
Towards Lean and Open Multi-User Technologies

Stephan Diehl

FB 14 - Informatik, Universität des Saarlandes,
Postfach 15 11 50, 66041 Saarbrücken, GERMANY,

Tel.: 0681-302-3915, Fax: 0681-302-3065
Email: diehl@cs.uni-sb.de

WWW: http://www.cs.uni-sb.de/

Abstract

The standardization of the Virtual Realit y Modeling
Language and its APIs paves the way for platform
independent, open standards based implementations of
distributed, virtual worlds. After a discussion of key
requirements of those and an overview of how the
underlying technology moved from proprietary to open
standards, we describe our implementation which is based
on CORBA, Java and VRML and comment on how open
these languages are. Finall y, by exploiting CORBA
services as far as possible it is our goal to get a lean multi -
user technology, which can be loaded over the internet.

1. Introduction

One of the key features which lead to the success of the
internet was its openess. Its development was not governed
by a company and it was possible for everyone to
contribute by submitting proposals to one of the internet
task forces. Later on other areas in computer technology
tried to copy this process, e.g. the W3 Consortium or the
VRML Consortium were founded to foster and coordinate
the development of their respective technologies. There is
an increasing awareness that a few big companies have the
power to establi sh poor standards by their huge, dependent
customer base. As a consequence, smaller or less successful
companies try to survive by forming consortia or
organizations to develop common, non-proprietary
standards. In this article we will describe a similar
observation for multi -user worlds and show how multi -user
worlds can be implemented with existing (almost) open
standards.

1.1 Virtual Worlds and VRML

Virtual worlds are computer-based models of three-
dimensional spaces and objects with restricted interaction.
A user can move through a virtual world and interact with
those objects in various ways. VRML [8,9] is a file format

for the specification of such spaces and objects. A VRML
file defines a scene graph, by traversing the graph the
renderer  (i.e. the algorithm which draws the scene onto
the screen) computes the appearance, geometry, position
and orientation of each object in the scene. VRML was
designed to be platform independent and extensible, and it
should work with low-bandwidth connections. The major
difference to other 3D-file formats is its use of  URLs to
include spaces and objects over the WWW. At the first
WWW conference in spring 1994 a working group on
virtual realit y interfaces for the WWW agreed that there
was a need for a 3D-file format with hyperlinks. Based on
Sili con Graphics Open Inventor, Mark Pesce designed
version 1.0 of the Virtual Reality Markup Language, which
was later renamed into Virtual Reality Modeling
Language. In VRML 1.0 one could only specify static
scenes. Interaction was restricted to cli cking at hyperlinks.
At SigGraph’96 VRML 2.0 was introduced extending the
previous standard in various ways including behaviors.
Today VRML is broadly used in the virtual realit y
community and more and more establi shed 3D systems use
VRML as a file format to export and import models. In this
paper we only consider VRML-based virtual realit y
browsers. There are other virtual realit y browser li ke SVR
or Viscape, but they are of minor importance with respect
to the internet.

1.2 Multi-User Worlds

A multi-user world is a virtual world, where several users
can interact at the same time. These users work at different
computers which are interconnected. In multi -user worlds
the avatar plays a central role. An avatar is the virtual
representation of a  user. It is put at the viewpoint of the
user, i.e., the position in the virtual world from which he
looks at the scene. In a single-user world the avatar is only
used to detect colli sion of the user and those objects in the
scene. In a multi -user world the avatar is also the visual
representation of the user, i.e. it determines how the user is
seen by other users. If a user moves his viewpoint, his
avatar must also move in the views of the others users. The
WWW changed our way to perceive the internet and its

In Proceedings of the International Symposium on Internet Technology ISIT‘98, Taipei, Taiwan, 1998



services. They are brought to us as a cross-referenced book
and we browse through its pages. Multi -user worlds have
the potential to change our view again. They provide us
with a new metaphor for the internet, its services and its
inhabitants (the users). They become objects in space and
for fast access the user can tunnel from one point in space
to another. One of the major design goals of VRML was to
allow for multiple users to act in a virtual world at the
same time. So far this goal was not achieved and there is
no standard for interaction of several users in a virtual
world.

1.3 Requirements

A VRML-browser usually allows two primiti ve network
operations: hyperlinks and inclusion of media stored on
different servers in the network. We use the term multi-
user technology (MUTech) for all aspects of network
communication in multi -user worlds, which are not
provided by the VRML-browser. Essential requirements of
MUTechs are li sted below, see also [1,2].

• Adding and Removing Objects
If  a user enters or leaves the world, or if he adds or
removes an object, these changes must be performed in
the views of all users. Users and objects must be
registered, certain objects might be owned by certain
users.

• Propagation of Changes from Program- and User-
Controlled Objects                                     
If an object changes its position, orientation or its state
in some other way, its new state must be the same in
the views of all users. Users may have different rights
to change objects.

• Streaming (Text, Audio, Video)
Real-time audio- and video-transmissions, similar to
those in phone- and video-conferences, should ease
communication among users.

2. Existing Systems

Now we look at different ways to implement multi -user
worlds on the internet. We will focus on what languages,
interfaces or protocols are used in these implementations.

In the first generation of VRML-based multi -user worlds
the different MUTechs were integrated into the browsers of
several software companies. VRML was extended by
proprietary constructs (node types). Furthermore a
proprietary C, C++ or Java API was used to program
applications for the multi -users system. Neither the
interface between the MUTech and the browser, nor the
protocol for inter-browser communication was publicly
accessible (Sony’s CyberPassage, Blaxxun’s
CyberSockets). In a first step several companies agreed on

an API called Open Community, which was originall y
developed at Mitsubishi Electric Research Lab (MERL).

Proprietary Multi-User Worlds

VRML-Browser

MUTech
multi-user
technology

Internet

The Living Worlds working group of the VRML
Consortium is developing a VRML extension, i.e., a set of
new node types designed to encapsulate proprietary or open
MUTechs. The VRML-browser and MUTech are supposed
to communicate only through these nodes.

After some proprietary solutions for applet-browser
communication, e.g. using LiveConnect and Netscape’s
Live3D-Plugin [3,10], a working group of the VRML
Consortium created a standardized interface called EAI.

EAI-based Multi -User Worlds

VRML-Browser

Java-Applet
  provides
  MUTech

Internet

EAI

TCP
UDP

With the External Authoring Interface (EAI) it is possible,
that an applet in a usual web-browser can access the scene
graph of an embedded VRML-browser (as a plugin). Thus
instead of using a special-purpose multi -user browser with
integrated MUTech, we can now implement a MUTech as
a Java-applet in a Java-enabled browser. Such an
implementation is described in [1]. It uses two ad hoc wire-
protocols (application layer). One is for registering users
and objects, and it works on top of  TCP. The other is used



for streaming changes of objects (movements, rotations)
and for text chat, and it works as a modified Real Time
Protocol (RTP) on top of UDP.

3. A CORBA-based Approach

CORBA is an architecture for distributed objects in
heterogeneous networks and allows objects to mutually
access their services. The services provided by an object
are specified as interface definitions in the language IDL.
These specifications are helpful for the programmer, but
also for other objects (dynamic invocation). In the CORBA
architecture objects can be implemented in different
languages. Above that CORBA offers a variety of services
for distributed systems.

A closer look at the MUTech source code in [1] reveals
that it contains a lot of administration tasks, which are
already provided and more eff iciently implemented as
services in CORBA. Moreover, if we consider other
requirements, which are not covered in [1], e.g. time,
security, persistence, then the question arises whether it
would be more advantageous to use CORBA. A similar,
but more extensive approach is currently pursued in the
TeleVirtual Realit y (TVR) project at Syracuse University
and IBM J.C. Watson Research Center.

CORBA-based Multi -User Worlds

VRML-Browser

Java-Applet
   provides
   MUTech

Internet

EAI

UDP
RTP

ORB

IIOP

for streaming

As in the previous case the VRML-Browser and the applet
communicate via the EAI. Though, for the transmission of
time-uncriti cal messages among browsers we now use
CORBA/IIOP. These browsers now communicate through
an Object Request Broker (ORB). The programmer does no
longer send messages to other hosts, but call s methods of
objects, which actuall y exist at other hosts and that is
where the methods get executed. For streaming of text,
audio and video IIOP is to slow, as it works on top of TCP.
In these cases one might use RTP or another UDP-based
protocol.

4. Implementation

Our final goal is a lean implementation of a MUTech,
which exploits CORBA services as far as possible. E.g.,
our current implementation could be simpli fied by using
the CORBA Event Service. Here, by „simpli fied“ we mean
that the source code gets shorter, but it employs more and
more complex mechanisms of  CORBA. Such a lean
implementation could be adapted or optimized for different
applications, furthermore as our MUTech is implemented
as an applet, every additional li ne of code means that the
user has to wait longer for the multi -user world to start up.

Security in Java-enabled browsers restricts applets to only
open connections to the host from which the applet was
loaded. For this reason all MUTEchs, which are
implemented as applets, use a central server. If we could
bypass these security restrictions, and this is possible in
Netscape’s Communicator by virtue of the
netscape.security.PrivilegeManager class,
then we could allow direct browser-to-browser
communication. For scaleable multi -user worlds with
thousands of users this would be a big advantage - just
CORBA’s Naming Service might remain centrali zed. For
the above mentioned reason also our implementation uses a
central server.

4.1 The Protocol

The protocol between clients and this server is specified by
interface definitions in CORBA’s interface definition
language (IDL). An interface is a set of signatures. A
signature consists of the method name, its arguments and
their types as well as the method’s result type. The protocol
can be extended by interface inheritance which the reader
might know from Java. Via CORBA’s interface
repositories and dynamic invocation it should also be
possible for two different MUTechs to detect their common
methods and cooperate by only using these.

module MUTech
{ enum CommandType { changePosition,
                     changeOrientation,
                     ... };
  struct Command { CommandType type;
                   long id;
                   float x, y, z, angle;
                   ...  };
  struct CommandListContainer {
          sequence< Command > commands; };
  interface MUTechCentral {
   string getInitialWorld();
   CommandListContainer
      getUpdates(in long id);
   void sendUpdate(in Command c,in long
id);
   ...
   };
};



4.2 The Client

The client, i.e., the applet, accesses the MUTechCentral
server via a stub, i.e. a special CORBA object. The stub
takes care of the methods being executed by the related
MUTechCentral object on the server. For this purpose
the stub call s the clients ORB. The ORB marshals the
arguments in the method call and sends them to the
server’s ORB, the server’s  ORB unmarshals the
arguments, invokes the method of the object, marshals the
result and sends it to the client’s ORB, which unmarshals
the result and returns it to the stub.

For an object to be accessible from a different host, it must
be registered under some symbolic name with a CORBA
naming server. The client gets a handle to the object from
the naming server by providing it with the objects symbolic
name. The following two methods of the
MUTechCentral server object are important. We
assume that the server object is bound to the variable
centralRef:

centralRef.sendUpdate(change,myID);
(i)

With this method call the modification described by the
value of the variable change is propagated via the server
to all other clients except the one referred to by myID,
which is the one causing the update.

changelist=centralRef.getUpdates(myID);
(ii)
 
The client receives from the server a li st of all changes
caused by other clients since its last request.

4.3 The Server

On the server the methods of the MUTechCentral
object are implemented as methods of the class
MUTechCentralServer as follows:

publi c class MUTechCentralServer {
 public void sendUpdate(Command c,
(iii)
                        int id)
         { int i;
           for(i=0;i<clients;i++)
            if (i!=id)
 

((Vector)commands.elementAt(i)).
               addElement(c ); }
 
public CommandListContainer
   getUpdates(int id)
         { CommandListContainer
            clc = new
CommandListContainer();
          // copies all entries (changes) in
          // commands.elementAt(id) to clc

           return clc; }
 ...
}

4.4 Intra-Browser Communication

Now the question arises when to call the above methods.
First, via the EAI we can register a callback method with
every event in VRML. Events are special field of nodes in
the scene graph. Whenever the value of an event changes
all registered callback methods are executed.

HTTP-Server

O
R

B MUTech-
CentralServer

Web Browser

HTML-Pag

VRML-Scene

Applet

Scene graph

calls sendUpdate()
and getUpdates()

Including events

E
A

I

O
R

B

Web Server

http

IIOP

changes
graph

invokes
callback

registers
callback

NODE prox=browser.getNode("PROXSENSOR");
 ochange
   =prox.getEventOut("orientation_changed");
 ochange.advise(this,null);

To register the callback method, an object (here: this) is
passed to the event as an argument of the advise method.
This object must implement a method with signature void
callback(EventOut, Object).

public void callback(EventOut event,
                     double when,
                     Object context){
 if (etype==FieldType.SFROTATION)
 { synchronized(this)
   { ev=((EventOutSFRotation) event).
          getValue();
     c=new Command(
        CommandType.changeOrientation,
        myID,
        ev[0],ev[1],ev[2],
        ev[3]-(float) 3.14);
     centralRef.sendUpdate(c,myID);
   }
 }
 ...
}

In the above example our callback method will send the
current value of the event orientation_changed to
the server via its sendUpdate method. As can be seen
from the definition (iii ) of the method, the new value is put
into a li st (an instance of class Vector). Finall y, it



remains to explain how a client receives this li st. Again for
security reasons an applet is not allowed to li sten for
requests, so our solution is that the applet launches a
thread which periodicall y issues getUpdates requests.

4.4 Restrictions

Our current implementation does not support streaming,
we are waiting for JavaSoft’s Media API. The development
of our implementation was slowed down by problems with
the installation of the different software systems involved
(e.g. problems with class paths), by their unfinished or
insuff icient documentation, their bugs (Java’s garbage
collection frees data which are still accessible via the
callback method) and finall y by incompatibiliti es (e.g.
Java-IDL and Visigenic’s ORB). The source code of our
MUTech fits on a few pages. Currently we consider to
replace Sun’s Java-IDL by the Internet Service Broker
(ISB), which is integrated into Netscape’s Communicator.
The ISB is just Visigenic’s ORB in disguise. This
integration into the web browser dramaticall y reduces the
number of classes which have to be loaded over the
network. As a consequence, it will be possible to load the
VRML files of a multi -user world and an application-
dependent MUTech directly from the server.

5. Open Standards?

Not all of the open standards mentioned in this article are
open in the sense, that everybody could have influenced
their development. But they are open in the sense, that
everybody could implement them without having to pay
any fees (Though, for Java Sun requires that an
implementation must be complete and compatible).

Java: In November 1997 Sun eventually did the first step
to open the standard [5]. A majority of the ISO members
voted for Sun’s Java specification to acquire the PAS status
(publicly available specification). With this, the process for
Java to become an ISO-standard started.

VRML: Since December 15. 1997 a revised version of the
VRML 2.0 specification, also known as VRML97, became
the International Standard ISO/IEC 14772-1:1997, i.e., an
off icial ISO-standard. Unfortunately this standard does not
include the External Authoring Interface. A working group
of the VRML Consortium constituted with the goal to add
the EAI as an annex to the standard. This means that a
VRML-compliant browser should provide the EAI, but it is
not mandatory.

CORBA: The Object Management Group (OMG) with
over 800 members including all major software vendors
develops and standardizes CORBA [6] and its services.
Unfortunately all CORBA implementations are source-
code incompatible. Fortunately, by virtue of the Internet

Inter ORB Protocol (IIOP) ORBs of different vendors can
interoperate.
UDP, TCP, RTP: These are internet standards and are
described in their RFCs [6], thus they are subject to the
open standardization process of the Internet Society.

6. Conclusion

One appealing aspect of the world-wide-web is that
different media, programming languages and file formats
can be combined [3,11]. Some of these data types are based
on open standards. Multi -user worlds can be implemented
as such a combination of different systems and languages.
We pointed out how the implementations of multi -user
technologies employ more and more standardized
subsystems and languages. Finall y we described our own,
CORBA-based implementation in more detail .

References

[1] Bernie Roehl et. al., "Late Night VRML 2.0 with
Java", Ziff-Davis Press, 1997

[2] Living Worlds Working Group of the VRML
Consortium, http://www.li vingworlds.com

[3] Stephan Diehl, "Java & Co - Die Sprachen des Webs:
HTML, VRML, Java, JavaScript ", Addison-Wesley,
Bonn, 1997 (in German)

[4] James Gosling, Bill Joy, Guy Steele, "The Java
Language Specification", Addison-Wesley, 1996

[5] Sun Microsystems Inc., "Java Standardization",
http://www.javasoft.com/aboutJava/standardization

[6] Object Management Group, "CORBA 2.0/IIOP
Specification", http://www.omg.org/corba/c2indx.html

[7] Request for Comments, ftp://ftp.internic.net/rfc
[8] Stephan Diehl, "VRML", Informatik-Spektrum,

Springer, 1997 (in German)
[9] VRML Consortium, "VRML97 International Standard

Specification",
http://www.vrml.org/Specifications/VRML97/

[10] Netscape Communications Corp., "LiveConnecting
Plug-ins with Java",
http://home.netscape.com/eng/mozill a/3.0/handbook/p
lugins/pjava.htm

[11] Yuval Fisher, "Spinning the Web", Springer, 1996
 
 
 


