
Focused Animation of Dynamic Compound Graphs

Florian Reitz, Mathias Pohl and Stephan Diehl
University of Trier

reitzf@uni-trier.de, pohlm@uni-trier.de, diehl@uni-trier.de

Abstract

Many applications feature large hierarchic dynamic
graphs that change over time. Often, these changes are
more important than the graphs themselves. In our ap-
proach, areas of interests in dynamic graphs are detected
based on user preferences. The user is guided from one area
of interest to another in such a way that reduced contextual
information is shown. To this end, dynamic graph layout
mechanisms are extended by a preprocessing that decides
what to show and a post processing that stages the anima-
tion based on spatial information.

1. Introduction

Compound graphs extend ordinary graphs by hierarchi-
cal information. Imagine a large company with several
thousand employees. A company like this usually has a hi-
erarchical organization. It is divided into departments and
sub departments. This structure can be described by a com-
pound graph. A compound graph is defined as
G = (V,EI , EA) where V denotes the set of nodes, EI ⊆
V × V the set of inclusion edges and EA ⊂ V × V the
set of adjacency edges. The set of nodes V and the inclu-
sion edges EI form a tree. This tree is called the hierarchy
tree of G. A compound graph is usually visualized as a
node-link-diagram using the nested box metaphor (see Fig-
ure 1). In our company example the adjacency edges can
model a communication network. For instance we can con-
nect two nodes if the corresponding persons or departments
exchanged e-mails with each other.

The structure of an organization typically changes over
time. There are small changes like an employee moving to
another department and large reorganizations that alter the
company on the whole. Each time we look at the struc-
ture we can create a new compound graph from this snap-
shot. The chronological ordered sequence of these com-
pound graphs G = G1, . . . , Gn is called a dynamic com-
pound graph. It describes the structural changes over time.

Analyzing a dynamic graph is difficult because it can

contain a large and constantly changing structure. In some
cases the differences between the graphs are more impor-
tant than the graphs themselves. For instance, a study that
aims at communication changes after a large restructuring
may not have to consider substructures that remained un-
changed.

In this paper we present a novel approach that helps the
user to focus on the interesting parts of a dynamic graph
during a graph animation. In Section 3 we describe the un-
derlying layer-based visualization of large dynamic graphs.
Then we discuss extensions to this algorithm that improve
the visibility of changes. In Section 4 we describe a prepro-
cessor that reduces the graph size based on areas of interest.
Finaly we will see how the user’s attention can be drawn to
these areas in a way that all changes can be recognized.

2. Visualization of dynamic graphs

Dynamic graph visualization systems either work online
or offline. When an online system draws a graph, its lay-
out algorithm does at most know the layout of the previ-
ously drawn graph. In contrast, an offline system knows the
whole sequence of graphs and can compute the layouts of
all graphs in the sequence simultaneously.

Dynamic graphs that have no inclusion edges can be
visualized using offline-dynamic graph layout algorithms
such as Foresighted Graphlayout [1, 3]. Most algorithms
try to preserve the mental map in order to make the anima-
tion readable. The term mental map refers to the abstract
structural information a user forms by looking at the layout
of a graph [4]. Changing layout between two graphs in a
sequence causes the user to re-read the visualization com-
pletely in order to identify structural changes.

The use of compound graphs has become more impor-
tant in recent years. For example, in social network analysis
large networks are transformed in a so-called block model in
order to cope with the huge amount of data. From a graph-
theoretical point of view these block models are compound
graphs.

The visualization of dynamic compound graphs is very
challenging. Frishman and Tal presented an online-dynamic

2009 13th International Conference Information Visualisation

978-0-7695-3733-7/09 $25.00 © 2009 IEEE

DOI 10.1109/IV.2009.24

685

2009 13th International Conference Information Visualisation

978-0-7695-3733-7/09 $25.00 © 2009 IEEE

DOI 10.1109/IV.2009.24

679

(a) A companie’s hierarchy tree (b) The communication network (c) Nested box visualization

Figure 1. A small example of a compound graph. The inclusion edges form a tree consisting of all
nodes (a) while adjacency edges connect arbitrary nodes (b). The compound graph can then be
visualized in a nested-box diagram (c).

layout algorithm for clustered graphs [2]. A clustered graph
is a compound graph with a hierarchy of depth 1. In con-
trast, Pohl and Birke showed how to deal with dynamic
compound graphs in order to explore their structure with
their tool XLDN [5]. Their work is based on Foresighted
Graphlayout and does not constrain the structural changes
in the graph sequence. However, XLDN neither provides
different layout styles nor automatic attention management.

3. Dynamic layer-based layout

By combining layer based approach of Sugiyama and the
supertree concept of XLDN our algorithm is capable of ar-
bitrary structural changes throughout a compound graph se-
quence. Different node and adjacency edge sets are pos-
sible as well as different hierarchy trees. To describe our
algorithm we first have to explain some essential elements
of Sugiyama’s traditional layout algorithm.

3.1. Layer-based layout of static graphs

The static layer-based approach works in four steps:
Step 1: Nodes are assigned upon parallel layers such that
most adjacency edges point into the same direction. For
compound graphs the layer assignment is encoded in num-
ber sequences rather than numbers. Therefore the layer-
assignment function clevel for a graph G = (V,EI , EA)
maps all nodes to a sequence of natural numbers:

clevel : V → N ∪N2 ∪N3 ∪ . . .

Such a sequence clevel(v) is called compound level of v.
On these compound levels a lexicographic ordering is de-
fined – i.e., (1) < (1, 1) < (1, 2) < (2).

According to Sugiyama, a compound level assignment is
considered valid if it satisfies the inclusion condition and the
down-arrow condition [6]. The inclusion condition guaran-
tees that compound-levels can later be mapped to the levels

in nested boxes. The down-arrow condition guarantees that
all edges to point from nodes with lower levels to nodes
with higher levels.
Step 2: Edges are made proper which means that all edges
should connect only nodes between subsequent layers. To
transform non-proper edges they are split into a path of tem-
porary dummy nodes.
Step 3: All nodes are ordered on their assigned layers to re-
duce edge crossings. This can be done using the barycenter
heuristic proposed by Sugiyama and Misue.
Step 4: In the last step a final visualization of the graph
is computed according to the compound levels and the re-
spective orderings of all nodes. Dummy nodes are removed
from the graph after this computation. Their positions serve
as bends for the respective edges.

3.2. The supertree

To create layouts for dynamic compound graphs XLDN
(like Foresighted Graphlayout) first computes a global lay-
out for a union of all graphs in a sequence. This layout then
serves as a template for the separate graphs and therefore
a priori ensures a good preservation of the mental map. Af-
terwards some additional optimizations can be applied to
the separate layouts as long as they still preserve the user’s
mental map. However, merging of compound graphs does
not necessarily yield another compound graph. Instead, the
set of inclusion edges may degenerate and no longer have
a tree structure. To cope with this major problem the su-
pertree concept was introduced. The idea behind it is to
find a tree that contains all information of its base trees. To
realize such a supertree a heuristic with quadratic runtime
is used by XLDN.

The formal definition of the supertree is as follows: For
a sequence G1, . . . , Gn with Gi = (Vi, EIi , EAi) the tree
T̃ = (Ṽ , Ẽ) is a tree if the following conditions hold: ∀i ∈
{1, . . . , n} : ∃σi : Vi → Ṽ such that σi is injective, ∀v ∈
Vi : σi(v) ∈ Ṽ and ∀(v, w) ∈ EIi

: (σi(v), σi(w)) ∈ Ẽ.

686680

(a) Tree 1 (b) Tree 2 (c) Tree 3 (d) Supertree

Figure 2. A sequence of three trees and a possible supertree. The labels of the supertree nodes
indicate the represented objects in the respective trees e.g. d/d/g means that the supertree node
represents d in tree 1, d in tree 2 and c in tree 3.

Such a tree always exists. In a trivial construction the roots
of all trees are siblings beneath a new root node. However,
this supertree would be a poor one since it would contain
too many nodes. As shown later on, the number of nodes
in a supertree should be minimal to reduce unused space in
the visualization. An example for an efficient supertree is
depicted in Figure 2.

The computation of a minimal supertree, i.e. a tree con-
taining a minimal number of nodes is NP-complete [5].
Therefore a heuristic for a reasonably small supertree was
developed. This algorithm starts with the initial tree and
tries to combine equal nodes of subsequent trees in a greedy
way.

3.3 Dynamic graph layout

After the supertree of a compound graph sequence is
computed it can be used for the computation of the global
layer-based layout template. In a first step the adjacency
edges of all graphs are added to the supertree to obtain a
global compound graph for the sequence. This global com-
pound graph is called supergraph and is defined as

G̃ =
(
Ṽ , ẼI , ẼA

)
where

(
Ṽ , ẼI

)
is the supertree and

∀i ∈ {1, . . . , n} : (v, w) ∈ EIi
⇒ (σi(v), σi(w)) ∈ ẼA.

With the same methods as in the static case a compound
level assignment can be computed for the supertree. After-
wards all edges are made proper and the nodes are ordered
to reduce the number of resulting edge crossings. The lay-
out of the supergraph then is induced to the separate graphs
in the sequence.

All nodes of the graphs are assigned to the compound
levels of their representative in the supergraph. Furthermore

they are ordered according to the global ordering in the su-
pergraph. Since nodes in different graphs can vary their po-
sition inside the graph’s hierarchy tree, these assignments
are not necessarily the same for all graphs.

As a result the dynamic compound graph can be visual-
ized as a sequence of static compound graphs whose layouts
preserve the user’s mental map. Due to the global layout
template layout changes are only visible where structural
changes occur. The sequence is finally shown in an anima-
tion to make it easier for the user to follow the changes.

4. Areas of interest

The layer based layout algorithm stabilizes the graph se-
quence so unchanged parts of the graph move as little as
possible. This emphasizes changes to a certain extent but
some graphs are still too large and the changes too scattered
to see them. In this section we present a preprocessor that
identifies areas of interest and turns the sequence of com-
pound graphs into a sequence of focused graphs.

4.1. Importance Measure

In real applications not only the structure of the graph
changes but also the properties of the entities represented
by the nodes. In this work we cover two types of changes:
structural and attribute related.

Structural change: A structural change is an operation
that transforms one compound graph into another. Struc-
tural changes consist of removing or adding nodes, adja-
cency edges and inclusion edges. For instance, a structural
change might be that an employee moves from one depart-
ment to another. Note, that structural changes can be iden-
tified without domain knowledge.

Attribute related change: For example an employee
can have the attribute on holiday or married in some parts

687681

(a) An example sequence without folding.

(b) The sequence after folding was applied. The first graph is completely unfolded.

Figure 3. A graph sequence with folding (b) and without (a). At first Bill leaves the finance department
(graph 1). Without him, Adam has to communicate directly with Chris and Dora (graph 2). In graph 3
Adam gains the tag promoted. Finally Bill joins the Berlin department.

of the dynamic graph. For every dynamic graph a tag set
T and a partial function τ : V × {G1, . . . , Gn} → P(T)
is defined that assigns these tags to nodes in certain graphs.
Thus an attribute related change is adding or removing a tag
from a node. Usually, the user is not equally interested in
all types of changes. For each change type c an importance
weight wc is defined. The higher the value the more impor-
tant the change. The number of change types is small so a
manual definition of wc is doable. Let C = c1, . . . , cm be
the set of changes that affect node n in graph g. The local
relevance function ϑ is defined as

ϑ : V × {G1, . . . , Gn} 7→ N ϑ(n, g) =
∑
ci∈C

wci

There is no separate importance function for adjacency
edges. All changes that apply to them become part of the
change sets of their source and target node.

4.2. Focusing by Folding

Folding a node n in a compound graph produces a new
compound graph in which all descendants of n are re-
moved. Edges between the descendants of n are removed.
Edges that connect descendants of n to other nodes are re-
placed by edges between n and these other nodes. Fold-
ing can be used to remove uninteresting parts of the graph.
The folding of nodes should not rely on its local impor-
tance value ϑ only. In that case descendants with higher

ϑ value would also be removed. To avoid this ϑ is propa-
gated upwards in the inclusion tree. The subtree relevance
γ : V × {G1, . . . , Gn} → N has to satisfy the following
condition:

∀(v, w) ∈ EI ∀g ∈ {G1, . . . , Gn} : γ(v, g) ≥ γ(w, g)

If n is leaf in graph g γ(n, g) is defined as ϑ(n, g) and n /∈
g ⇒ γ(n, g) = 0.

For inner nodes γ can be defined in different ways:

(a) γsum(n, g) =
∑m
i=1 γ(ci, g) + ϑ(n, g)

(b) γmax(n, g) = max(γ(c1, g), ..., γ(cm, g), ϑ(n, g))

(c) γα(n, g) = α ·+γsum(n, g)+(1− α) ·γmax(n, g) for
α ∈ [0, 1]

where c1, . . . , cm are the children of n. Option (a) favors
nodes with many children of lesser importance while (b)
rewards single nodes with high relevance values. Option
(c) is a compromise. Note, that option (c) is equivalent to
option (a) if α = 1 and equivalent to option (c) if α = 0.
Obviously, all options meet the folding condition. Figure 3
shows how folding works on the company example.

Assume a sequence of three graphs where node n is im-
portant in the first graph, unimportant in the second, and
important again in the third graph. Focusing based only on
γ would fold n in the second graph and unfold it again in

688682

(a) Graph n (b) Step 1 (c) Step 2 (d) Graph n + 1

Figure 4. A serialized animation that blends the drawing of graph n (a) into the drawing of graph n+1
(d). At first node b is inflated (a → b) then d and h move sideward (b → c). In the final step node c
moves and h appears.

the third graph. The situation worsens if the importance of n
changes periodically. The resulting flickering effect can re-
duce the quality of the animation. In such cases a balancing
mechanism is applied that prevents the subtree relevance of
a node from rising and falling too fast.

Let gm be a compound graph and node n ∈ gm. The
relaxed relevance δ with lookbehind s and lookahead t is
defined as

δ(n, gm) = max
−s≤i≤t

{γ(n, gm+i) · f(|i|)}

where f(i) is a monotonically decreasing function with val-
ues from [0, 1] and f(0) = 1. Function f denotes how this
influence is reduced by distance. Thus, δ takes the s pro-
ceeding and t succeeding graphs into account.

Foldings are massive modifications of the structure of
the graph and likely to destroy the mental map. For this
reason in our approach folding is done prior to the layout
algorithm. In this case the modifications can be accounted
for in the generation of the super tree.

5. Attention by animation

A folding can reduce the size of a graph but the result
can still be too large. In this section we present a way to
make the user aware of the changes during the animation
that blends one graph into another.

The human attention is not uniformly distributed over
the user’s field of sight. Objects that are located at the field
perimeter are less likely to be recognized than those in the
center (inattentional blindness). The same effect applies to
slow changes for instance when a node fades in (change
blindness). However, movement can be detected through-
out the field of sight as long as it is not scattered all over
the screen. (For more information on visual perception see
[7]). In the dynamic layout, see Section 3.3, some of the

changes in the underlying graph result in the movement of
nodes. Since for attribute related changes there is no move-
ment artificial movement is created.

Movement is easy to recognize as long as it is lim-
ited to a small area and the number of moving objects
is small. The set on nodes that are going to move dur-
ing the next animation is partitioned in animation groups.
The animation is serialized in a way that the animation
groups are moved one after another. More formal: let
Li(v) be the exact position of node v in graph gi and
disti(v, w) the euclidean distance of nodes v and w in gi.
If v /∈ gi ∨ w /∈ gi ⇒ disti(v, w) = 0. For each an-
imation group g we demand maxv,w∈g(disti(v, w)) < t
and maxv,w∈g(disti+1(v, w)) < t, where t is a predefined
threshold. This conditions ensure that the group’s nodes are
close to each other during the whole animation. The size
of each group should be limited so the user can follow the
changes.

The partition is not arbitrary: if node v moves all its de-
scendants must move as well. Furthermore, a node can not
move to a place that is still occupied by another node from
a subsequent animation group. Note, that in some cases it is
not possible to compute partitions. Figure 4 shows the use
of animation groups in a small example.

6. Case study

We implemented our approach as a Java application
which reads graph and tag data from an XML file that can be
easily generated. Figure 5 shows two images produced with
this tool. The images show refactorings in the jftp software
archive. The inclusion edges of the visualized compound
graph represent the structure of the source code and the ad-
jacency edges represent the implements and extends rela-
tions. As tags we use the names of refactorings that have
been applied to the part of the source code represented by

689683

(a) The unfolded compoud graph of jftp.

(b) The compound graph from (a) with folded nodes.

Figure 5. The compound graph representation in one stage of the jftp software archive.

the node. Every structural and attribute related change has
the same importance weight. For focusing we used δ with
γsum, lookbehind s = 1, lookahead t = 1 and f(i) = 1

2i .
The pictures show a massive restructuration at an early

stage of the development. Three new packages were added
(light gray) and some old code was moved there (dark gray).
Triangles represent folded nodes. Note, that some folded
nodes are colored too because the changes affected their
sub tree but γsum did not exceed the folding threshold. The
nodes above the outer rectangle represent external classes
or interfaces like LinkedList. The class Object (the top of
the Java hierarchy structure) is removed to make the image
more comprehendible. Folded nodes are painted as trian-
gles.

7. Conclusion

Starting from the hypothesis that the user is more in-
terested in what changes that in what stays the same we
developed a visualization technique which guides the user
through a dynamic compound graph. As tools become
available that guide users through a graph the question
arises whether these tools are more efficient than those that
leave the decision up to the user. We expect that future eval-
uation will show that this is the case although no automatic
tool can fully compete with the user’s intention.

Acknowledgements

We’d like to acknowledge Peter Weißgerber who sup-
plied us with refactoring data for the case study.

References

[1] S. Diehl and C. Görg. Graphs, They Are Changing. In
Proc. of 10th Int. Symp. on Graphdrawing, GD, volume
2528 of LNCS, pages 23–30. Springer, 2002.

[2] Yaniv Frishman and Ayellet Tal. Online dynamic graph
drawing. In EuroVis, pages 75–82. Eurographics Asso-
ciation, 2007.

[3] C. Görg, M. Pohl, P. Birke, and S. Diehl. Dynamic
Graph Drawing of Sequences of Orthogonal and Hier-
archical Graphs. In Proc. of 12th Int. Symp. on Graph-
drawing, GD, volume 3383 of LNCS, pages 228–238.
Springer, 2004.

[4] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout
Adjustment and the Mental Map. J. Vis. Lang. Comput.,
6(2):183–210, 1995.

[5] M. Pohl and P. Birke. Interactive exploration of large
dynamic networks. In Proc. of 10th Int. Conf. on Visual
Information Systems, VISUAL, LNCS 5188, pages 56–
67, 2008.

[6] K. Sugiyama and K. Misue. Visualization of Struc-
tural Information: Automatic Drawing of Compound
Digraphs. IEEE Trans. on Systems, Man and Cybernet-
ics, 21(4):876–892, 1991.

[7] Colin Ware. Information Visualization: Perception for
Design. Morgan Kaufmann Publishers, San Francisco,
2 edition, 2004.

690684

