
Visual Amortization Analysis of Recompilation Strategies

Stephan Zimmer and Stephan Diehl (Authors)
Computer Science Department

University of Trier
Trier, Germany

Email: zimmer23@web.de, diehl@uni-trier.de

Abstract—Dynamic recompilation tries to produce more effi-
cient code by exploiting runtime information. Virtual machines
like the Jikes RVM use recompilation heuristics to decide
how to recompile the program, i.e. what parts are recompiled
at what level of optimization. In this paper we present our
post-mortem amortization analysis based on improved call
stack sampling. Our tool presents the results of the analysis
as an interactive visualizations to help both virtual machine
implementors improve their recompilation strategies, as well
as programmers assess whether these recompilation strategies
pay off not only for their application as a whole, but also for
individual methods.

Keywords-software visualization; recompilation; dynamic
analysis;

I. INTRODUCTION

The Jikes RVM [1] has been developed as a research
platform to experiment with different approaches to imple-
ment virtual machines. One of the most important features
of the Jikes RVM is its adaptive optimization system [2],
[3] which based on measurements of runtime performance
decides when and how to recompile functions. Obviously,
recompilation requires extra time at runtime, and thus a
method should only be recompiled, if enough time is saved
by future executions of the resulting, optimized code. In
other words, the optimized code must be faster than the
old code, and it must be executed a sufficient number of
times later on. Unfortunately, in general the number of
future executions of a method is not known at runtime, thus
the Jikes RVM uses heuristics to control recompilation of
methods.

From a programmer’s point of view the question is not,
whether these recompilation heuristics of the Jikes RVM pay
off for many applications, but whether they really help to
speed up his or her application. To this end we developed the
post-mortem amortization analysis and visualization meth-
ods presented below and integrated these as a plugin into
the Eclipse IDE.

Our approach to analyze the amortization of recompilation
for a given application program consists of the following
four steps:

1. Instrumenting the byte-code: The instrumentation
computes the dynamic call graph and exact call counts for

each method. In addition, the time spent in instrumentation
code1 is recorded.

2. Executing the code on an extended Jikes RVM: The
extended virtual machine computes partial context trees.

3. Analyzing recorded data post-mortem: Based on the
information in the partial context tree and the call counts,
estimations of executions times can be computed after the
execution of the application.

4. Visualizing the results: The overall amortization
results are shown in the dynamic call graph, while re-
compilation diagrams present detailed information for each
method.

For estimation of the execution times of each method
we use call stack sampling. To this end we extended the
Jikes RVM, such that at regular intervals a sampling thread
interrupts the execution of the application and inspects its
call stack. Our estimation is based on the assumption that
methods with short execution times are less likely to be found
on the stack than those with longer execution times.

II. RECOMPILATION HEURISTICS

The Jikes RVM uses the following recompilation heuris-
tics: A method is recompiled, if the sum of the expected
compilation time and the expected future execution time of
the optimized method, is lower than the execution time of
the method, so far. More precisely:

Cexp
m,i + T exp

m,i < T act
m,j where i, j ∈ {0, 1, 2, 3} and i > j (1)

Here, Cexp
m,i is the expected compilation time for method

m at optimization level i. Level 0 corresponds to the Jikes
BASE level compilation, 1 to OPT0, 2 to OPT1, and 3 to
OPT2. T exp

m,i is the expected execution time of method m at
optimization level i, and T act

m,j is the actual execution time
of method m at the current optimization level j.

To compute the expected execution time, the Jikes RVM
assumes that the method is executed in the optimized code
at least as often, as it has been executed, so far.

III. AMORTIZATION OF RECOMPILATION

Once the execution of the application has finished, the
recompilation of a method at level i actually paid off, if

1Note, that the instrumentation code itself is excluded from optimization.

2010 14th International Conference Information Visualisation

1550-6037/10 $26.00 © 2010 IEEE

DOI 10.1109/IV.2010.76

499

Information Visualisation

1550-6037/10 $26.00 © 2010 IEEE

DOI 10.1109/IV.2010.76

509

2010 14th International Conference Information Visualisation

1550-6037/10 $26.00 © 2010 IEEE

DOI 10.1109/IV.2010.76

509

Figure 1. Dynamic call graph

its actual compilation and execution times instead of the
expected times satisfy equation 1, i.e.:

Cact
m,i + T act

m,i < T act
m,j (2)

The question is how to obtain these times. For the
compilation times the answer is simple: The Jikes RVM
actually records this information. To capture the execution
times one could instrument the code at the start and end
of each method to capture its execution. But, because other
threads can interfere with the execution of a method, the
computed times would be invalid. Instead, we use call stack
sampling to estimate the execution times.

For our post-mortem amortization analysis we assume that
each invocation of a method takes the same amount of time,
thus we compute the product of the number of invocations
and the average execution time of a method as an estimation
of T act

m,i:

Cact
m,i + (Nact

m,i ∗ t
post
m,i) < (Nact

m,j ∗ t
post
m,j) (3)

Nact
m,i is the number of times the method m at optimization

level i is actually called. It is computed by the instrumenta-
tion code. tpostm,i is our post-mortem estimation of the average
time for a single execution of method m at optimization level
i.

IV. PARTIAL CONTEXT TREES

To compute our post-mortem estimation tpostm,i we use
a partial context tree [4] built by call stack sampling.
In the context of this paper, a partial context tree G =
(V,E, r, ρ, σ) consists of

• a set V of nodes and a set E of edges, such that
(V,E, r) forms a tree with root r ∈ V ,

• a sampling count mapping σ : V → N,
• and a labeling ρ : V →M × L where M is the set of

method signatures and L = {0, 1, 2, 3} the optimization
levels.

The context of a node v ∈ V consists of the labels along
the path from the root to the node v, i.e. context(v) =
(ρ(v1), . . . , ρ(vn)) where (v1, . . . , vn) is the path from r
to vn = v. Furthermore, we define parent(v) = w iff
∃(w, v) ∈ E.

To construct a partial context tree, a sampling thread inter-
rupts the main application at regular intervals and traverses
its call stack. As an example, consider the five call stack
samples shown in Figure 2.

500510510

Figure 2. Stack samples

In these samples, every stack frame is annotated with
the signature of the invoked function and its optimization
level. From these samples the partial context tree shown
in Figure 3 is constructed. Let v be the rightmost node
in this tree, then σ(v) = 1, ρ(v) = (i(int), 3), and
context(v) = ((f(int), 0), (h(int), 0), (i(int), 3)).

Figure 3. Partial context tree

Let Tmt be the total execution time of the main thread,
i.e. the application, T instr the time spent executing instru-
mentation code, and S the total number of samples, then

tunit = (Tmt − T instr)/S (4)

is the average time interval between two samples.
Our estimation algorithm first computes execution time

estimates for every node in the partial context tree as follows:
• Initialization: ∀v ∈ V : T post(v) = undefined
• For all leaves v of the tree, we set T post(v) = σ(v) ∗
tunit.

• For all intermediate nodes v, we set
T post(v) =

(
σ(v)−

∑
(v,v′)∈E σ(v′)

)
∗ tunit

For an intermediate node, the difference of the samples of
the node and the sum of the samples of its children yields
the number of samples where the context represented by
this node exactly matches the stack of that sample. For our
example, this algorithm yields the post-mortem times shown
in Figure 5.

Based on the estimations of execution times of different
nodes, and thus different contexts, we can now compute an
estimation of the total execution time of a method m at
optimization level i as the sum of the times of all nodes
with label (m, i) in the partial context tree:

T post
m,i =

∑
v∈V and (m,i) occurs in context(v)

T post(v) (5)

Based on the times given in Figure 5, we get for example
T post
h(int),0 = 0.02 ms and T post

i(int),3 = 0.03 ms. And finally,
we estimate the average execution time by:

tpostm,i =
T post
m,i

Nact
m,i

(6)

Figure 5. Partial context tree with post-mortem times assuming tunit =
0.01 ms

Note, that call stack sampling does not allow to assess the
number of actual method calls. For example, it is impossible
to decide whether two stack frames of the same method
in subsequent samples belong to the same method call.
Instead we use byte-code instrumentation which in addition
computes the dynamic call graph.

V. IMPROVED CALL STACK SAMPLING

One problem of the above approach is that it neither
estimates an upper or lower bound of the execution times,
if methods are inlined: First, the estimation of the execution
time of the target method is too high, because it includes the
execution time of the inlined code. Second, the estimation of
the execution time of the inlined method is too low, because
calls to this method have been replaced by the code of the
method, and thus no stack frames are produced, and as a
result, call stack sampling will not detect that the code of
the method is actually executed.

501511511

Figure 4. Recompilation diagram

Fortunately, for reasons such as inter-procedural analysis
and debugging, the Jikes RVM provides a map from machine
code offsets to inlining information, i.e. whether the code
actually stems from the body of a method which was
inlined. Using this information we extended our call stack
sampling to also handle inlined methods correctly. The
sampling thread first checks whether the current machine
code instruction of the interrupted main thread stems from
an inlined method2. In case, it proceeds as if a frame for
the related method call would be on the stack: it adds a
node to the partial context tree. As a result, also for inlined
methods we have nodes in the partial context tree and the
two problems mentioned above do no longer occur.

VI. ANALYSIS AND VISUALIZATION TOOL

The above approach has been implemented as a plugin for
the Eclipse IDE. To get an overview of the analysis results
the user can look at a visualization of the dynamic call graph
as shown in Figure 1. The nodes in these visualizations
correspond to methods compiled at a certain optimization
level. The color of a node indicates whether the method has
not been recompiled at all (blue), or whether its recompi-
lation paid off (green) or not (red). By clicking at a node
of the graph the user can get detail information about the
corresponding method. To visualize the various compilation
and execution times we developed recompilation diagrams
as shown in Figure 4.

For every optimization level three times are shown:
the compilation time Cact

m,i, the estimated execution time
Nact

m,i ∗ t
post
m,i , and the remaining execution time (Nact

m −∑
0≤j≤iN

act
m,j) ∗ t

post
m,i at the same level, in case the method

has been recompiled at a higher level again. Here Nact
m is the

number of times any of the optimized instances of method
m has been called, i.e. Nact

m =
∑

i∈{0,1,2,3}N
act
m,i.

VII. EXAMPLE

To illustrate the use of our tool we chose the SciMark2.0
benchmark [5]. It consists of five scientific computations

2Actually, the approach works also for inlining sequences, i.e. in cases
where a method was inlined in another method, that was itself inlined in
yet another method, and so on.

including fast fourier transform, LU factorization, and mul-
tiplication of dense matrices.

The screen dump in Figure 1 shows our Eclipse-plugin
after the execution of the benchmark.

In the left view of all classes are listed. The user can
browse through this list, expand the classes to see their
methods and the related compilation and execution times.

In the right view the dynamic call graph is shown. In this
graph the root node represents the main() method and its
five children methods performing the above mentioned sci-
entific computations. Eight methods have been recompiled
(green and red nodes), for six of these the recompilation
amortized later on (green nodes).

As an example of one of these successfully recompiled
methods we take a closer look at the method factor()
of the LU class. In the recompilation diagram in Figure 6
we see that the compilation times increase for higher lev-
els of optimization, but that the execution times decrease
dramatically – from 6.826 ms per method invocation at the
BASE optimization level to 0.783 ms at level OPT1. In this
example, the method was executed 15 times before it was
recompiled for the first time, after another 233 invocations,
it was recompiled again and executed another 1799 times.
The pay off ∆0,1 for the first recompilation was much higher,
than the pay off ∆1,2 for the second recompilation.

In Figure 1 we also see two red nodes indicating that
there have been two methods for which the recompilation
did not pay off. One of these methods is the method
bitreverse() of the Fast Fourier Transform. The re-
compilation diagram for this case is shown in Figure 7. Here
we see, that the recompilation at level OPT0 only produced
a negligible benefit, but even worse recompilation at level
OPT1 increased the overall execution time by 2,6 percent.

The second red node represents the method matmult()
for which our amortization analysis yields a very surpris-
ing result as shown in Figure 8. After recompilation the
execution time increases dramatically. The reason for this
phenomenon is that for this method our assumption (and the
assumption of most recompilation heuristics) does not hold,
namely that overall all invocations of a method need about
the same amount of time. In the SciMark benchmark the

502512512

Figure 6. Recompilation diagram of method factor()

Figure 7. Recompilation diagram of method bitreverse()

method matmult() performs matrix-vector multiplication
for n iterations. The benchmark invokes the method with
increasing values of n, actually for the i-th invocation the
value of n is 2i. In other words, an invocation of the method
requires twice the execution time of the previous invocation.

VIII. RELATED WORK

Existing studies [6], [7], [8] report speedups at the level of
applications or threads, but do not provide details for single
methods. The goal of our work was not to perform stud-
ies, but to enable programmers and researchers to analyze
dynamic recompilation of their own programs.

Visualization tools like TuningFork [9] or Performance
Explorer [10] are very general visualization tools for events
and performance data, in contrast our tool is tailored for
a single purpose – inspecting the amortization of dynamic
recompilation.

IX. CONCLUSIONS

In this paper we presented our approach to analyze the
amortization of recompilation of individual methods. In our

tool an overview of the analysis is shown by a color-coded
dynamic call graph, whereas recompilation diagrams show
details about single methods.

As our analysis is based on certain assumptions, it does
not work for all kinds of programs. In these cases, other
methods could be used to compute the compilation and exe-
cution times which are used as an input for the amortization
analysis and visualizations presented here.

REFERENCES

[1] The Jikes RVM Project, “Jikes RVM,” http://jikesrvm.org,
2007.

[2] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney,
“Adaptive optimization in the Jalapeño JVM,” in Proceedings
of the 15th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications OOP-
SLA’00. New York, NY, USA: ACM, 2000, pp. 47–65.

[3] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi,
P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind, K. S.
McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar,

503513513

Figure 8. Recompilation diagram of method matmult()

“The Jikes research virtual machine project: building an open-
source research community,” IBM Syst. J., vol. 44, no. 2, pp.
399–417, 2005.

[4] J. Whaley, “A portable sampling-based profiler for Java virtual
machines,” in Proceedings of the ACM 2000 conference on
Java Grande JAVA’00. New York, NY, USA: ACM, 2000,
pp. 78–87.

[5] Roldan Pozo and Bruce Miller, “SciMark 2.0,” National
Institute of Standards and Technology (NIST), http://math.
nist.gov/scimark2/, 2007.

[6] P. Kulkarni, M. Arnold, and M. Hind, “Dynamic compilation:
the benefits of early investing,” in Proceedings of the 3rd
International Conference on Virtual Execution Environments
VEE’07. New York, NY, USA: ACM, 2007, pp. 94–104.

[7] M. Arnold, M. Hind, and B. G. Ryder, “An Empirical
Study of Selective Optimization,” in Proceedings of 13th
International Workshop on Languages and Compilers for
Parallel Computing, Yorktown Heights, New York”, August
10-12, 2000.

[8] S. J. Fink and F. Qian, “Design, implementation and evalua-
tion of adaptive recompilation with on-stack replacement,”
in Proceedings of the International Symposium on Code
Generation and Optimization CGO’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 241–252.

[9] D. F. Bacon, P. Cheng, D. Frampton, D. Grove, M. Hauswirth,
and V. Rajan, “On-line visualization and analysis of real-
time systems with TuningFork,” in Proceedings of the Fif-
teenth International Conference on Compiler Construction,
ser. Lecture Notes in Computer Science volume 3923, 2006,
pp. 96–100.

[10] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Di-
wan, D. Grove, and M. Hind, “Using hardware performance
monitors to understand the behavior of Java applications,”

in Proceedings of the 3rd Conference on Virtual Machine
Research and Technology Symposium VM’04. Berkeley, CA,
USA: USENIX Association, 2004.

504514514

