The final version of this preprint appeared in the proceedings of

the 2014 IEEE International Conference on Software Maintenance and Evolution

(ICSME)

Code Tagging as a Social Game

Benjamin Biegel®, Fabian Beck?, Benedikt Lesch* and Stephan Diehl*
*University of Trier, Germany
Email: {biegel, diehl} @uni-trier.de
TVISUS, University of Stuttgart, Germany
Email: fabian.beck @visus.uni-stuttgart.de

Abstract—Keywords or tags summarize documents on an
abstract level and can also be used for describing code fragments.
They might be leveraged for retrieving features of a software
system, understanding program functionality, or providing ad-
ditional context. While automatic approaches at best are only
able to retrieve information that is already contained in the
source code, manual tagging could add valuable extra information
from qualified expertise of the developers. However, tagging
code is tedious. To make code tagging more fun, we introduce
a social gamification approach: developers independently tag
code fragments and are rewarded if their solutions conform
to the solution of other developers. We implemented the game
as a Facebook plug-in. A pilot user study suggests that the
game mechanics are motivating and promote the proposition of
reasonable tags.

I. INTRODUCTION

Code tags, for instance, meaningful keywords assigned to
each method, are valuable: tags can give a quick overview
of the code, tags might abstract and relate code to real-
world concepts, tags could help to come up with better
results for code search and feature location, tags may help
reveal hidden semantic relations of the code, or tags (if given
by others) could identify potential problems with respect
to program comprehension. There exist automatic solutions
for code tagging [1], [2], [3], [4]: the vocabulary used in
the code for identifiers and within comments is analyzed to
generate a list of keywords. However, these solutions can only
detect what is already in the code and cannot abstract and
evaluate the current implementation. For manual code tagging,
several tools already provide some support [5], [6], but do
not particularly motivate the developers in tagging the code or
do not address crowdsourcing. For other applications, such as
labeling images, games that allow collaborative tagging were
already successfully applied [7], [8].

In this paper, we transfer the idea of tagging games to
source code and suggest a social gamification approach to
crowdsource code tagging: Players are shown small code frag-
ments of software projects—here, methods of Java systems—
and are asked to enter descriptive tags for each fragment. Based
on previous answers of other players, they are rewarded if they
guessed the most popular previous tags. Through high-score
lists, in particular one showing the scores of their friends,
players are motivated to tag more code fragments and use
meaningful tags. We implemented a prototype Facebook plug-
in and tested it in a small user study. The results of this initial
evaluation are already partly reflected in the presented game
design.

II. RELATED WORK

Manually tagging code fragments can simply be done by
using comments in the source code. A more convenient way,
however, might be provided through tools that support and
standardize the tagging process: Storey et al. [5], [6] present a
tool called TagSEA that uses code tagging for collaboratively
defining waypoints and improving code navigation. When tags
for code fragments have been derived, they could also help in
many other applications, as De Lucia et al. [4] discuss: They
can be used to analyze change impact, to detect code clones,
to locate software features, to find semantic couplings of
artifacts, to measure software quality, or to retrieve traceability
links. Further, code tags can be used for building taxonomies
of software terms [9]. Not just code fragments, but also
other software artifacts might profit from being tagged by the
developers, for instance, work items [10], [11].

There exist automatic code summarization techniques that
retrieve a list of keywords for a code fragment from its source
code based on term frequency metrics [1], Latent Semantic
Indexing (LSI) [2], or Latent Dirichlet Allocation (LDA) [3]
De Lucia et al. [4] compared different automatic methods to
manual code tagging and found that simply deriving keywords
from class names, method signatures, and attribute names
comes closer to manual tagging than more complex methods
such as LSI or LDA. Xia et al. [12] suggest a technique
for recommending tags for items on Q&A pages like stack-
overflow.com. Moreover, there are methods that create natural
language text summaries of source code [13], [14], but that
goes beyond the scope of this paper because the task of writing
descriptions would require too much effort for the users in a
gamification approach like ours.

Deterding et al. [15] define gamification as “the use of
game design elements in non-game contexts”. Hamari et
al. [16] give a general overview of gamification and sum-
marize empirical evidence on its impact: most of the early
studies conducted so far show positive effects of gamification.
Gamification has already been used in some areas of software
engineering, for instance, by introducing individual and team
achievements into the software development process to reward
task completion [17], by counting and sharing numbers of
commits to encourage frequent, cohesive commits [18], or by
analyzing work patterns and rewarding desirable behavior [19].
Education scenarios have attracted particular attention where
gamification is used to foster learning and the application
of certain best practices [20], [21]. Coding environments
for children and beginners can be even designed as serious
games [22].

diehl_2
Schreibmaschine
The final version of this preprint appeared in the proceedings of
the 2014 IEEE International Conference on Software Maintenance and Evolution (ICSME)

Besides these gamified software engineering scenarios,
we are, however, not aware of any gamification approach
that specifically targets code tagging. But beyond applications
in software engineering, tagging games have been explored
for entities such as images [7], [8], places [23], or movie
soundtracks [24]. Ahn and Dabbish [7] introduce a game
design where pairs of players are rewarded if they suggest the
same tags for an image; a similar design is chosen by Goh et
al. [8]. In our approach, we also reward guessing the same tags
but do not assume that pairs of users play at the same time.
Instead, we use asynchronous interaction and particularly focus
on the friends of a player.

III. CODE TAGGING GAME

The key idea behind our approach is to apply social
game mechanics to code tagging. Keywords or catchphrases
respectively are used to characterize a particular source code
fragment (e.g., a method). In order to encourage developers
to produce qualitative code tags, we make use of two core
strategies: First, in the form of points, developers get rewarded
for contributing code tags. Second, by connecting the game
to a social network, tagging becomes a collaborative game.
Since the points of all players are permanently visible on a
high-score list, developers could be motivated to compete with
each other and thus might be drawn to playing the game more
regularly. Most frequently posted common tags for a specific
code fragment yield the highest scores. Since tags are added
only by the players and consent is rewarded, this approach
ensures certain tag quality.

This section describes the game concept that we developed
based on a prototype implementation. This implementation was
realized as a Facebook plug-in; the Facebook API offered all
the functionality we required for the social networking aspects
of the game. Please note that—to reflect the insights gained
from an early user evaluation reported in Section IV—the
concept discussed in the following goes beyond our prototype
implementation. Although the illustrating figures shown are
close to the evaluated user interface, they already reflect
the later extensions. Also, the visual appearance of the user
interface has been re-designed and optimized, but has not yet
been actually implemented in the plug-in. In our examples
and implementation, we focused on tagging methods of Java
systems, but the concept can be easily transfered to other
programming languages and pieces of code. A limiting factor,
however, would be that the amount of source code presented is
graspable in a short period of time. To express the generality of
the approach, we use the term code fragment in the following
to identify those pieces of source code.

A. Basic Game Mechanics

The basic game mechanics are inspired by the well-known
game show format Family Feud, in which points are rewarded
for naming the most popular responses given by 100 people
asked before the show. Similar to this concept, for each code
fragment, the code tagging game holds a top ten list of
previously most posted tags. A player gets points for posting
a tag that is already in this list. The higher the tags in the top
ten list, the more points are rewarded to the player. Hence,
tags are not auto-generated but added by players who tagged
a specific code fragment before.

CURRENT PROJECT

HEK
JFTP

Highscore

. Patrick
7050

2. David

Benedikt
5750
11 code fragments today
37 tags today
6780
3. Benedikt
5750
4. Rainer

4050
5. Fabian
3950

6. Jessi
2040

7. Hubert
1500

8. Samoht
670

9. Fabrice
630

10. Mario
600

w i)

Friends

.

Patrick Rainer Fabian Samoht Fabrice
7050 4050 3950 670 630

Fig. 1. Project selection screen displaying a project-wide high-score list
(right), a friends high-score list (bottom), and player information (top left).

As this concept relies on tags given by others, we have
to handle code fragments that have not yet received a con-
siderable number of answers differently: Players get a small
amount of points immediately for each new tag and, when
enough players have tagged the code fragment, in addition,
they receive the usual points. Thus, the high-score list is
updated in retrospective.

All in all, for the players the goal of the game is guessing
the most popular tags of given code fragments and eventually
beating colleagues by getting on top of the high-score list. As
an intended side-effect, on the other hand, the game yields
tags for real code fragments that are contributed manually by
human experts. At startup, players select a software project
they are interested in to play against people that have selected
the same project before.

B. Social Game Aspects

Competing with other players motivates to play the game
regularly. As can be seen in Figure 1 (right), a high-score list
shows the scores of all players for a selected software project.
This is a popular and effective strategy to encourage players
to compete. As in other social games, this effect is amplified
by having friends as opponents: an additional friends high-
score list (Figure 1, bottom) is provided. This list contains
all friends that have already tagged any code fragment in the
current project ordered by their scores. Information about the
players themselves is displayed in the upper left corner. This
enables the players to compare their scores directly with those
of their friends and other players. Furthermore, friends can be
invited by clicking on a button in the top right part of the
screen, which opens a dialog with a list of friends that are
selectable for invitation.

C. Tagging

After selecting a specific software project that should be
subject of tagging, the actual game takes place in the code
tagging screen. As shown in Figure 2, a code fragment drawn

Benedikt

11 code fragments today
37 tags today

5750 CURRENT PROJECT

Algorithms

HEN

Tag this code Proposed Tags
int [] bucket=new int[maxVal+1]; A [|

% sorting

. . . . bucket

for (int i=0; i<bucket.length; i++){ zlﬁfes

bucket[i]=0;
}

for (int i=0; i<a.length
bucket[a[i]]++;

i++){

Rainer

Patrick
7050 4050

LN L)
"Nma

Samoht
670

Fig. 2. Code tagging screen displaying a source code fragment (left), the player’s tag list (right), and the friends high-score list (bottom).

from the project is displayed (left) and the player is asked to
propose code tags (right). In order to keep the player from
adding too many tags, the overall amount of tags is limited
to ten. Thus, the players are forced only proposing tags of
which they are convinced that they are also proposed by other
players. A minimum number, however, is not required, thus
the players are allowed to finish the current code fragment at
any time. Already added tags can be removed again. Only tags
are finally considered as the answer that are in the list after
clicking done.

D. Selecting Code Fragments

Our social tagging game is intended to fulfill both being
fun for players and producing high-quality tags for many
code fragments. An initial idea was simply selecting the next
candidate out of all code fragments randomly. But as already
discussed above, before a top ten list for a specific code
fragment can be generated, the fragment has to be tagged by
some of the players; only then, the players can be rewarded
with points. Since points are an important motivating factor, the
game should reward players as soon as possible. Hence, code
fragments that already received some tags should be preferred
over yet untagged fragments in the selection process.

In our tagging game, a code fragment can have four
different states:

1) untagged fragments have not yet been tagged by any
player,

2) started fragments were seen by at least one player but
still not enough to generate a top ten list (< x players),

3) incomplete fragments have already a top ten list because
at least = players has tagged it, and

4) complete fragments are already sufficiently tagged by y
players (z < y).

Based on those states, we suggest the following rules for
selecting the next code fragment:

(1) players can only tag fragments they have never played
before,

(ii) every n'™ selection is a started fragment or, if none is
available, an untagged fragment,

(iii) every other selection is an incomplete fragment,

(iv) every selection is made randomly among all valid candi-
dates,

(v) aselection is skipped if no valid fragment is available and
the game ends for a player after n subsequently skipped
fragments.

As a consequence, complete fragments will never be se-
lected again. When a player has tagged all fragments of a
project, the game naturally ends; at latest, the game is over for
all players with respect to a certain project when all fragments
are complete. The selection approach is a balanced trade-off
to enable both competing with other players and receiving a
sufficient amount of tags for as many code fragments as pos-
sible. Parameters z, y and n are customizable; a good default
setting needs to be identified in user studies or simulation runs
of the game.

YOUR SCORE

. +0 ™4
2, +90 [A

3. directory +80
+0
+0
+0
+0
+0
+0
+0

New Tags Bonus +0

170 Points

Fig. 3. Score board dialog similar to the score board in Family Feud with
profile pictures of friends who also named tags in the top ten list.

E. Scoring

After proposing tags to a specific code fragment, a dialog
with the score board is displayed (Figure 3). Similar to the
score board in Family Feud, only tags are revealed that are
proposed by the player. Furthermore, profile pictures of friends
are displayed besides the tags they have named. According
to the scoring scheme we are suggesting, a player will be
rewarded with 100 points if the most popular tag on top of the
list was named, and 10 points less for each subsequent tag. If a
code fragment has no top ten list yet (i.e., not enough players
have tagged the fragment), a player earns 10 bonus points for
each contributed tag. After creating the top ten list for a code
fragment for the first time, all players who tagged the fragment
before will be rewarded retrospectively as following the regular
scheme described above.

IV. EVALUATION

After implementing a first prototype of the game, we
performed a user study testing the game mechanics. The
insights gained from the study are already reflected in the
game design described above. Hence, the user study can be
considered a formative evaluation being looped back into
the development process—a summative evaluation producing
concluding evidence has not yet been conducted. For the study,
we asked 12 students in computer science (2 Bachelor, 8
Master, and 2 PhD students; 2 of them being authors of this
paper) to play the social tagging game within a given time
frame of a week. In contrast to the concept described above,
we still used a simpler code fragment selection strategy: all
players tagged the code fragments, regardless of their state, in
the same order. The code fragments were randomly selected
methods from the Java FTP client JFzp (version 1.0).

In total, 838 tags were used to describe 72 code fragments.
Per fragment, each participant usually submitted between two
and five tags, whereas at least one tag was also named by
another player. We found that the code fragments were tagged
on different levels of detail. On one hand, words of the code

fragment itself, like Java keywords as well as identifier names,
were used directly as tags. On the other hand, the current
vocabulary was extended by using completely new words that
reflect implemented concepts on a more abstract level (e.g.,
getter/setter, method, and loop). Most participants, however,
reported that they felt uncomfortable in just copying words
from the code fragment. Moreover, they had problems in
finding reasonable tags that offer additional information to
the given code fragments. At this point, perhaps it would
be easier for the participants to see an application scenario
first, where the proposed tags might be used (e.g., code search
or documentation). More context might need to be provided,
for instance, by making the surrounding code or additional
documentation available.

We also found similar (and synonymous) tags that were
treated as individual tags. Thus, it would be beneficial to
merge similar tags, e.g., by using stemming, string metrics
or a thesaurus. Another open issue, that we experienced, is to
find suitable code fragments for the game at all. Not every
fragment is interesting enough to be included in the tagging
game and others are too complicated and cannot be sufficiently
understood without providing a wider context. Nevertheless, an
automatic approach for selecting and extracting code fragments
is not required. If the social tagging game will be used,
e.g., within a software project, it could be more beneficial to
manually select code fragments (e.g., by developers) that have
to be tagged next and also merge similar tags together by semi-
automatic approaches. Moreover, the simpler code fragment
selection strategy showed some weaknesses, in particular, for
the players who tagged the most fragments so far: when they
proceeded with the game, they only could tag yet untagged
fragments and had to wait for others to receive their final points
for these. The suggested, more sophisticated selection strategy
discussed above circumvents the problem by distributing the
introduction of new fragments to the game better among all
players.

In the end, the study shows that the competitive envi-
ronment worked well for motivating the participants, and
especially that game elements also seem to be applicable for
tagging tasks. About half of the participants played the game
until they have reached the top of the high-score list at least
once. In the coffee breaks, some participants proudly reported
their current score and continued to challenge each other.
Within one week, each participant contributed about 70 tags
on average and read at least 36 code fragments of an external
software project. Everything was done on a voluntary basis
without stipulating the amount of working hours participants
should invest in the study.

V. CONCLUSION

We presented a gamification approach for tagging source
code fragments—here, methods of Java systems. Being under-
stood as a social game, the approach rewards users if they
suggest the same tags that others have already suggested.
Thereby, the game mechanics foster conforming tags and
quickly lead to reasonable descriptions of the code fragments.
We implemented the approach as a Facebook plug-in and
performed an initial evaluation.

The user study showed that the approach works in general
and motivates participants in tagging code. While the tested

prototype implementation had certain limitations, the improved
game design presented in this paper already partly addresses
them (e.g., a better code fragment selection strategy); other is-
sues stay open research questions, such as how to provide more
context to allow players to come up with better code tags. The
conducted study can only be considered an early, lightweight
form of evaluation. Further evaluation will need to follow to
find whether the suggested gamification approach outperforms
previous manual and automatic solutions. Moreover, there are
different variables and components of the approach that could
be altered and tested: in particular, other scoring schemes or
selection rules might improve the game; also, other gaming
modes—for example, playing against a single other person or
different levels of difficulty—could be explored.

We expect that the approach would be beneficial for open
source projects where code tagging can be outsourced to
non-core developers, for companies where the game can be
used as part of the onboarding process of new developers, or
for people teaching software development who can motivate
students to read and understand real code. Furthermore, it
would be interesting to extend the approach towards quality
management: an atypical mismatch of tags could point to
issues in program readability or players can be encouraged
to use specific tags to indicate refactoring opportunities.

REFERENCES

[1] M. Ohba and K. Gondow, “Toward mining concept keywords from
identifiers in large software projects,” in Proceedings of the 2005
International Workshop on Mining Software Repositories, ser. MSR.
ACM, 2005, pp. 1-5.

[2] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program compre-
hension with source code summarization,” in Proceedings of the 32nd
International Conference on Software Engineering, ser. ICSE, vol. 2.
IEEE, 2010, pp. 223-226.

[3] P.FE Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A theory
of aspects as latent topics,” in Proceedings of the 23rd ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages and
Applications, ser. OOPSLA. ACM, 2008, pp. 543-562.

[4] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using IR methods for labeling source code artifacts: Is it worthwhile?”
in Proceedings of the 20th International Conference on Program
Comprehension, ser. ICPC. 1EEE, 2012, pp. 193-202.

[5] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development,”
in Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work, ser. CSCW. ACM, 2006, pp. 195-198.

[6] M.-A. Storey, L.-T. Cheng, J. Singer, M. Muller, D. Myers, and
J. Ryall, “How programmers can turn comments into waypoints for
code navigation,” in Proceedings of the IEEE International Conference
on Software Maintenance, ser. ICSM. IEEE, 2007, pp. 265-274.

[71 L. Von Ahn and L. Dabbish, “Labeling images with a computer
game,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI. ACM, 2004, pp. 319-326.

[8] D. H. Goh and C. S. Lee, “Perceptions, quality and motivational needs
in image tagging human computation games,” Journal of Information
Science, vol. 37, no. 5, pp. 515-531, 2011.

[9]1 S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software
terms and their taxonomy by leveraging collaborative tagging,” in
Proceedings of the 28th IEEE International Conference on Software
Maintenance, ser. ICSM. 1EEE, 2012, pp. 604-607.

[10] C. Treude and M. Storey, “How tagging helps bridge the gap between
social and technical aspects in software development,” in Proceedings of
the 31st International Conference on Software Engineering, ser. ICSE.
IEEE, 2009, pp. 12-22.

[11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

——, “Work item tagging: Communicating concerns in collaborative
software development,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 19-34, 2012.

X. Xia, D. Lo, X. Wang, and B. Zhou, “Tag recommendation in software
information sites,” in Proceedings of the 10th Working Conference on
Mining Software Repositories, ser. MSR. IEEE, 2013, pp. 287-296.

P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension, ser.
ICPC. ACM, 2014, pp. 279-290.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for Java
classes,” in Proceedings of the IEEE 21st International Conference on
Program Comprehension, ser. ICPC. IEEE, 2013, pp. 23-32.

S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: defining gamification,” in Proceedings of the
15th International Academic MindTrek Conference: Envisioning Future
Media Environments, ser. MindTrek. ACM, 2011, pp. 9-15.

J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?-a
literature review of empirical studies on gamification,” in Proceedings
of the 47th Hawaii International Conference on System Sciences, ser.
HICSS. IEEE, 2014, pp. 3025-3034.

E. B. Passos, D. B. Medeiros, P. A. Neto, and E. W. G. Clua,
“Turning real-world software development into a game,” in Proceedings
of the Brazilian Symposium on Games and Digital Entertainment, ser.
SBGAMES. IEEE, 2011, pp. 260-269.

L. Singer and K. Schneider, “It was a bit of a race: Gamification of
version control,” in Proceedings of the 2nd International Workshop on
Games and Software Engineering, ser. GAS. 1EEE, 2012, pp. 5-8.

W. Snipes, V. Augustine, A. R. Nair, and E. Murphy-Hill, “Towards
recognizing and rewarding efficient developer work patterns,” in Pro-
ceedings of the 2013 International Conference on Software Engineering,
ser. ICSE. IEEE, 2013, pp. 1277-1280.

D. J. Dubois and G. Tamburrelli, “Understanding gamification mecha-
nisms for software development,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. FSE. ACM,
2013, pp. 659-662.

S. Sheth, J. Bell, and G. Kaiser, “A competitive-collaborative approach
for introducing software engineering in a CS2 class,” in Proceedings of
the 26th Conference on Software Engineering Education and Training,
ser. CSEE&T. 1EEE, 2013, pp. 41-50.

N. Tillmann, J. De Halleux, T. Xie, S. Gulwani, and J. Bishop,
“Teaching and learning programming and software engineering via in-
teractive gaming,” in Proceedings of the 35th International Conference
on Software Engineering, ser. ICSE. IEEE, 2013, pp. 1117-1126.

J. Goncalves, S. Hosio, D. Ferreira, and V. Kostakos, “Game of
words: Tagging places through crowdsourcing on public displays,” in
Proceedings of the ACM Conference on Designing Interactive Systems,
ser. DIS. to appear, 2014.

J. Gomes, T. Chambel, and T. Langlois, “SoundsLike: movies sound-
track browsing and labeling based on relevance feedback and gamifica-
tion,” in Proceedings of the 11th European Conference on Interactive
TV and Video, ser. EuroITV. ACM, 2013, pp. 59-62.

