking phase of the hierarchical layout, we fix
the rank of the not yet fixed node of highest importance. Thus, all remaining
nodes can still change their ranks. For orthogonal layout the metrics, in fact, also
gives a hint what to restrict. As a side-effect of computing the quasi-orthogonal-
shape metrics, we do get a set of edges for which we can increment the α and β
parameters of one or more of these edges, i.e. restrict the number of angle and
bend changes.

Future Work The theory and implementations of FLT are now at a stage
such that we can start to apply them in different domains. The effectiveness of

the resulting animations is currently being studied as part of a master thesis in
psychology at the Catholic University Eichstätt.

Finally, work is underway to make force-directed, orthogonal and hierar-
chical FLT available as web services that produce animations in the SVG for-
mat. First results will be available soon at http://www.cs.uni-sb.de/~diehl/
ganimation.

References

1. O. Bastert and C. Matuszewski. Layered drawings of digraphs. In Drawing Graphs
[11]. Springer Verlag, 2001.

2. U. Brandes, M. Eiglsperger, M. Kaufmann, and D. Wagner. Sketch-Driven Orthog-
onal Layout. In Proceedings of 10th International Symposium on Graph Drawing,
August 26-28, 2002, Irvine, California. Springer Verlag, 2002.

3. U. Brandes and D. Wagner. A Bayesian paradigm for dynamic graph layout. In
Graph Drawing (Proc. GD ’97), volume 1353 of Lecture Notes Computer Science.
Springer-Verlag, 1997.

4. Jürgen Branke. Dynamic graph drawing. In Drawing Graphs [11]. Springer Verlag,
2001.

5. R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis. Dynamic graph draw-
ings: Trees, series-parallel digraphs, and st-digraphs. SIAM Journal on Computing,
24(5), 1995.

6. C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler. A system for
graph-based visualization of the evolution of software. In Proceedings of ACM
Symposium on Software Visualization SOFTVIS’03, San Diego, 2003. ACM SIG-
GRAPH.

7. Stephan Diehl and Carsten Görg. Graphs, They are Changing – Dynamic Graph
Drawing for a Sequence of Graphs. In Proceedings of 10th International Symposium
on Graph Drawing, August 26-28, 2002, Irvine, California, 2002.

8. Stephan Diehl, Carsten Görg, and Andreas Kerren. Preserving the Mental Map
using Foresighted Layout. In Proceedings of Joint Eurographics – IEEE TCVG
Symposium on Visualization VisSym’01. Springer Verlag, 2001.

9. M. Eiglsperger and M. Kaufmann. Fast Compaction for Orthogonal Drawings with
Vertices of Prescribed Size. In Proceedings of Graph Drawing 2001. Springer LNCS
2265:124-138, 2002.

10. C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. Yee. GraphAEL:
Graph Animations with Evolving Layouts. In Proceedings of the 11th Symposium
on Graph Drawing (GD). Springer Verlag, 2003.

11. M. Kaufmann and D. Wagner, editors. Drawing Graphs – Methods and Models,
volume 2025 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

12. S.C. North. Incremental Layout in DynaDAG. In F. J. Brandenburg, editor,
Graph Drawing (Proc. GD ’95), volume 1027 of Lecture Notes Computer Science.
Springer-Verlag, 1996.

13. U.Fößmeier and M. Kaufmann. Drawing high degree graphs with low bend num-
bers. In Proceedings of Graph Drawing 1995. Springer LNCS 1027:254-266, 1996.

	published: Proceedings of 12th International Symposium on Graph Drawing, New York City, USA, September 29 - October 2, 2004

