
The Order of Things: How Developers Sort Fields and Methods

Benjamin Biegel, Fabian Beck, Willi Hornig, Stephan Diehl
University of Trier

Trier, Germany
Email: {biegel,beckf,s4wihorn,diehl}@uni-trier.de

Abstract—In source code files, fields and methods are ar-
ranged in linear order. Modern programming languages such
as Java do not constrain this order—developers are free to
choose any sequence. In this paper we examine the largely
unexplored strategies developers apply for ordering fields
and methods: First, we use visualization to explore different
ordering criteria within two open source Java projects. Second,
we verify our observations in a metric-based analysis on an
extended set of 16 projects. Third, we present the results
of a survey that reflects the opinion and applied ordering
strategies of 52 developers. 87% of the participants agreed
that ordering of fields and methods is meaningful or important.
Our results suggest that there exists a set of criteria repeatedly
used for ordering. Among these, the categories defined in
the official Java Code Conventions appear to be the primary
ordering criterion. However, in the individual strategies of the
participants of the survey, we identified 15 ordering criteria
additional to the five criteria we considered in the empirical
analysis.

Keywords-code conventions; code navigation; linear arrange-
ment;

I. INTRODUCTION

“Ordering Java methods is probably the least important
code style issue ever . . . ”1 But to our great surprise we had
to learn when discussing this issue among the authors that
we apply fundamentally different ordering strategies. This
raised our curiosity and motivated us to investigate whether
ordering fields and methods is really that irrelevant. The
first question we asked ourselves was: In which scenarios
could the ordering of fields and methods be important? We
identified the following use cases:

• Searching for a particular field or method in a class
• Searching for a certain functionality vaguely known
• Understanding a certain functionality
• Adding new fields or methods
• Following a program execution (e.g., while debugging)
• Understanding the high-level purpose of a class
The ordering of fields and methods is not vital for the

above use cases, but has the potential to slow down or
accelerate the work. Browsing through a source code file
is a form of linear search and could be time-consuming

1This is the first sentence of a question titled “What is the most
common way of ordering Java methods?” by JRoberts posted November
12, 2010 at stackoverflow.com, which received five non-agreeing answers
– (last retrieved: 2012-01-27) http://stackoverflow.com/questions/4166251/
what-is-the-most-common-way-of-ordering-java-methods

when the fields and methods are not arranged properly.
Many IDEs, however, provide help for finding particular
code fragments: developers may use a search prompt or look
at the code outline view (a list of fields and methods that
can be sorted automatically). But still, some of those tools
require a linearized representation of code entities. In the
end, the order of fields and methods probably has an effect
on code navigation and code comprehension.

In this paper we want to find out how developer sort
fields and methods: Are there any conventions followed
by a majority of developers? What are the criteria that
influence the ordering? How do developers perceive the
issue of ordering? We focus on Java projects to study
these research questions. Our approach follows a sequential
exploratory strategy [1] where first hypotheses are derived
from an explorative analysis, and second those hypotheses
are evaluated in a quantitative experiment. In particular,
the study consists of a visual analysis on two open source
systems (Section III), an empirical analysis on 16 open
source systems (Section IV), and a survey with 52 partici-
pating developers (Section V). Our data from the empirical
analysis and the survey is available online for replication:
http://www.st.uni-trier.de/icsm12/.

II. ORDERING APPROACHES

The ordering of code entities in source code documents
has not yet been empirically explored. There exist, however,
different paradigms to deal with the issue of ordering. While
the ordering of fields and methods is not constrained in many
programming languages, some require that a method must
be declared before it is called (e.g., Pascal, C, and C++).
Therefore, header files are used to aggregate the declarations
and method definitions can be again ordered as desired.

Code entities might get grouped according to high-level
categories—the official Java Code Conventions (JCC) [2]
discern between four categories of attributes and method as
depicted in Figure 1: class variables, static attributes de-
clared at class level; instance variables, non-static attributes
declared at class level; constructors, distinguished methods
to create instances of a class; and all other methods. The
categories should appear in the order as listed. They form a
primary ordering criterion.

As the secondary ordering criterion, according to the
JCC, class and instance variables should then be sorted by

ICSM 2012

http://stackoverflow.com/questions/4166251/what-is-the-most-common-way-of-ordering-java-methods
http://stackoverflow.com/questions/4166251/what-is-the-most-common-way-of-ordering-java-methods
http://www.st.uni-trier.de/icsm12/

none

Functionality

Modifier

…

 Categories

Class
Variable

Instance
Variable

Constructor

Method

Modifier

Modifier

public
protected

default
private

Primary Criterion Secondary Criterion

Cluster 1

Cluster n

Functionality

public
protected

default
private

Figure 1. Ordering criteria according to the Java Code Conventions (JCC).

visibility in the order public, protected, default, and private;
recommendations for the ordering of variables below this
level are not provided. In contrast to variables, the coding
conventions postulate for methods—somewhat vague—that
they “should be grouped by functionality rather than by
scope or accessibility.”

As demonstrated by Class Blueprints [3], different order-
ing criteria can be combined to more elaborate, generic cat-
egories. The approach discerns five layers: an initialization
layer containing constructors and init-methods, an interface
layer containing methods of the public interface of the class,
an implementation layer containing the private methods, an
accessor layer containing getters and setters, and an attribute
layer containing the fields. These layers are used to visualize
and understand the characteristic features of classes.

Also call dependencies can be considered for deriving an
order: Martin [4] advocates the idea of placing the definition
of a method immediately after it is called for the first time
(stepdown rule). This approach leads to a top-down ordering
of methods from a high to a low level of abstraction, and
so should “[. . .] help[s] the program read like a newspaper
article”.

There exists tool support for ordering fields and methods.
For instance, the Eclipse IDE provides functionality to
automatically sort fields and methods in source code docu-
ments: Here, static and non-static entities are discerned, as
well as fields, initializers, methods, and constructors. These
definitions are similar to the JCC, though vary slightly. As
an optional secondary criterion, entities in the same category
can be ordered by visibility. Below category or visibility
level, entities are automatically sorted lexicographically.
Similar functionality is available as plug-ins in other IDEs
such as Visual Studio or IntelliJ, and in standalone tools like
JCSC.

Additional to improving the order, code navigation can
be eased by other means. DeLine et al. [5] use thumbnail
views of the code layout as extended scrollbars to navigate
through the code. Mylyn [6] computes a degree of interest
metric and can hide those fields and methods the developer
probably does not need for the task at hand. Desmond and

Exton [7] present a code exploration technique that embeds
related code from a different file into the current editor on
demand.

Source code, however, does not need to be organized in
documents containing long lists of methods—an alternative
are package and class browsers in Smalltalk IDEs such as
Squeak. Packages, classes, and methods are organized in
side-by-side panes; the editor pane does not show whole
source code documents, but just the code of the currently
selected method. Nevertheless, ordering is also relevant for
such kinds of tools because fields and methods have to be
listed linearly somewhere for selection.

A visual ordering approach is to map code entities onto
a two-dimensional map. Such a map can be integrated into
an IDE and used for code comprehension and navigation as
Kuhn et al. propose [8]; they arrange code entities according
to their semantic similarity, which is derived from the
vocabulary used in the code. Code Canvas [9] demonstrates
how a map metaphor can be employed as the basic outline
of an IDE. Code Bubbles [10] is an IDE prototype that
uses a desktop metaphor and organizes code entities such
as methods in bubbles, which can be grouped freely on the
desktop.

III. EXPLORATIVE ANALYSIS

As the first step of the sequential exploratory strategy
, an explorative analysis targets at deriving hypotheses on
how attributes and methods are ordered in software projects.
To this end, we analyze two open source Java systems—
namely, JUnit (a unit testing framework) and Stripes (a web
framework). In the focus are original ordering criteria that
are either recommended by coding standards or are enforced
by software development tools. Simple visualizations are
used to generate and illustrate hypotheses (although we
tried to optimize the color scales with respect to black-and-
white prints, we still recommend reading a colored version
of the paper to see full details). Along the way of visual
exploration, we introduce the data acquisition procedures
that are necessary for studying the different ordering criteria.

A. JCC Categories

First, we investigate whether developers follow the offi-
cial Java Code Conventions (JCC) as a primary criterion.
As described in Section II, the JCC split code entities
into four categories; we assign a color to each category
for visualization purposes: class variables (black), instance
variables (dark cyan), constructors (orange), and methods
(light orange). For inspecting the compliance of a large set
of classes with this standard, we propose a simple, space-
efficient visualization: Each class is represented by a vertical
bar that consists of stacked uniformly sized boxes; each box
represents one of the entities and is colored according to the
type of the entity.

field

constructor

method

o
p

ti
m

al
 o

rd
er

class variable

instance variable

constructor

method

JCC Categories

o
p

ti
m

al
 o

rd
er

public

protected

default

private

Visibility

o
p

ti
m

al
 o

rd
er

Lexicographic

cluster 1

cluster 2

cluster 3

cluster 4

Semantic

static method

initializer

getter/setter

other method

Subcategories

JUnit Stripes

Figure 2. Visualization of the applied ordering criteria in JUnit and Stripes: JCC categories, visibility, lexicographic, subcategories, and semantic.

Figure 2 shows such a bar chart visualization for the two
sample systems, the first row depicting the JCC Categories.
We excluded small classes with less than ten entities because
the order of the entities does not become apparent if there are
only few entities per category if any. Due to space limitations
for the visualizations, we also skip classes with more than
50 entities.

What we observe is that many classes across the two
projects show a bar in perfect order—they match the JCC
categories including the proposed ordering of the categories.
Only few classes show a slightly varying pattern, but still
the entities seem to at least roughly follow the specified
grouping. From these observations we derive the following
hypothesis, which we want to test in the subsequent empir-
ical analysis.

Hypothesis 1 (JCC Categories). (a) The categories defined
in the JCC are used as a primary sorting criterion in the
majority of classes. (b) They are used at least as a partial
grouping criterion in nearly all classes.

This assumption covers only the primary ordering strategy
as defined by the conventions; secondary strategies are
discussed in the following. Please note that we distinguish
between sorting criteria (entities must have the correct
order) and grouping criteria (entities need to be grouped
correctly, but the order of the groups is not considered). If
we refer to both, we use the term ordering criteria.

B. Visibility

Ordering entities by visibility is defined as the secondary
ordering strategy for attributes in the JCC in the following
sequence (we again assign colors): public (green), protected
(yellow), default (dark blue), and private (red). This criterion
is considered as a primary or secondary sorting strategy in
Eclipse and JCSC.

Visualizing visibility modifiers of attributes and methods
similar to the categories could help to detect whether those
are used as a primary ordering criterion. To also detect
applied secondary ordering criteria, we represent each class
as a split bar in Figure 2 (second row), the left part showing

the JCC categories, the right part reflecting the visibility
modifiers.

The code entities seem to be ordered less according to
visibility modifiers than to the JCC categories. Searching
for strictly grouped classes at the level of the primary
ordering criterion (without considering the proposed order
of visibility modifier), we only find few examples for JUnit,
and some more for Stripes. Judging whether visibility is
used as a secondary ordering criterion for variables is more
difficult because many classes only include few variables,
often also having the same visibility. In contrast, the classes
tend to have more methods than fields and those also vary
in visibility; some strictly grouped method blocks can be
observed. But, although visibility does not have high rates
of strictly grouped classes, the majority of classes seem to be
grouped by this criterion to some extent—visibility modifiers
mostly appear in larger blocks.

Hypothesis 2 (Visibility). (a) In some cases the visibility
is used as a strict grouping criterion. (b) But entities are
grouped partially with respect to visibility in the majority of
classes.

C. Lexicographic
For lexicographic ordering entities are indexed according

to their position in a lexicographically sorted list. This
ordering is unambiguous and hence can easily be auto-
mated. Although this approach is not proposed by the
JCC, Eclipse and other development tools implement it.
For lexicographically ordering fields and methods, we ap-
plied the String.compareToIgnoreCase(String)
method of the standard Java API; method parameters are
ignored and hence polymorphic methods are assigned the
same index.

As already observed, the JCC categories seem to be
applied as the primary ordering criterion. Hence, we mainly
check whether lexicographic sorting is used as a secondary
criterion and investigate the ordering of fields in separation
from the ordering of methods. We visualize both in the same
diagram (Figure 2, third row). The color mapping assigns a
color ranging from black to cyan to each field, and a color
ranging from orange to light orange to each method; darker
colors indicate entities with a smaller lexicographic index.
Constructors are colored in light gray.

What we observe for fields as well as for methods is that
only very few classes are ordered perfectly according to
this criterion—perfect lexicographic orderings create pure
dark-to-light color scales. Such perfect scales can only be
found for some entities in the Stripes project: We marked
two classes with a perfectly sorted method block with
small black triangles in Figure 2. In some more, but still
rare cases, parts of the blocks of fields or methods are
sorted—explanations could be an inherited list of methods
automatically added in sorted order by the IDE or other
sequences of generated code.

Hypothesis 3 (Lexicographic). (a) Lexicographic ordering
is rarely used as a strict sorting criterion for fields and for
methods, neither as a primary criterion nor as a secondary
one. (b) In some classes, however, it is considered partially.

D. Method Subcategories

Methods can be classified into a set of generic subcate-
gories. For instance, getters and setters are very special types
of methods, which frequently occur in many classes. In-
spired by the subcategories used in Class Blueprints [3] and
proposed by the automated ordering algorithm in Eclipse,
we distinguish between the following set of method sub-
categories (no particular order): static methods of every
kind (blue), non-static initializers (yellow), non-static getter
and setter (pale red), and other non-static methods (gray).
Initializers are non-static initialization blocks or non-static
methods that start with the string “init”. Getters are identified
as methods having a non-void return type; their name starts
with “get” or “is”, followed by a capital letter. In contrast,
the name of setters starts with the string “set” followed by
a capital letter; setters have at least one parameter.

As Figure 2 (fourth row) indicates, the distribution of
the above subcategories across classes seems to be less
uniform than the groups in other criteria. While most of the
classes have getter/setter methods and other methods, only
few contain static methods and initializers. In both systems,
a considerable number of method blocks are strictly grouped
by the method subcategories. Beyond that, we also observe
larger blocks of methods belonging to the same subcategory
in the other classes.

Hypothesis 4 (Method Subcategories). In a considerable
amount of classes, the defined method subcategories are
applied as (a) a strict criterion to group methods as well
as (b) a partial criterion.

E. Semantic Similarity

Finally, we look at the grouping by functionality, which
is propagated by the JCC for sorting methods. But it is
hard to tell what the term functionality exactly refers to;
also the conventions do not provide further information.
Inspired by other approaches that group code entities by their
similarity in purpose, we propose an approach based on the
vocabulary used in the identifiers and comments of methods.
Methods of similar vocabulary are rated as semantically
similar. The similarity can be used to cluster the methods
into different groups, which allows studying those clusters
using our visualization technique.

Our approach is similar to the approach of Kuhn et
al. [11]: From the source code of each method including
possible preceding comments, we extracted all words, also
splitting camel-case identifiers. From this list of words, Java
keywords and English stopwords are removed and stemming
is applied (Porter algorithm). Then, a method is described
as a vector, each dimension representing the occurrence of a

particular word. Instead of the word frequency, we consider
the term frequency–inverse document frequency, which is
a widely applied information retrieval technique; it balances
the importance of each word so that words occurring in many
methods become less relevant.

A hierarchical agglomerative clustering algorithm based
on the cosine similarity of the vectors is used to create
semantic clusters of methods. To be consistent with the
number of groups in the other ordering criteria, we cut the
hierarchical clustering into four clusters for each class. We
consider only those classes for clustering that have a single
cohesive method block consisting of at least five entities.

This approach can only be considered as a heuristic to
analyze the grouping by functionality, or semantic grouping
as we call it in the following. But in general, the definition
of this criterion is too vague to be measured exactly. We
checked a set of clusterings manually and found that the
results generally matched our intuition for semantically
grouping.

Figure 2 (last row) shows the outcome for the two sample
systems, each cluster represented in a different color. Please
note that the numbering of clusters is arbitrary; equal cluster
indices across different classes do not have any meaning. A
first observation is, that the cluster sizes seem to be evenly
distributed; no giant clusters affect the results. Due to the
heuristic nature of the clustering approach and in contrast to
the previous criteria, strictly grouped classes do not have a
particular meaning beyond being well-ordered. Nevertheless,
it can be analyzed how many classes are partially ordered:
We observe a reasonable number of such classes mainly
in Stripes; but also in JUnit we find some classes having
cohesive blocks of methods belonging to the same cluster.

Hypothesis 5 (Semantic). In many classes with a single
cohesive method block, methods are partially grouped with
respect to their semantics.

IV. EMPIRICAL ANALYSIS

As the second step of the sequential exploratory strategy,
we provide quantitative evidence in this section to support
our hypotheses. For this purpose, we introduce two metrics
to measure the impact of sorting and grouping.

We analyze 16 open source Java projects of varying
sizes and from different areas of application. These projects
are listed in Table I together with the number of classes
considered for the analysis. Since enumeration types and
interfaces are not suitable for our applied semantic similarity
measures, we ignore these structures. All classes with fewer
than 10 entities are also skipped, first because the order in
small classes is less important, and second to minimize the
risk of getting perfectly ordered classes by accident. Despite
these limitations, we inspect 50% of all classes, which
altogether contain about 85% of all fields and methods.

Table I
PROPERTIES OF THE ANALYZED SOFTWARE PROJECTS.

Project Description Version #Classes

Checkstyle coding conventions 5.1 88
Cobertura test coverage 1.9.4.1 25
CruiseControl continuous integration 2.8.4 150
iText PDF library 5.0.5 219
JabRef BibTeX management 2.6 201
JEdit text editor 4.3.2 240
JFreeChart chart library 1.0.13 339
JFtp FTP client 1.0 29
JHotDraw GUI framework 7.6 296
JUnit regression testing 4.5 28
LWJGL gaming library 2.7.1 150
PMD code problems 4.2 110
Stripes web framework 1.5.5 88
SweetHome3D interior design 3.1 117
TV-Browser program guide 2.7.6 438
Wicket web framework 1.2.2 202

A. Sort and Group Metric

In this work we consider order criteria, which are based on
sequences as well as groups. Therefore, we define two order
metrics to measure the degree of ordering for a set of entities.
Before testing whether a sorting criteria was considered in
a sequence of entities, we index the entities according to
their position in a sorted list. The same is true for testing
whether a grouping criteria was applied to a set of entities.
In this case we assign the entities to their belonging groups.
For these purposes, we define the reference index, which
returns either the corresponding sorting position or group
number for an entity.

Definition 1 (Reference Index). Let E be the set of all
entities and ϕ : E → N a function that maps entities to
natural numbers. We call ϕ(x) the reference index of x.

For measuring order, we look at sequences of correctly
ordered entities and count pairs of entities that are in the
right order according to the reference index. The sort metric
checks for an entity whether the reference index of the
consecutive entity is higher (or at least equal). A value of
1.0 corresponds to a perfectly sorted entity set.

Definition 2 (Sort Metric). Let e = (e1, . . . , en) be a
sequence of at least two entities, then the sort metric s is
defined as

s(e) :=
|{i : ϕ(ei) ≤ ϕ(ei+1)}|

|e| − 1

The group metric is similar to the sort metric: It counts
all pairs of entities with the same reference index. A value
of 1.0 corresponds to a perfectly grouped entity set.

Definition 3 (Group Metric). Let me := |{k : ϕ(ei) = k}|
be the number of different indices covered by a sequence of

at least two entities e = (e1, . . . , en), then the group metric
g is defined as

g(e) :=
|{i : ϕ(ei) = ϕ(ei+1)}|

|e| −me

when 2 ≤ me < |e|.

B. Partial Sorting and Grouping

The hypotheses raised in Section III make assumptions on
the frequency of partially sorted or grouped classes. While
it is simple to find strictly ordered classes, it is much more
difficult to judge when a class is partially sorted or grouped
with respect to a particular criterion. Just defining a certain
threshold for the respective metric and counting those classes
above this threshold would be misleading because the metric
value does not only depend on the ordering but also on
the number of clusters me and their size distribution. For
instance, when organized randomly, a class consisting of
only private code entities plus an additional public entity
usually reaches higher cluster metric values than a class with
more evenly distributed visibility modifiers.

A better way of identifying a partially sorted or grouped
class is to contrast its metric value to an equivalent class
consisting of the same code entities in a random order. If the
metric value of the original class is higher, this is an indicator
that the particular criterion has played a role. But the α-
error, the probability to judge a randomly ordered class as
ordered by mistake, is 50%. If a repetition of the procedure
yields further random metric values smaller than the original
metric value, our confidence increases that the original class
is partially sorted or grouped. Targeting an α-error of 5%,
the original order must be best among 20 orders, 19 created
randomly. Hence, we perform this random experiment for
every class: we compute its metric value; shuffle the code
entities 19 times; and if the original value is the highest, we
reject with sufficient confidence that the original ordering
was created randomly—it is rated as partially ordered.

This procedure is independent of the metric and hence
works for the sort metric as well as the group metric.
Though statistically founded, it is only a heuristic to count
the partially ordered classes: On the one hand, we still have
an α-error of 5% to rate purely randomly ordered classes
as partially sorted or grouped. On the other hand, partially
ordered classes may not be assessed as such because their
metric values are too close to the random ones (β-error). In
the end, this approach provides a form of estimated lower
bound of the number of partially sorted or grouped classes.

C. JCC Categories (Hypothesis 1)

The results of the empirical analysis are summarized in
Figure 3. Every boxplot of this figure shows the distribution
of percentage values per project, each reflecting the ratio of
sorted or grouped classes according to a particular ordering
criterion. To better understand the results of the empirical

analysis, we recommend to use Figure 3 continuously in the
following subsections.

Primary Criterion—In the explorative analysis, the JCC
categories are identified as the most dominant ordering
criterion. This issue is also represented in the high metric
values. As we can see in the strictly part of Figure 3 (right
diagram), the upper two boxplots are much higher in the
scale than the others. This means that most projects have a
high ratio of strictly ordered classes according to the JCC
categories. In detail, more than 78% of all classes are strictly
sorted and 81% grouped in half of the projects. The small
difference of the medians suggests that, whenever a class is
grouped, it is also sorted with respect to the JCC categories.
With values below 60%, only JEdit and JFtp are outliers and
do not strictly apply this criterion as much (in the boxplots
marked by circles). However, almost all analyzed projects
meet Hypothesis 1(a): The categories defined in the JCC
are used as a primary sorting criterion in the majority of
classes.

In further analysis we find that over 80% of all classes are
ordered partially by the JCC categories. Half of the projects
consist of more than 90% partially grouped classes. This fact
supports Hypothesis 1(b): The JCC categories are used at
least as a partial grouping criterion in nearly all classes. In
addition, more than 95% of all classes in half of the projects
are partially sorted. Thus, we can further specify this result:
The JCC categories are used at least as a partial sorting
criterion in nearly all classes.

D. Visibility (Hypothesis 2)

Primary Criterion—Our results report a median of 0% for
visibility as a strict primary sorting criterion. JEdit, however,
stands out with a ratio of 27%. In much more cases the
visibility is applied strictly as a grouping criterion. A median
of 22% supports Hypothesis 2(a): In some cases the visibility
is used as a strict grouping criterion.

In contrast, with a median of 68%, a considerably larger
proportion of classes is partially grouped by visibility.
Thus, we agree with Hypothesis 2(b): Entities are grouped
partially with respect to visibility in the majority of classes.
It is also worth mentioning that the median of partially
sorted classes is still 48%.

Secondary Criterion—For the analysis of visibility as
a secondary ordering criterion, we subdivide the classes
with respect to the JCC categories into three parts—class
variables, instance variables, and methods. In each case we
only consider those classes that have at least five entities
belonging to the particular category. In addition, the entities
have to form a single cohesive block. These restrictions lead
to a decreased number of classes. To still get meaningful
results, we only include those projects in the analysis which
have at least 20 classes fulfilling the requirements.

●

●●

●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

Partially

Semantic grouped
Subcategories grouped
Lexico. methods sorted

Lexico. instance variables sorted
Lexico. class variables sorted

Lexico. primary sorted
Visibility methods sorted

Visibility methods grouped
Visibility primary sorted

Visibility primary grouped
JCC primary sorted

JCC primary grouped

●●

●● ●

●

●●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

Strictly

Semantic grouped
Subcategories grouped
Lexico. methods sorted

Lexico. instance variables sorted
Lexico. class variables sorted

Lexico. primary sorted
Visibility methods sorted

Visibility methods grouped
Visibility primary sorted

Visibility primary grouped
JCC primary sorted

JCC primary grouped

not applicable

Figure 3. Percentage of classes per project which are sorted or grouped according to the given ordering criterion (whiskers with maximum 1.5 IQR).

As observed in the explorative analysis, many classes have
only a small set of fields, which mostly have the same
visibility (e.g., on average 83% of all instance variables
are private). After filtering the projects, only three projects
contain enough classes to be selected for our analysis. Thus,
for the visibility, a separate analysis of cohesive class or
instance variable blocks is not reasonable. Nevertheless, this
insight is interesting in combination with the metric values of
the visibility in method blocks: More than 24% of cohesive
method blocks are partially sorted and 22% are partially
grouped in half of the projects. Surprisingly, a much larger
proportion of whole classes is partial grouped than method
blocks. It seems that the order is influenced more by the
JCC categories than by the visibility. In particular, the high
amount of partially ordered classes could be based upon
several sequences of fields with the same visibility. We
assume that the developers were not aware of following
this ordering criterion as much. This issue can also be
supported by a higher median of 32% for strictly grouped
classes—Checkstyle with even 62% and PMD with even
57%. Nevertheless, our measure results fully agree with
Hypothesis 2, even though the order seems to be influenced
by the JCC categories.

E. Lexicographic (Hypothesis 3)

Primary Criterion—The test on lexicographic order as a
strict primary criterion provides clear results: In total only
one single class (in Stripes) is sorted strictly.

Secondary Criterion—We use the same categories and the
same filtering approach as described in the previous section.
Since every field has an unique sorting index, the filtering
only depends on the number of fields in a class. We consider
6 projects for inspecting cohesive class variable blocks and
13 projects for cohesive instance variable blocks. Whereas
altogether the fields rarely follow the lexicographic order
strictly, a large proportion of 39% of strictly sorted instance
variables in Wicket is remarkable. Furthermore, this project
and Cobertura both use the sorting criterion strictly on 12%
and 13% respectively of their cohesive method blocks. All

other projects have values between 0% and 3%. In summary,
all these findings support Hypothesis 3(a): Lexicographic
ordering is rarely used as a strict sorting criterion for fields
and for methods, neither as a primary criterion nor as a
secondary one.

Analyzing partial sorted classes, the medians increases
to 14% for whole classes, 12% for class variables, 5% for
instance variables, and 9% for methods). Again Cobertura
(32%) and Wicket (55%) stand out with many partial sorted
classes. Thus, our measures also support Hypothesis 3(b): In
some classes, however, lexicographic ordering is considered
partially.

F. Method Subcategories (Hypothesis 4)

Secondary Criterion—We measure in half of the projects
at least 29% of classes, which are strictly grouped by the
defined subcategories. We find that the subcategories are
used differently in the analyzed projects. For example, in
JFtp only 10% of the classes are strictly grouped, and
hence, the subcategories are less considered. In contrast,
JFreeChart has a ratio of 52% strictly grouped classes and
Stripes a ratio of 50%. In summary, these results agree
with Hypothesis 4(a): In a considerable amount of classes,
the defined method subcategories are applied as a strict
criterion to group methods.

By taking all partial grouped classes into account, the
median decreases to 21%. This fact could give a hint
that some classes are grouped accidentally, and thus, the
developers possibly were not aware of using this group-
ing criterion in some classes. However the metric values
still support Hypothesis 4(b): In a considerable amount of
classes, the defined method subcategories are applied as a
partial criterion.

G. Semantic (Hypothesis 5)

Secondary Criterion—As mentioned in Section III-E, the
semantic criterion can only be measured as a heuristic—
strictly grouped classes do not have a distinguished meaning.
Nevertheless, partial grouped classes provide evidence that

Figure 4. Mean correlations between grouping criteria.

semantics are used as a grouping criterion. In half of the
projects we find over 33% of partially grouped classes by
semantics. Larger proportions can be found in JFreeChart
(50%), SweetHome3D (49%), or iText (44%). Even if we
consider the projects with the smallest proportions, e.g.
Cobertura with 17%, we can still establish a rather large
amount of impacted classes by semantics. Therefore we
agree with Hypothesis 5: In many classes with a single
cohesive method block, methods are partially grouped with
respect to their semantics.

H. Discussion

In summary we observe a majority of classes being
arranged according to the categories defined in the JCC as
a primary criterion. The four other tested criteria were not
applied as strict as those categories, neither as a primary nor
as a secondary criterion. Nevertheless, our results suggest
that the majority of classes is at least partially grouped by
visibility modifiers. In cohesive method blocks, grouping by
method subcategories and by semantic similarity seems to
play a major role.

Observing a criterion in the code does not necessarily
mean that it was directly applied by the developers, but could
as well be a side-effect of applying another. Therefore, it is
important to discuss correlations between the criteria. We
look at the grouping criteria and compute for each project
and criterion a vector that reflects each class in a normalized
metric value (the difference between the order metric and
the best random ordering metric value). These vectors are
compared using the Pearson correlation for each project.
Figure 4 averages the correlations over all projects in a
correlation matrix.

The only strong correlation (0.61) can be found between
visibility as a primary and a secondary criterion, which is
not surprising because both are inherently related. The other
correlations seem to be much weaker and hence do not
significantly affect the results of this study: The moderate
correlation of 0.35 between JCC categories and visibility
(both as primary criterion) might be a consequence of the
fact that entities of the same category often seem to have
the same visibility (also compare to Figure 4, second row).
Hence, the quite high percentage of partially grouped could
be partly explained by this correlation. For the metrics on
method block level, we observe a weak relationship between
visibility, method subcategories, and semantic similarity
(values between 0.23 and 0.26), which indicates that these

criteria are not totally orthogonal. An analogous analysis
was performed on the sorting criteria but did not show any
further considerable correlations.

V. SURVEY

To complete our analysis of ordering strategies, we con-
ducted a small survey among developers: On the one hand,
we were interested in whether developers are aware of or-
dering fields and methods and how they rate its importance.
On the other hand, we wanted to find out concrete sorting
strategies applied.

We sent the survey consisting of seven questions by e-mail
to colleagues in research and industry as well to students
and asked the recipients for further distributing it among
their colleagues. We also posted it in social networks. The
survey could be filled in by simply answering the e-mail or
by using an alternative (but equivalent) web-form.

We received 55 answers and considered 52 of these for
the analysis (two accidental double-submissions as well as
a participant declaring he/she did not understand a question
were excluded). Figure 5 presents the results of the six non-
free-text answers. The diagrams in the top row describe
meta-information about the participants: Among the 52
participants, 17 were from industry and 23 from research.
63% name Java as one of their primary programming
languages; 88% regard themselves as advanced or expert
Java programmers.

Nearly all of the participating developers think about or-
dering fields and methods when programming: 92% consider
this issue at least rarely, and still 55% frequently or always.
It is interesting to note that the percentage of developers
who always think about ordering is only 4% among the
non-expert Java developers, but 46% among the developers
who rate themselves as Java experts. But although people
seem to worry about the problem of ordering, automatic
ordering is not often applied—88% rarely or never use such
tool support. Considering the developers’ subjective opinion,
the ordering of fields and methods is rated as meaningful or
important by 87% of the participants. Nobody, however, goes
as far as naming the issue of ordering “crucial”.

We also asked the participants to describe their ordering
strategy and provided a free text form. Since we did not want
to bias the developers, we did not give any hints at ordering
strategies that could be used. We tagged the answers we
received using the five criteria that we already covered in
the empirical analysis. A described strategy is assigned to a
criterion if both are similar, not necessarily equal; in many
cases a strategy needed to be tagged with multiple criteria.

Figure 6 summarizes the tagged strategies. First of all,
we observe that each criterion was at least named by 6
participants—developers seem to be aware of the ordering
criteria we investigated. The most frequently addressed issue
(38% of participants) were categories similar to those in the

industry

research

education

hobby

Area of programming experience

0 10 20 30 40

17

23

9

3

java

no_java

none

Primary programming language(s)

0 10 20 30 40

33

16

3

expert

advanced

beginner

none

Java programming skills

0 10 20 30 40

13

33

4

2

always

frequently

rarely

never
experts
non−experts

Do you give thought to ordering fields and methods? ___

0 10 20 30 40

6

3

3

1

8

21

19

4

always

frequently

rarely

never

Do you use automatic ordering?

0 10 20 30 40

0

2

4

7

2

4

15

31

crucial

important

meaningful

irrelevant

Do you consider ordering of fields and methods as: __

0 10 20 30 40

0

5

6

2

18

27

7

Figure 5. Summary of the survey results; top row: questions providing meta-information on the participants; bottom row: questions on ordering methods
and fields (shaded bar: opinion of the participants rating themselves as Java experts).

no answer
other

semantic
method subcategory

lexicographic
visibility

conventions categories

Aggregated Ordering Strategies

0 5 10 15 20 25 30

6
25

16
17

6
13

20

Figure 6. An aggregated list of identified ordering strategies described by
the participants (multiple tags per participants possible).

Table II
ALTERNATIVE ORDERING STRATEGIES APPLIED.

Strategy Description

field data type group fields of the same type together
size prioritize methods by their size
override group overridden methods together
specialization group methods according to their degree of specialization
importance prioritize fields or methods by their importance

fields to accessors group fields and their respective accessors (getter/setter)
fields to methods group fields and methods that use the fields
call locality group methods that call each other together
internal–external group internally and externally used methods together
frequency of usage prioritize methods by the frequency of usage
declare before use sort methods so that the callee is declared before the caller
execution sequence sort methods in the order of execution

evolutionary group those entities together that are inserted together
authors group methods according to their authors

ignore do not order fields and methods

JCC, which matches our results from the empirical analy-
sis (Hypothesis 1). But also method subcategories (33%),
grouping by semantic (31%), and grouping by visibility
(25%) played a major role.

Beside the criteria we studied in detail, the participants
used a wealth of other criteria. Among the alternative
strategies, which are named by 25 participants, we identified
15 further unique criteria listed in Table II. Summarizing
these strategies, some people group fields and methods by
specific characteristics of the respective entity: the data

type, the size, the degree of specialization, the importance,
or whether a method overrides another. In most of the
alternative strategies, however, usage and call relationships
are important: fields and methods are grouped together
that use each other, external calls and their frequencies
are considered, or the execution sequence determines the
ordering. Moreover, criteria related to the evolution of the
system are named by some participants. Two developers,
however, explained that they do not apply a particular order,
but always use tools to find methods.

As a result of the survey, the applied strategies are far
from being consistent. In contrast, the empirical analysis
suggests that the JCC categories seem to be widely applied
in practice. A simple explanation for these seemingly con-
tradicting results, however, could be that the conventions
categories form a sort of consensus among the developers,
but the individual ordering criteria are much more complex
than just a weak grouping by category.

VI. THREATS TO VALIDITY

To discuss threats to validity, we distinguish conclusion
validity, internal validity, construct validity, and external
validity [12] .

Conclusion Validity—Is there a relationship between the
actual order of entities and the ordering criteria? We mea-
sure the percentages of classes that are strictly or partially
sorted or grouped according to the ordering criteria. But
there exists only a relationship if it can be rejected with
sufficient confidence that these numbers were a product of
chance. By taking only classes into account that consist of
at least ten relevant entities, an accidentally created strict
order is sufficiently unlikely. For estimating the percentage
of partially sorted or grouped classes, we took a conservative
approach and only count those confirmed as ordered in a
random experiment with an α-error of 5%.

Internal Validity—Is the observed relationship causal? A
high percentage of ordered classes does not proof that the
particular criterion was really applied—a different crite-

rion having similar effects could be responsible as well.
Analyzing the correlations, however, did not reveal any
strong dependencies between different groups of criteria.
Moreover, the criteria we studied in detail are mentioned
by a reasonable number of participants in the survey.

Construct Validity—Do we measure the constructs as
intended? We reflect the ordering criteria in the different
reference indices that we assign to the entities. For some
criteria like the JCC categories or the visibility, the assign-
ment is straightforward. But already for the lexicographic
ordering and the method subcategories, there could be dif-
ferent definitions—we tried to select common definitions.
Even more problematic is the semantic clustering, where
the assignment of semantic clusters can only be considered
a heuristic. Moreover, the sort and group metric may not
appropriately measure the degree of order.

External Validity—Are the results generalizable? The stud-
ied systems are partly representative as they span a wide set
of different project types, but are still all open source systems
written in Java. Since ordering fields and methods also
depends on language constructs and limitations as well as on
code conventions, our results of the empirical study cannot
be directly transfered to other programming languages. In
contrast, although we specifically asked for the degree of
experience in Java, the survey was not limited to Java
developers and provides a broader picture. The group of
participants, however, is selective and cannot be considered
representative for general software developers.

VII. CONCLUSION

The presented work is the first study on ordering fields and
methods. The results show that the main categories defined
in the Java Code Conventions (JCC) are widely implemented
in the studied software projects as a primary ordering crite-
rion. At the level of secondary ordering, however, the applied
criteria seem to be more diverse. Our results also revealed a
certain gap between the importance of the topic confirmed
by the survey and the diverse individual strategies applied
by developers. A first step towards closing this gap could be
to make developers more aware of this issue—development
environments may identify and highlight existing orders. The
next step would be to better support developers in applying
a certain ordering strategy, for instance, by providing semi-
automatic ordering tools.

Thus, in every culture, between the use of what
one might call the ordering codes and reflections
upon order itself, there is the pure experience of
order and of its modes of being.

—Michel Foucault: The Order of Things [13]

REFERENCES

[1] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian,
“Selecting empirical methods for software engineering re-
search guide to advanced empirical software engineering,” in
Guide to Advanced Empirical Software Engineering, F. Shull,
J. Singer, and D. I. K. Sjøberg, Eds. Springer London, 2008,
ch. 11, pp. 285–311.

[2] Sun Microsystems. (1999, April) Code conven-
tions for the JavaTM programming language. [On-
line]. Available: http://www.oracle.com/technetwork/java/
codeconventions-141855.html#1852

[3] S. Ducasse and M. Lanza, “The class blueprint: visually
supporting the understanding of glasses,” IEEE Transactions
on Software Engineering, vol. 31, no. 1, pp. 75–90, 2005.

[4] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship. Prentice Hall, 2008.

[5] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. Drucker, and G. Robertson, “Code thumbnails: Using
spatial memory to navigate source code,” in Proc. of the Sym-
posium on Visual Languages and Human-Centric Computing
VL/HCC. IEEE, 2006, pp. 11–18.

[6] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest
model for IDEs,” in Proc. of the International Conference
on Aspect-Oriented Software Development AOSD’05. ACM,
2005, pp. 159–168.

[7] M. Desmond and C. Exton, “An evaluation of the inline
source code exploration technique,” in Proc. of the Annual
Workshop of the Psychology of Programming Interest Group
PPIG’09, 2009.

[8] A. Kuhn, D. Erni, and O. Nierstrasz, “Embedding spatial
software visualization in the IDE: an exploratory study,”
in Proc. of the 5th International Symposium on Software
Visualization SOFTVIS’10. ACM, 2010, pp. 113–122.

[9] R. DeLine and K. Rowan, “Code canvas: zooming towards
better development environments,” in Proc. of the ACM/IEEE
International Conference on Software Engineering ICSE’10.
ACM, 2010, pp. 207–210 vol. 2.

[10] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Che-
ung, J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola,
Jr., “Code bubbles: rethinking the user interface paradigm
of integrated development environments,” in Proc. of the
ACM/IEEE International Conference on Software Engineer-
ing ICSE’10. ACM, 2010, pp. 455–464 vol. 1.

[11] A. Kuhn, S. Ducasse, and T. Girba, “Enriching Reverse
Engineering with Semantic Clustering,” in Proc. of the Work-
ing Conference on Reverse Engineering WCRE’05. IEEE
Computer Society, 2005, pp. 133–142.

[12] T. D. Cook and D. T. Campbell, Quasi-Experimentation:
Design & Analysis Issues for Field Settings. Houghton
Mifflin, 1979.

[13] M. Foucault, The Order of Things: An Archaeology of the
Human Sciences (originally published in French: Les mots et
les choses - une archologie des sciences humaines). Paris:
Gallimard, 1966.

http://www.oracle.com/technetwork/java/codeconventions-141855.html#1852
http://www.oracle.com/technetwork/java/codeconventions-141855.html#1852

	Introduction
	Ordering Approaches
	Explorative Analysis
	JCC Categories
	Visibility
	Lexicographic
	Method Subcategories
	Semantic Similarity

	Empirical Analysis
	Sort and Group Metric
	Partial Sorting and Grouping
	JCC Categories (Hypothesis 1)
	Visibility (Hypothesis 2)
	Lexicographic (Hypothesis 3)
	Method Subcategories (Hypothesis 4)
	Semantic (Hypothesis 5)
	Discussion

	Survey
	Threats to Validity
	Conclusion
	References

