
InfoVis Poster, VisWeek 2011

Edge Bundling without Reducing the Source to Target Traceability
Fabian Beck∗ Martin Puppe Patrick Braun Michael Burch† Stephan Diehl‡

University of Trier and VISUS, University of Stuttgart, Germany

Figure 1: Two variants of the traceable edge bundling approach applied to the class dependencies of the JFtp project.

ABSTRACT

Bundling edges improves the readability of graph visualizations by
grouping similar edges together. We propose and explore an edge
bundling approach that is less invasive than existing approaches and
preserves the traceability of edges. Bundling is restricted to edges
that start or end at the same node. The approach is applicable to
directed graphs in an arbitrary node layout.

1 INTRODUCTION

Drawing edges in a graph is like travelling. A person, Alice, travel-
ling from X to Y metaphorically represents an edge connecting the
nodes X and Y. If another person, Bob, wants to travel in a similar
direction—from X’ near X to Y’ near Y— Alice and Bob may travel
parts of their way together, for instance, in the same train. This is
probably more economical like it is often more economical to bun-
dle edges in a graph to reduce visual clutter. But the problem here
is, when Alice, Bob, and a bunch of other people are deboarding the
train, we usually cannot retrieve where they were originally com-
ing from—from X, X’, or another location near X? Edge bundling,
hence, often obscures the exact starting point of an edge but only

∗e-mail: beckf@uni-trier.de
†e-mail: michael.burch@visus.uni-stuttgart.de
‡e-mail: diehl@uni-trier.de

provides rough directions. In this paper, we explore a less invasive
edge bundling approach that allows retrieving the exact source and
target of each edge. Metaphorically speaking, Alice and Bob only
share transport if they begin their journey at the same starting point
or head towards the same destination.

In general, edge bundling approaches use simplified structures to
route the edges of a graph. For instance, Holten [2] uses a global
hierarchy to determine how to group the edges into bundles; Cui et
al. [1] propose to route the edges along a mesh structure. These ap-
proaches have in common that they bundle edges of various sources
or targets. As metaphorically reported, the problem of such an ap-
proach is that the route of single edges, especially its exact source
and target, usually cannot be retrieved. The bundling approach that
we will present in the following is more related to drawing flow
maps [3].

2 EDGE BUNDLING TECHNIQUE

The idea of our approach is to only bundle edges that have the same
source or the same target. Similar to the flow map approach by Phan
et al. [3], we use hierarchies to determine the bundling. We will
present two edge bundling variants. While the first variant requires
a radial node layout, the second variant can handle arbitrary layouts.

The graph that we use as an example is the dependency structure
between the classes of a small software system (JFtp, written in
Java, 78 classes). In such a system, the package structure provides
a natural hierarchy on the nodes. Figure 1 shows the data set in
two layouts resulting from the two variants of the approach. The
package structure is visualized as the color of the nodes.

 B

 A

a1

a2

b1

b2

x

Figure 2: Descriptive example of how to create a bundle of the out-
going edges of a node x in a radial layout.

2.1 Radial Layout
A simple, but quite effective layout for graphs is a radial layout
where the nodes are linearly arranged on the circumference of a
circle. The first variant of our bundling approach requires such a
layout and assumes that there exists a global hierarchical structure
on the graph nodes. If such a hierarchy is not provided, it can be
easily computed by hierarchically clustering the nodes.

The bundling algorithm first bundles the outgoing edges. For
each node x, all outgoing edges are bundled like it is illustrated in
Figure 2: In this example, node x is connected to four other nodes,
a1, a2, b1, and b2. The hierarchical structure of the target nodes,
consisting of elements A and B, is now mirrored into the bundle.
In Figure 2, the bundle splits into two smaller bundles, one for hi-
erarchy element A, one for hierarchy element B. These subbundles
are then themselves split according to the contained elements. A
bundle of edges always points to the barycenter of its target nodes
(black dots in Figure 2). The lines are, however, not completed but
stop at a certain fraction of the total distance—dashed lines are not
visible in the final visualization.

The bundle of outgoing edges forms a small tree diagram for
each node. Drawing these bundles is repeated for the incoming
edges of each node. Finally, each node has two tree bundles, one for
outgoing edges and one for incoming edges. The loose ends of these
trees just need to be connected according to the graph structure to
complete the diagram.

We use curved lines to make the edges easier to trace. The thick-
ness of the line grows logarithmically with the number of the bun-
dled edges. To underline the origin of the edges we use the color
of the starting node as the color of the lines. This is, however, only
possible for bundled outgoing edges, where all edges have the same
origin. Thus, for the bundles of the incoming edges, which poten-
tially summarize edges from different sources, we switch to neutral
grey line colors. To avoid links overlapping nodes, we furthermore
moved all split points somewhat to the center of the diagram.

2.2 Arbitrary Layouts
When switching from radial node layouts to arbitrary layouts, it is
no longer justified to start with a single bundle because the target
nodes may be scattered all around the diagram. In an arbitrary lay-
out, the nodes of the same part of the hierarchy are not necessarily
placed next to each other. Adapting the hierarchy so that this con-
straint becomes valid again, however, does not solve the problem: If
a node is placed in the center of the elements of the same part of the
hierarchy, targets in this part are still placed in different directions.
Hence, we replaced the global hierarchy through node specific hi-
erarchies depending on the geometric positions of the target nodes.

A resulting bundling is depicted in Figure 1 (right) for the JFtp
data set. In this example, the node layout is created manually. But
since the bundling approach works on arbitrary layouts, also any
automatic algorithm could have been applied to compute the node
positions.

The basic idea for the second bundling variant is that we define
a maximum constraining the angle between two target nodes be-
longing to a bundle. Hence, the bundle is split at the point where
this maximum value is reached. The process starts at the source
node with all target nodes assigned to one bundle. At this point, the
angle between two arbitrary targets in one bundle is often already
above the maximum angle. Consequently, the bundle will be split
directly at the source node until the constraint is valid again. In each
splitting step, we split the set of targets at the largest angle of two
neighboring targets (neighboring from the perspective of the source
node). For each of the resulting bundles, we recursively compute
the next splitting point:

1. For each pair of targets included in the bundle, compute the
two points where the angle between the two targets is equal to
the maximum angle. These two points are intersection points
of a line from the starting point to the barycenter of the two
targets and of a circle through the two targets. The radius of
the circle is determined by R = AB

2sinγ
, with AB being the dis-

tance between the targets A and B, and γ being the maximum
angle.

2. The point among these candidates that is closest to the starting
point becomes the next split point of the bundle. The bundle
is split into two subbundles. Again the largest angle between
two neighboring targets determines the partition of the targets.

3. Recursively continue to compute the next split point for each
of the subbundles, now with the current split point as the start-
ing point. The recursion stops when a bundle has only a single
target.

Like in the radial layout, the split points are finally connected by
curves. Color and strength of the lines can still be used to visualize
the origin of a bundle and the number of aggregated targets.

3 DISCUSSION

In contrast to the hierarchy-based flow map layout of Phan et al. [3],
our work focuses on displaying relational information for many
nodes instead of visualizing the flow relation of a single source
or a small set of sources. The two algorithms that we proposed
seem to be simpler to implement. New aspects of our work are
the concurrent bundling of outgoing and incoming edges and the
geometry-based bundling algorithm in arbitrary layouts.

Comparing the introduced bundling approach to other bundling
approaches, we observe that the effect of reducing visual clutter is
less. But though bundled, source and target of a particular edge can
still be retrieved, which seems to be harder in other bundling ap-
proaches. These observations are, however, not empirically tested.
A thorough evaluation will be a major part of our future work.

4 CONCLUSION

We introduced an edge bundling approach that focuses on the trace-
ability of edges. We see its main advantage in its reduced invasive-
ness: Source and target are not obscured while reducing the visual
complexity of the diagram.

REFERENCES

[1] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge
clustering for graph visualization. IEEE Transactions on Visualization
and Computer Graphics, 14:1277–1284, 2008.

[2] D. Holten. Hierarchical edge bundles: Visualization of adjacency re-
lations in hierarchical data. IEEE Transactions on Visualization and
Computer Graphics, 12(5):741–748, 2006.

[3] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow map
layout. In INFOVIS ’05: Proceedings of the 2005 IEEE Symposium on
Information Visualization, Washington, DC, USA, 2005. IEEE Com-
puter Society.

