
CREWW - Collaborative Requirements Engineering with
Wii-Remotes (NIER Track)

Felix Bott
Computer Science

Department
University of Trier

Trier, Germany
fbott@laserplussag.de

Stephan Diehl
Computer Science

Department
University of Trier

Trier, Germany
diehl@uni-trier.de

Rainer Lutz
Computer Science

Department
University of Trier

Trier, Germany
lutzr@uni-trier.de

ABSTRACT
In this paper, we present CREWW, a tool for co-located,
collaborative CRC modeling and use case analysis. In CRC
sessions role play is used to involve all stakeholders when
determining whether the current software model completely
and consistently captures the modeled use case. In this ac-
tivity it quickly becomes difficult to keep track of which class
is currently active or along which path the current state was
reached. CREWW was designed to alleviate these and other
weaknesses of the traditional approach.

Categories and Subject Descriptors
D.2.1 [Requirements / Specifications]; D.2.2 [Design
Tools and Techniques]; H.5.3 [Group and Organiza-
tion Interfaces]: Collaborative computing

General Terms
human factors, design

Keywords
requirements engineering, collaborative work

1. INTRODUCTION
In software engineering requirements elicitation is an es-

sential process to gather information about the product to
develop. Techniques like interviews or questionnaires are of-
ten used for this purpose. But as soon as it comes to develop
an object-oriented model they are not well suited.

CRC (Class Responsibility Collaboration) cards, intro-
duced by Beck and Cunningham at OOPSLA in 1989 [2],
help to involve all stakeholders and facilitate the develop-
ment of an object-oriented model. Initially designed for
teaching an object-oriented way of thinking, the following
years showed that CRC cards could also be used for require-
ments engineering on a professional level [13].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Typically, CRC cards are handwritten index cards and
model classes, their responsibilities, and collaborators. In a
so called CRC session a team of four to seven members with
different expertise identifies central classes of the system to
build and creates corresponding CRC cards. These cards are
then used for role playing, i.e., each team member identifies
with one or more classes and acts for them in case their
functionality is needed. The goal of this kind of role playing
is to evaluate the system in a iterative manner and evolve
the classes.

The traditional CRC method is independent from any
kind of technical support. Only a set of index cards, pens,
and a table is needed. Moreover, it is based on group work,
which fosters both productivity and creativity. The execu-
tion of a traditional CRC session consists of three subsequent
phases [3].

Phase I: The goal of this first phase is to identify use cases
and actors in a brainstorming session.

Phase II: Based on the use cases found in the previous
phase the team identifies candidate classes along with
obvious responsibilities and transcribes them to CRC
Cards.

Phase III: During this phase the team investigates all use
cases using role play, i.e., each person acts for a certain
number of classes. Responsibilities and collaborators
are evaluated and new classes might be added.

Transfer to UML: The last step is to translate the CRC
model to a more powerful modeling language.

According to Beck et al. one of the biggest advantages of
the traditional CRC method is the ability to hold a card in
your hand, move it around, or switch it with other cards—
simply to identify with a card [2]. Nevertheless, there are
also some drawbacks that come along with this approach.
Although the initial creation of CRC cards is fast and it
is easy to add information, modification or deletion might
cause either readability issues or additional time for rewrit-
ing a card.

Another problem occurs when using CRC cards for intense
role playing. In this phase it quickly becomes non-trivial to
keep track of how a certain situation was reached, i.e., one
might not be able to recall which classes have been called
and in what order.

Moreover, as Ambler [1] put it, “CRC modeling leads di-
rectly into class diagramming”. But the problem with hand-
written cards is obvious. There is no digital version available

diehl_2
Text-Box
©ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of ICSE 2011 {May 2011} doi:10.1145/1985793.1985923

Figure 1: Use-case analysis: The class that is currently active is occupied by the yellow user. Other users
are inactive, but can still investigate the process of the scenario playthrough depicted by delegation edges.

neither during nor after the CRC session, which reduces the
ease of translating them to UML class diagrams.

The goal of our research is to transfer some of the group
work environment into the computer in order to alleviate
those drawbacks, but to some extent preserve the tangibility
of paper cards. To this end, we use Wii remotes as input
devices. For example, when a user wants to move a virtual
CRC card, she can literally grab it with the Wii-Remote:
by pressing one button with her thumb and one button with
her index finger, she virtually holds the card between both
fingers and can then move it on the screen. Furthermore,
Wii remotes allow for deictic gestures that can be interpreted
by the computer as well as other humans. For example, a
team member can point at a card on the screen and the
other team member can follow the direction of her hand to
find the card she is pointing at.

In the rest of this paper, we present the tool CREWW
(Collaborative Requirements Engineering with Wii-Remotes)
which supports computer-assisted CRC sessions by

• keeping track of the current state and the full history
of the playthrough/role play;

• implementing and monitoring the rules and thus to
allow for fair collaboration between all stakeholders;

• making the results available in the computer and ac-
tually allowing to export them for further use in UML
design tools;

• allowing users to add, modify, and delete CRC cards;

• providing an engaging user interface for group work
where the current state is immediately visible to all;

• leveraging off-the-shelf gaming input devices to enable
simultaneous access to a shared virtual artifact.

2. COMPUTER-ASSISTED CRC
To perform a CRC session with CREWW a computer, up

to four Wii-Remotes along with a Bluetooth dongle and the
Wii-sensor bar have to be available. We also recommend
to either use a large flatscreen or a computer projector to
make sure that all team members are able to follow the CRC
session. In addition, one may use a Bluetooth keyboard with
integrated touch pad and a portable scanner. Figure 1 shows
a typical setup.

The Wii-Remote [11] is a single-handed wireless game con-
troller, which besides different digital buttons is equipped
with a build-in infrared camera and a three-axis accelerom-
eter. With these components the Wii-Remote is able to de-
termine its position and motion in three-dimensional space
and send these data via Bluetooth to a computer.

To receive data from a Wii-Remote in Java we use a
client/server architecture that connects with the Bluetooth
stack and can be integrated in an arbitrary Java project [6].
The server itself, a C-based program, is a wrapper for a free
library called wiiuse [12], which is responsible for the connec-
tion with several Wii-Remotes and their maintenance. By
using this library our server is able to communicate with all
Wii-Remotes via the Bluetooth stack and send the gathered
information via UDP to a Java client. The design of the Java
client is based on the observer pattern [4]. More precisely,
the client itself is the subject, which notifies its observers
of any state changes by sending WiiEvents. Observers are
implemented similar to the Java AWT listeners. To be able
to react to Wii-Remote actions a class has to implement
the respective listener interface, e.g., WiiButtonListener

or WiiMotionListener and process the incoming events. To
enable simultaneous interaction with multiple Wii-Remotes
we had to modify some of the UI components to establish a
basic set of rules for concurrent access.

Using CREWW the phases of a CRC session are per-
formed as follows:

Figure 2: Ownership of CRC cards in CREWW

Phase I: Identifying use cases
Currently, our prototype does not provide support for man-
aging use cases along with different scenarios, or for design-
ing use case diagrams. Thus, the team members have to
resort to the traditional method.

Phase II: Identifying classes
This phase differs from the one of the traditional CRC ses-
sion in the way CRC cards are created. This can be done in
two ways:

• The team members can simply create a new (digital)
CRC card using the Wii-Remote and the keyboard to
fill in class name, responsibilities, and collaborators.

• As an alternative, CREWW provides a printing func-
tion for paper CRC cards. These cards are then filled
in by hand and read into the computer using the scan-
ning function of CREWW. The scanned images are
either shown directly or, if a module for handwriting
recognition (ICR) is available, the obtained informa-
tion can be translated to strings and put into the text
fields of a digital CRC card.

Once all digital cards are created, they can be rearranged
on the screen. For example, cards can be grouped based
on an already defined component structure or based on the
person they belong to. Rearranging cards may be done si-
multaneously by all team members, but each card can only
be manipulated by one user at a time.

Phase III: Analyzing use cases
In this last phase the team members start role playing to
improve the software model. At the beginning none of the

classes has an owner. A team member can now claim one
or more classes for herself, which is indicated by a colored
border (Figure 2)

Once all classes are distributed, a use case is chosen to be
verified. One of the team members activates the initial class
for that specific use case.

Only the team member who owns the active class is able
to manipulate the control flow and thus proceed with the
scenario playthrough. She has two possibilities to move on.
Either her class is able to fulfill the responsibility on its own
or it has to delegate one or more tasks to other classes. In
the former case the owner simply clicks at her own class
(by using a pre-defined button of the Wii-Remote) first, to
indicate that she has described and thus fulfilled the task
and second, to let the control return to the class that called
hers. In the latter case the owner activates a class that
she needs to collaborate with to solve her task. The team
members repeat this procedure until the initial class has
fulfilled all of its responsibilities. Figure 1 shows one step
of this process. During the role play users may also create
additional classes. For each scenario a history of all calls
is recorded and might be saved individually. Thus, team
members are able to navigate through previous stages of
their role play, e.g., if they want to re-investigate a certain
part of a scenario to avoid misconceptions. In this manner
the team verifies all use cases by playing through different
scenarios.

When all use cases have been covered, the actual CRC
session is completed.

One of our design goals was to enforce the rules of the role
play. It is, for example, important to visually indicate which
user is currently allowed to control the scenario playthrough.
Furthermore, an owner of a class may delegate a task to a

second one, which then processes this task and afterwards
returns the responsibility. It is also crucial for all group
members to be aware of the order in which they were in-
volved in the role play or, more precisely, which classes were
called. To visualize these kinds of information we had to
find a meaningful metaphor.

As shown in Figure 1, during the actual role play only
the currently active CRC card is displayed fully opaque in-
dicating that the owner of this card is responsible to proceed
with the role play. Furthermore, the inside of her cursor is
marked with a white circle.

Animated, dotted edges depict the current state of a sce-
nario playthrough. For instance, if an edge from a CRC
card A to a card B exists, the owner of A has delegated
responsibility to B. The animation of the edges indicates
the direction of the relation: the dots move from the caller
to the callee. Additionally, the thickness of an edge encodes
the depth of the current call stack, i.e. the more classes were
called at a certain point in the playthrough, the thinner an
edge is drawn (Figure 1). In case of recursion, animated
thinner dots are drawn on top of animated thicker dots.
While this may sound awkward, the resulting animation is
actually very intuitive.

Users can access the call history through a special menu
bar or pre-defined buttons of the Wii-Remotes. Behind the
scenes, the class UseCaseStack keeps track of both the cur-
rent call stack and the overall call history. It is important
to distinguish between those terms, because the call stack
does only contain classes that are currently involved in role
play and hides information about former ones. Accessing the
call history instead users are able to investigate preceding
processes (branches in the dynamic call tree) and if needed
automatically replay a certain part of the role play. Further-
more, the users can stop the replay at any time and continue
from there.

Transfer to UML
To facilitate the transfer between CRC cards and UML class
diagrams CREWW supports the modeling of basic relation-
ships (aggregation, inheritance, association) between classes.
Thus, based on the results of the third phase the developers
are now able to create a basic UML class diagram, which can
be exported to XMI1. In addition to saving scenarios, this
is another way to make results of CRC sessions reusable.

3. CONCLUSIONS
While there are quite a number of tools for CRC model-

ing [8, 9, 5, 10, 7], to the best of our knowledge we are not
aware of any CRC tool that provides support for co-located,
collaborative CRC sessions. CREWW demonstrates that
computer-assisted CRC sessions are possible, if the right
controls are provided. A quite good decision was to use
Wii-Remotes as input devices, because the central idea of
the CRC method is role playing and the Wii-Remotes as
gaming devices essentially contribute to that. Test persons
during the development phase were excited when using our
prototype.

Technically, the integration of Wii-Remotes including the
synchronization of GUI components was a quite interesting
challenge that resulted in a client/server architecture, which

1XML Metadata Interchange—standard format for exchang-
ing metadata information between UML tools

manages the concurrent access and can be reused for other
computer-assisted kinds of model analysis, for example, to
play through sequence diagrams in combination with object
diagrams.

4. REFERENCES
[1] S. Ambler. The Object Primer: The Application

Developer’s Guide to Object Orientation. SIGS Books,
1995.

[2] K. Beck and W. Cunningham. A Laboratory for
Teaching Object-Oriented Thinking. In Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89), New Orleans, Louisiana,
pages 1–6. ACM, 1989.

[3] D. Bellin and S. S. Simone. The CRC Card Book.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[4] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides,
C. Larman, and N. M. Wilkinson. Design Patterns -
Elements of Reusable Object-oriented Software.
Addison-Wesley Longman, Amsterdam, NL, 1995.

[5] K. A. Gray, M. Guzdial, and S. Rugaber. Extending
CRC cards into a complete design process. In 8th
Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE
2003, Thessaloniki, Greece, page 226. ACM, 2003.

[6] S. Müller. A Java-API for Multi-User Interaction with
Wii-Remotes. Master’s thesis (in German), University
of Trier, Germany, 2008.

[7] QuickCRC - Responsibility Driven Design.
http://www.excelsoftware.com/quickcrcwin.html,
Mar 2010.

[8] A. Raman and S. Tyszberowicz. The EasyCRC Tool.
In Second International Conference on Software
Engineering Advances (ICSEA 2007), August 25-31,
2007, Cap Esterel, French Riviera, France, pages
52–58. IEEE Computer Society, 2007.

[9] S. Roach and J. C. Vásquez. A Tool to Support the
CRC Design Method. In International Conference on
Engineering Education, Gainesville, Florida, USA,
2004.

[10] A. Savidis, P. Papadakos, and G. Zargianakis. Rapid
Visual Design with Semantics Encoding through 3d
CRC Cards. In ACM 2008 Symposium on Software
Visualization, Ammersee, Germany, September 16-17,
2008, pages 193–196. ACM, 2008.

[11] Nintendo Wii. http://wii.nintendo.com, 2010.

[12] Wiiuse - The Wiimote C Library.
http://www.wiiuse.net/, Dec 2009.

[13] N. M. Wilkinson. Using CRC Cards: An Informal
Approach to Object-Oriented Development. Cambridge
University Press, Cambridge, UK, 1999.

