
Visual Comparison of Software Architectures

Fabian Beck
beckf@uni-trier.de

University of Trier, Germany

Stephan Diehl
diehl@uni-trier.de

University of Trier, Germany

September 18, 2012

Abstract

Reverse engineering methods produce different descriptions of software ar-
chitectures. In this article we address the task of exploring and comparing these
descriptions. We present a novel visualization technique to compare architectures
consisting of a decomposition of the software system and the dependencies among
the code entities. This technique uses a visual representation of an adjacency ma-
trix to provide a scalable analysis tool. Advanced layout features like an automatic
level of detail algorithm and sorting strategies improve the readability of the visu-
alization. In a case study, we show how this technique can be applied in practice.

Keywords: Software architecture; hierarchy comparison; graph visualization

Appeared in Information Visualization; first published September 17, 2012; doi: 10.1177/1473871612455983.
The final version can be found on the publisher’s site.

1

1 Introduction
Understanding the architecture of a software system is important for maintaining and
evolving the system. The architecture is often described in manually created documents
and diagrams. But there is no guarantee that these files match the architecture that is
actually implemented. The only reliable data source of this factual architecture is the
source code itself. But it contains the architecture just implicitly—in form of the code
structure and its dependencies.

There exist different methods to extract the implicit architecture from the code. We
can just take the directory or package structure of a project. We might ask an expert
to manually decompose the system.1 Or we apply a software clustering algorithm2 to
generate a hierarchical structure of the source code. These methods provide different
decompositions of the system as a partial description of its architecture.

Dependencies between code entities reflect another important part of the architec-
ture. For instance, inheritance represents a dependency between two classes, while
method calls form dependencies between methods. Dependencies can be retrieved
from the static source code or observed dynamically at runtime. But there could also be
hidden dependencies: Two code entities might be related by their common evolution—
they might have changed together frequently.3 Documenting these dependencies on
a high level of abstraction also makes implicitly contained architecture information
explicit.

There are many possible descriptions of an architecture in form of different soft-
ware decompositions and dependency types—there does not exist the architecture de-
scription of a system. It is important to compare these different descriptions because
this

• could approach the factual architecture of the system,

• might hint at high-level differences between two versions, for instance, detecting
architectural drifts, and

• may help creating more reliable architecture descriptions.

For instance, comparing the initial architecture of a system to the architecture at a
later point of development could reveal architectural drifts. Checking the implemented
architecture against the documented one may identify architecture violations. Or con-
trasting the architectures automatically extracted by different algorithms might enable
us to combine the advantages of the algorithms.

There are many tools that visualize software architectures.4 But these tools only
show one description of an architecture. The goal of this work is to develop a visu-
alization approach that enables comparing two software architectures, each consisting
of a hierarchical decomposition of the system and a dependency graph. Our approach
is based on an adjacency matrix representation of the graphs with attached hierarchy
diagrams. Visual features and interactions support the users in finding similarities and
differences in the hierarchical structures as well as in the graphs.

At first, we need to identify concrete tasks that support such a comparison of soft-
ware architectures (Section 2). We introduce our visualization technique to explore

2

and compare architectures based on software decompositions and code dependencies
(Section 3) and present advanced layout features (Section 4). In a case study we apply
this visualization technique to analyze package structures and clustering results (Sec-
tion 5). Finally, we compare our approach with related techniques (Section 6), discuss
application scenarios (Section 7), and draw some conclusions (Section 8).

This paper is an extended version of a paper presented at SoftVis ’10.5 The main
extensions are improved interactions (Section 3.3), an evaluation of the adaptive level
of detail algorithm (Section 4.1.4), an elaborate global sorting strategy (Section 4.2.2),
and a broader discussion of possible application scenarios for the presented visualiza-
tion approach (Section 7).

2 Comparing Architectures
In a previous study6 we compared the capabilities of different data sources to recover
the architectures of software systems. In particular, we used different dependency types
and applied a clustering algorithm that produced a hierarchical decomposition of the
system. To assess the quality of the automatically generated decompositions, we had to
compare them to a reference decomposition. There exist different metrics that imple-
ment such a comparison of software decompositions2—we used MoJoFM ,7 a metric
that counts the minimal number of move and join operations necessary to transform
one decomposition into the other. This metric-based approach solved the problem of
assessing the quality of the decompositions but left some questions unanswered:

• What are the matching and non-matching parts of the decompositions?

• What are the reasons for clustering together certain parts of the software project?

• How can we explain the different results when applying the algorithm to different
software projects?

Starting from these questions, we felt that there is a need for understanding the
differences of software decompositions and code dependencies. The experience gained
from our study now helps us to identify important tasks supporting the comparison of
software architectures. Later, we return and apply our visualization technique to the
data set of this previous study (Section 5).

2.1 Decompositions & Dependencies
Our work is based on extracting the architecture of the software system from source
code. The extracted architecture consists of two parts: the decomposition of the system
and the dependencies among the parts of the system.

To provide a widely applicable visualization, we do not limit those data structures
to particular concepts, such as components and connectors or classes and inheritance.
Only as an example, we use classes that are organized in packages connected by dif-
ferent types of dependencies in this paper. As long as the data matches the following
definitions, it can be visualized using our visualization technique.

3

We call the elementary code units of the system code entities. Depending on the
particular application, these entities could be methods, classes, packages, or compo-
nents. Let V be the set of all code entities. The dependency structure of the system
is a directed graph on the set of code entities G = (V,EG) where the set of edges
EG ⊆ V × V represents the dependencies between the entities V . A software de-
composition divides these entities into groups or clusters of entities, which are usu-
ally hierarchically organized (e.g., in a package structure or as a result of a hierarchi-
cal clustering algorithm). Thus, a software decomposition is a hierarchy (i.e., a tree)
H = (V̂ , EH) where V̂ = V ∪C consists of all code entities V and all clusters C, and
the tree edges EH ⊂ V̂ × V̂ express the containment relation such that V contains all
leaf nodes and C all intermediate nodes of the hierarchy H . In terms of graph theory,
such a combination of a graph and a hierarchy is called compound graph.

Since our approach aims at the comparison of these data structures, we want to
contrast at least two such compound graphs on the same set of code entities.

Clustering algorithms need characteristic data about the artifacts to cluster. Usually,
this data is expressed either as the similarity of artifacts in a similarity matrix or as
dependencies between the artifacts in a dependency graph. Since our previous study
uses a graph-based clustering approach, we will focus on the latter case of dependency
data. But a similarity matrix is equivalent to a weighted graph where all possible edges
exist, a complete graph.

2.2 Tasks
Before actually designing a tool that supports a user to compare software architectures
based on software decompositions and code dependencies, we first need to analyze the
comparison process in greater detail. To this end, we will identify key tasks. Since the
user should be able to solve these tasks, they form the requirements for a comparison
tool. Following the taxonomy of Chikofsky and Cross,8 the tasks are part of reverse
engineering (in particular, design recovery) and restructuring on the abstraction level
of design.

Task 1 Analyze and compare different types of code dependencies.

When we only look at the dependency structure of a system, some interesting ques-
tions already arise. For instance, dependency information might only sparsely cover
the entities, or there might be clusters of entities, outliers, or hubs. Such characteris-
tics emerge, in particular, when comparing different dependency types. For instance,
static structural dependencies like method calls can be compared with dynamic depen-
dencies. One type of dependencies provides points of reference to better analyze the
other.

Task 2 Relate a software decomposition to the dependency structure.

Software decompositions are supposed to follow the concept of high cohesion and
low coupling:9 The code entities of a cluster should be linked by many dependencies
(high cohesion) whereas there should only be few dependencies that cross cluster bor-
ders (low coupling). Thus, a decomposition of the software might be closely related to

4

Figure 1: Two different decompositions on the same set of code entities: (a) totally
expanded decompositions; (b) gray clusters collapsed.

the dependency structure. Making the connection between both explicit, we may find
clusters of dependencies that explain why certain code entities are grouped together.
For instance, a part of the system belongs together due to many method calls that con-
nect the code entities it contains. Moreover, we may compare the cohesion of a cluster
to its coupling to other clusters. Such information might explain the relation between a
dependency type and the decomposition. If the decomposition is created automatically,
it could show how the dependencies influence the clustering results.

Task 3 Compare different software decompositions at a matching level of detail.

Finally, we look at the different software decompositions. Two decompositions are
similar if the clusters of one decomposition match the clusters of the other decom-
position. Metrics like MoJoFM7 can be used to exactly measure this similarity. But
finding out which clusters actually match each other and which clusters do not have any
match in the other decomposition is more interesting from the perspective of a software
engineer who, for instance, wants to restructure the system.

Another aspect is the level of detail of a decomposition. The hierarchical struc-
ture of the decompositions allows considering clusters on different levels. The two
decompositions presented in Figure 1 (a)—one above the entities, one below—look
significantly different at first glance. But when collapsing particular clusters of the de-
compositions as depicted in Figure 1 (b), the partition of code entities is identical in
both decompositions. Finding such matching levels of detail might, however, be diffi-
cult for larger decompositions. A tool that supports the user in this process would be
necessary.

With respect to comparing software decompositions, we require such a tool to show
similarities and differences of decompositions and to support finding matching levels
of detail.

5

icicle plot of the 1st hierarchy

icicle plot of the 2nd hierarchy

collapse/expand entire level

adaptive level of detail thresholds

Jaccard similarity of two clusters

entity bar with mutual blocks

matrix-based graph visualization

adjacency to highlighted element

highlighted hierarchy element

color scheme

Figure 2: Example of the novel matrix-based visualization technique to compare dif-
ferent dependency graphs and software decompositions.

Since these tasks focus on an explorative, qualitative—not quantitative—analysis,
we believe visualization is most suitable. A metric-based approach or a textual repre-
sentation would not provide sufficient overview and flexibility.

3 Visualization Technique
A visual technique that supports the user to solve the three tasks is required

• to concurrently display dependency graphs and software decompositions,

• to reveal similarities and differences in graphs and decompositions, and

• to support finding matching levels of detail in different software decompositions.

To simplify these requirements somewhat, we decided to only allow two depen-
dency graphs and two software decomposition at maximum. Nonetheless, multiple
comparisons could be realized by several pairwise comparisons.

Figure 2 provides a preview of how our novel visualization looks. It shows a repre-
sentation of the Azureus (now called Vuze) system, a BitTorrent client. The following
sections introduce the visualization step by step. We discuss the representation of the
dependency graphs and the software decompositions, introduce a metric to find match-
ing clusters, and explain the interactive features of our implementation. Finally, we
provide a comprehensive example how to read the resulting images as presented in
Figure 2.

6

3.1 Dependency Representation
Our visualization technique is based on an adjacency matrix representation of graphs:
It represents code entities as rows and columns of a matrix, and it depicts dependencies
as cells of the matrix. A colored box at the intersection of row A and column B thus
encodes a dependency from code entity A to code entity B. Hence, all code entities are
represented twice, once as a row and once as a column. In a usual adjacency matrix,
rows and columns are ordered equally so that self-dependencies form the diagonal of
the matrix. However, our visualization deviates from this paradigm; we explain later
on why.

We preferred a matrix representation over a node-link approach—diagrams where
nodes represent the code entities and visual links between these nodes represent code
dependencies—for several reasons:

Scalability Node-link diagrams suffer from occlusion problems when it comes to vi-
sualizing larger and denser graphs. Elaborate layout algorithms may ease the
problem, but cannot eliminate it. In contrast, no visual elements overlap in ma-
trix visualizations by definition. Ghoniem et al.10 provide empirical evidence for
the superiority of matrix representations of larger graphs in many applications.

Edges Since we want to analyze differences in dependency graphs, we are interested
in the existence of particular edges (i.e., dependencies). In contrast, tracking
paths over several edges and code entities—an obvious shortcoming of matrix-
based graph visualizations—is less important for our application because path
related tasks are not required to identify clusters. A matrix visualization focuses
on edges; it explicitly shows existing and non-existing edges.

Clusters Depending on a good layout, both node-link and matrix diagrams are able
to reveal clusters. But as Henry et al.11 point out, in dense clusters, matrix
representations still provide detailed information while node-link representations
produce clutter.

Figure 2 shows the complete visualization consisting of an adjacency matrix as
the central part. The matrix is attached with two hierarchy representations and other
supplementary diagrams. In this example, we used 477 classes as code entities, which
results in a matrix of 477 rows and 477 columns. These rows and columns are too
narrow to be indicated by a border line. Thus, each cell representing a dependency (an
intersection of a row and column of the matrix) has only a few pixels on screen, but we
can still see and discern these small points. Moreover, we observe that these colored
cells are not evenly distributed over the image. The visual clusters formed by these
cells hint at clusters in the dependency structure.

Our matrix-based approach is able to visualize two graphs on the same set of code
entities in the same diagram. The dependencies just need to be drawn in different
colors—one color for each graph and a third color to represent duplicate dependencies
(i.e., dependencies that occur in both graphs). Figure 2 provides an example with two
such types of dependencies. The legend depicts the color scheme: blue for the first
type, purple for the second type, and red for the duplicate dependencies. Concurrently

7

visualizing more than two graphs with this approach is possible, but would probably
confuse the user by ambiguous colors. A comparison of n graphs would need 2n − 1
different colors plus a background color.

If we work on weighted graphs instead, the matrix-based representation needs some
adaptations: Since we already used the color to encode the different data sources, we
have to encode the values of the similarity metric otherwise. We decided to use opaque-
ness and draw weaker edges less opaquely than stronger ones, which is very intuitive.
For edges included in both graphs, we sum up the weights of both edges and accord-
ingly choose the degree of opaqueness.

3.2 Decomposition Representation
We consider software decompositions as hierarchies. A visual representation of a hier-
archy can be easily attached to the sides of the matrix. We use a layered icicle plot12

to depict this hierarchy. Such an icicle plot lays out the nodes similar to a usual tree
diagram, but depicts each node as a box that fills the available space around the node.
It is more space-efficient and easier to label than an equivalent tree diagram.

The visualization in Figure 2 displays a software decomposition in form of the
package structure on the left hand side of the diagram. Soft shadows separate the
clusters, not only in the hierarchy but also continuously in the matrix. If enough screen
space is available, labels identify the clusters. We align the leaves of the hierarchy,
which represent the code entities, in a bar. This entity bar can be used for displaying
additional information on the entities (Section 3.3 and Section 4.2.1)

Since the rows and columns of the matrix can be sorted independently, we are
able to add a second software decomposition on top of the diagram. Additional to
the package structure on the left, the example in Figure 2 depicts a decomposition
automatically generated by a clustering algorithm (details on clustering are explained
in Section 3.4).

The hierarchical structure of each decomposition implies some constraints on the
order of the code entities: Only sibling entities or clusters are allowed to be switched
without destroying the representation of the decomposition. Hence, in the general case,
code entities have to be sorted differently with respect to rows than with respect to
columns.

3.2.1 Cluster Similarity

The task of comparing the two decompositions consists of finding similarities and
differences in the cluster structure. But without assistance, this would be a time-
consuming and strenuous task: Considering a particular cluster, it is hard to identify its
most similar correspondent because it has to be manually compared to every cluster in
the other decomposition. A metric that is able to rank the possible correspondents with
respect of their similarity to a selected node might solve the problem.

A cluster consists of a set of code entities. Thus, comparing two clusters is equiv-
alent to comparing two sets A and B. To get a similarity measure, we are interested in
how many entities concurrently belong to both clusters in relation to the size of both

8

clusters. This can be expressed as the size of the intersection of the two sets divided by
the size of the union of the sets—the Jaccard coefficient:

sim(A,B) :=
|A ∩B|
|A ∪B|

.

We integrate the similarity information based on the Jaccard coefficients in the
background of the matrix representation. The clusters form a matrix-like meta-structure
where the cluster—not the code entities—represents the rows and columns. Each com-
parison of two clusters can be represented as a cell of this matrix. We use the back-
ground brightness of the cells to encode the Jaccard similarity value of the according
cluster: Dark backgrounds visualize high similarity values. Coloring each possible
pair of clusters like this would, however, lead to overlapping cells and thus ambiguous
shadings. Hence, this approach enables comparing two decompositions only at one
level of detail for each decomposition. In our case the background structure always
shows the cluster similarity at the lowest levels. But by temporarily collapsing clusters
in the hierarchy, this lowest level can be adapted with our tool. By default this is done
manually by clicking on the clusters, but we also implemented an algorithm to support
the task of finding matching levels (Section 4.1).

3.3 Interaction
Our implementation of the approach follows the information visualization mantra:13

overview fist, zoom and filter, then details-on-demand.
Overview: The matrix shows the whole data set without the need to scroll or ma-

nipulate the view. Hence, overview is provided by the default view of the visualization
at any time. Nevertheless, the similarity metric, which is visualized in the background,
only allows comparing the clusters at the lowest level of the hierarchy. To support the
comparison of clusters on higher levels, the visualization allows the user to collapse
(and expand) clusters by clicking on their visual representations. A collapsed cluster
does not change its size, but its subclusters temporarily disappear. The collapsed cluster
now directly contains all leaf nodes of the subclusters. Larger gray scale background
boxes display the cluster similarity metric values on this higher level. Furthermore,
slim markers on the side of the hierarchy enable the user to collapse or expand whole
hierarchy levels (Figure 2, top left). These markers also indicate which levels are cur-
rently totally collapsed (light gray), partially collapsed (gray), or fully expanded (dark
gray).

Zoom: A matrix is a table where zooming can be implemented like demonstrated
by the Table Lens visualization using multiple focuses14—rows and columns can be
focused independently by zooming; a selected row gets higher, a column gets broader.
In our visualization, zooming an element of the hierarchy means that the respective
rows or columns get larger (or smaller). Zooming is triggered by using the mouse
wheel while hovering the cursor on a cluster. This can be done for clusters in the first
as well as in the second hierarchy independently. Our goal is that the total size of the
visualization does not change while zooming, which is implemented by reducing the
size of the remaining clusters accordingly. Zooming different clusters hence creates

9

Highlighted
package

Entities adjacent
to highlighted

incoming outgoing

Color: type of dependency

Figure 3: By highlighting a package or entity, small colored stripes indicate adjacent
entities (detail).

a set of multiple focuses in the matrix: areas where rows are enlarged, columns are
enlarged, and both rows and columns are enlarged.

Filter: Discerning the three different colors that encode the type of an edge gets
harder for larger graphs when the respective cell only consists of a few pixels on screen.
Interactively switching on and off the edges of a certain color facilitates this comparison
in a more scalable way. Additionally, some details presented on demand include a
certain filtering aspect as the following paragraph explains.

Details on demand: When moving the mouse over a colored matrix cell represent-
ing a dependency, the labels of both related code entities appear. Moving the mouse
over a code entity or a cluster, the tool shows its name as a tooltip. Besides these ba-
sic features, it is possible to filter the graph structure on demand (Figure 3): When an
entity or cluster is hovered, all adjacent entities are highlighted at the leaf level in the
entity bars of the hierarchies. Small colored stripes indicate the adjacent entities while
their color encodes the type of adjacency. The alignment of the stripes (left or right
in the vertical entity bar; top or bottom in the horizontal entity bar) discerns incoming
edges from outgoing edges.

3.4 Application Example
Next, we provide a first application example to give an impression on how to use the
introduced visualization technique (this example is illustrated in more detail in the
supplementary materials). Figure 2 depicts the 477 classes of the core of the Azureus
project in our matrix visualization approach. It shows the package structure of the
system on the left and a hierarchical structure derived by clustering on the top. The
clustering was created by the graph-based software clustering tool Bunch.15 The tool
follows a search-based approach and optimizes a clustering quality metric by using a
hill climbing algorithm. Applying the clustering algorithm recursively, a hierarchy of
clusters is created. The two graphs encode two types of dependencies automatically
detected in the project. The first type consists of structural static code dependencies
(method calls, aggregation, inheritance, etc.). The latter one is represented by co-
change couplings (also known as logical couplings or evolutionary couplings). These
are couplings that indicate that two classes have been changed frequently together in
the past. The union of both graphs, which is defined as the union of the sets of edges,
is used as the input for the clustering algorithm.

The visualization enables the user to identify similar clusters at a glance: With the
help of the background structure, we can immediately detect the most similar cluster
combinations. Moreover, non-matched clusters result in rows or columns consisting
only of a set of light-gray boxes without any darker ones. Table 1 lists some examples
of such matched and non-matched clusters. For instance, the dark box in the lower
right corner in Figure 2 shows that the disk package nearly matches the 0.0.0 cluster.
The only light-colored boxes in the row of the util.# package provide an example of

10

a non-matched package. But there are significant differences between types of non-
matched clusters: While the util.# package is far from having a matching counterpart,
for instance, the 0.1.1 cluster is just mainly distributed over two packages (peer and
download). This union of two packages in one of the clusters, which is indicated by two
horizontal mid-gray boxes, suggests that the peer and download packages are related
and that an aggregation to a common parent package may improve the architecture of
the software. Analogously, two vertical mid-gray boxes are an indicator that splitting a
package could be recommendable in this application scenario (e.g., the client package).

Table 1: Examples of matched and non-matched clusters in Figure 2.
Package Decomposition Clustered Decomposition

disk 0.0.0
tracker.prot.udp 0.1.2.6.24

ipfilter 0.1.3.3

util.# –
– 0.1.1

The graphs consist of 2362 edges (structural) and 302 edges respectively (co-
change). The size of the data set prohibits encoding an edge in much more than one
pixel on the screen. Nevertheless, we can get a rough overview on the two graphs
by just looking at the visualization presented in Figure 2. When we want to retrieve
details on the graph structure, we may zoom in on one of the packages or clusters.
For instance, in Figure 2, the tracker.server package and the 0.1.6 cluster are enlarged.
An alternative way to reveal detailed information, is to use the detail-on-demand and
filtering functionality as also demonstrated in Figure 2: The tracker.server package is
also highlighted, which not only marks all contained entities but also shows the ad-
jacency relations of these contained entities in the entity bars of the hierarchies as
colored stripes as explained in Section 3.3 and Figure 3. In this example, we are able to
state that the tracker.server package is significantly related to the logging, tracker.host,
tracker.prot.udp, and util packages. We can even retrieve the direction of the depen-
dency by the alignment of the stripes: Mostly the tracker.server package depends on
the mentioned other packages (not vice versa) because the stripes are aligned to the left
border of the entity bar (see also Figure 3).

4 Advanced Layout
In the basic visualization technique described so far, there is room for some advanced
layout improvements. One aspect is the level of detail of the two hierarchies—in large
hierarchies it could be hard to manually find a matching level of both hierarchies. An-
other aspect concerns the ordering of the vertices—an optimized order might reveal
additional insights. Next, we will introduce an adaptive level of detail algorithm and
two sorting strategies and demonstrate the improvements in two small evaluations. In
Figure 2 we already applied these improvements to provide a more readable visualiza-
tion.

11

Figure 4: The example from Figure 2 without and with an appropriately chosen level
of detail.

4.1 Adaptive Level of Detail
When comparing two decompositions, it is necessary to choose an appropriate level
of detail. The gray scale matrix in the background is the most important criterion to
assess the similarity of the two decompositions at a particular level. Roughly speak-
ing, few black boxes and many white boxes indicate a high conformance while many
low-contrast gray boxes indicate a low conformance. The interactive expand and col-
lapse mechanism allows the user to explore different levels, but for larger data sets
this could become tedious: Clustered decompositions tend to be deep and fine-grained
hierarchies while, for instance, package structures are normally flat and more coarse-
grained. Hence, an automatic or semi-automatic algorithm that helps finding two
matching levels-of-detail would be of great help.

We define a level of detail to be appropriate if the following conditions are true:

Conformance The decompositions match as far as possible with respect to a measure
of similarity.

Significance The structure of both decompositions is preserved (i.e., not too many
clusters should be collapsed).

It is always possible to reach maximum conformance by totally collapsing both
decompositions. But this obviously violates the condition of significance. Hence, these
two conditions usually must be traded off against each other.

Figure 4 gives an example of how important the level of detail is. While, in the
default visualization on the left hand side, the background patterns are much too fine-
grained to easily find differences and similarities in both decompositions, the right
hand side image is much more readable because it has an appropriately chosen level of
detail.

12

4.1.1 Optimization Criterion

To implement an automatic algorithm, we had to find a formal optimization criterion
that assesses the quality of a particular level of detail state. Such a state consists of the
partially collapsed decompositions. Each collapsed decomposition implies a partition
of the code entities like presented in the example of Figure 1. Hence, an optimization
criterion is a real-valued objective function defined on two partitions.

We propose an objective function that counts the number of matching clusters of
the two partitions P1 and P2. The degree of similarity could be again computed by
the Jaccard similarity coefficient. Adding these similarity coefficients for all possible
cluster combinations, we come up with the following objective function.

f(P1, P2) =
∑
A∈P1

∑
B∈P2

ωA,B ∗ sim(A,B)

To consider the different sizes of the cluster, we added a weighting coefficient ω.
For two clusters A and B, the coefficient just sums up the number of elements of both
clusters: ωA,B := |A|+ |B|. It is independent of the similarity of the clusters and gives
larger cluster combinations a higher weight.

4.1.2 Significance Level Thresholds

This objective function, however, only evaluates the level of detail with respect to con-
formance and does not consider significance. But it is difficult to balance significance
and conformance in a single objective function. An appropriate balance might also
depend on the concrete application the user has in mind.

To allow high conformance on different levels of significance, we introduce a sig-
nificance level threshold for each of the two decompositions. This threshold prevents
collapsing clusters beyond this level while optimizing the conformance.

The grid pattern in the upper left corner of the visualization displays the two sig-
nificance level thresholds. The user is able to set both levels with a single click. For
instance, in Figure 2 the user has clicked on the grid element at the intersection of the
third column and the third row, indicated by a black box. This means that both decom-
positions have to stay expanded up to the third level while optimizing the conformance
of the decompositions.

4.1.3 Optimization Algorithm

The two decompositions, the objective function, and the two significance level thresh-
olds form a constrained maximization problem. As an optimization strategy for this
problem, an exhaustive search, however, is not applicable for nontrivial data sets. The
number of possible partitions induced by a single hierarchy might already grow expo-
nentially with the number of leaf nodes n: In the worst case—a binary hierarchy—at
least the n

4 intermediate nodes of the lowest collapsable level can be independently
switched. This leads to at least 2

n
4 different partitions.

Instead, we use a hill climbing algorithm to find a local maximum of the optimiza-
tion problem. As an initialization, the algorithm expands the two decompositions to

13

the minimal level, which is defined by the two significance level thresholds. Then it
tries to maximize the objective function as follows (expand operations that improve the
objective function persist while all other expand operations are directly undone):

1. Expand each collapsed node of the first hierarchy one by one.

2. Repeat step (1) for all collapsed nodes of the second hierarchy.

3. If nothing has improved in step 1 and 2, try to expand two nodes concurrently,
one in the first and one in the second hierarchy (systematically over the quadratic
number of all possible combinations).

These three steps are repeated until they cannot provide any further improvement.
The third step turned out to be helpful to skip local maxima because some pairs of clus-
ters already match on a higher level, but even better on a lower level: Only expanding
one of the clusters does not lead to a better match, but concurrently expanding both
would do.

Thus, our optimization strategy provides an interactively selectable level of detail
with an adaptive refinement to underline matching parts of the two decompositions.
Clicking on a grid element of the threshold visualization (the grid pattern in the upper
left corner of the diagram), the algorithm automatically produces a layout of few black
boxes surrounded by many white ones. Figure 4 illustrates this process: While the
image on the left hand side shows two totally expanded hierarchies, the image on the
right hand side is actually created applying the optimization algorithm (this image is
also depicted in Figure 2 in larger size).

4.1.4 Evaluation

Our impression using the visualization was that the adaptive level of detail algorithm
drastically reduces the time to find an appropriate level of detail. In a brief evaluation
we want to substantiate that the algorithm finds useful solutions and reduces the number
of necessary interactions. We employ the real-world data set that is later also used in
the case study (Section 5). The data set consists of six software projects. To test the
algorithm, we try to find a matching level of detail between the package structure and
a clustered decomposition of the systems created with the clustering tool Bunch.

We first identify an appropriately matching level by manually collapsing and ex-
panding packages and clusters without using the adaptive algorithm. In particular,
guided by the similarity metric that is encoded in the background of the matrix, we try
to find a matching cluster for each of the major packages. When the solution satisfies
our subjective assessment, we save the result and try to retrieve it by only using

1. the collapse and expand mechanism for single clusters,

2. the level collapse mechanism together with the collapse and expand mechanism
for single clusters, or

3. the adaptive level of detail algorithm (Section 4.1.3) together with the collapse
and expand mechanism for single clusters.

14

For each condition, we compute the optimal solution starting at the totally expanded
hierarchy. The conditions are assessed by measuring the minimal number of interac-
tions the user would need to retrieve the result. We repeat this procedure for every of
the six software projects.

Results: On average, the users would at least have to perform 36.7 interactions in
condition (1), 16.0 in condition (2), and 7.3 in condition (3) to retrieve the manually
derived level of detail. This means that the algorithm in (3) dramatically decreases the
number of necessary interactions: The user would have to use only 20% of the interac-
tions required when exclusively using the standard collapse and expand interactions (1)
or only 46% required when also including the level collapse mechanism (2). Moreover,
the low number of interactions in (3) shows that the algorithm produces results close
to the meaningful manual solution.

4.2 Sorting
The linear ordering of the rows and columns is elementary for the readability of a
matrix graph visualization.16 With a random ordering no structure would be visible,
whereas a good ordering would reveal important graph structures like clusters, hub
vertices, or outliers. Different approaches and algorithms exist to create a reasonable
layout—Mueller et al.16 as well as Henry and Fekete17 survey these techniques in
detail.

The hierarchical representation of the two software decompositions, however, con-
strains and partially defines this ordering in our visualization. If the decomposition
follows a certain semantic, this mandatory sorting may already help revealing the struc-
ture of the dependency graphs. Nevertheless, the ordering still leaves some degree of
freedom: The positions of sibling clusters and code entities can be switched without
violating the constraints.

4.2.1 Local Diagonals

Interpreting matrix diagrams, the diagonal is an important reference line:18 In a typical
matrix representation of a graph, the cells on the diagonal represent self-edges. Our
visualization depicts two decompositions at the same time. Thus, in contrast to most
matrix graph visualizations, it uses different vertical and horizontal entity orders. A
side effect is that the former diagonal entries, which we call self-referencing cells in
the following, are scattered all over the diagram. To regain a local diagonal structure,
the tool sorts sibling code entities without destroying the hierarchical structure.

If all self-referencing cells in a matrix are on the diagonal, an imaginary link be-
tween an arbitrary pair of self-referencing cells always forms a descending line (from
left to right). This condition only holds globally for a perfect diagonal and thus usually
cannot be established in our case due to the two different hierarchies. But we are able
to fulfill the condition locally for each of the clusters on the lowest level of the hier-
archies. We implemented an algorithm that aims at eliminating all ascending lines in
those local clusters and thereby creating local diagonal structures. Figure 5 illustrates
the algorithm: In the first decomposition, every pair of code entities in the same cluster

15

Figure 5: Sorting algorithm on leaf level. Black boxes mark self-referencing cells;
ascending lines are dotted; descending lines are dashed; arrows indicate the transfor-
mations.

is switched if the two self-referencing cells define an ascending line. The same proce-
dure is applied to the second decomposition. Finally, all lines between sibling elements
are descending and form local diagonals.

Besides the locally regained diagonal structure, results of this local sorting algo-
rithm are blocks of neighboring entities in the one decomposition that all belong to the
same cluster in the other decomposition. These mutual blocks reveal additional impor-
tant information for comparing the two decompositions: They show how a cluster in
one decomposition is spread over the other decomposition.

The mutual blocks are encoded as boxes in the entity bars of the two decomposi-
tions. They look like a bar code and form the border lines between the icicle plots and
the adjacency matrix (Figure 2). Each box represents a mutual block, which relates
two clusters from the two decompositions. The brightness of the box corresponds to
the Jaccard similarity of the two associated clusters: A black box stands for a good
match while a gray or white box represents mutual blocks that only partially cover the
two clusters.

Although the similarity of clusters is already encoded in the matrix background,
these mutual blocks help detecting further interesting phenomena. Comparing the two
forms of encoding, we observe that both are important because they support different
tasks:

Matrix Background From the background encoding of the similarity metric, users are
able to retrieve which cluster in one hierarchy is most similar to which cluster in

16

the other hierarchy. The background color gives a rough impression of the extent
of similarity.

Mutual Blocks The mutual blocks are a kind of summary of the similarity informa-
tion with respect to one hierarchy. For the particular hierarchy, they provide a
better overview on which clusters are matched: The user only has to look at the
hierarchy and its mutual blocks and does not need to search the whole matrix.
Moreover, details can be retrieved in the mutual blocks with higher precision
because the similarity is not only encoded in the color but also in the size of the
blocks. For instance, we see at a glance that the torrent package in Figure 2 is
only half matched. On the other hand, also small differences in mostly match-
ing clusters become visible, as it is the case for the disk package in Figure 2.
This ability is very important for analyzing evolving decomposition structures
including only small changes.

4.2.2 Global Sorting

We usually cannot reconstruct the global diagonal because the two hierarchies constrain
the ordering of vertices. Nevertheless, we may try to retrieve parts of it by placing the
self-referencing cells as near as possible to the global diagonal. Analogously to local
sorting, this goal can be expressed through minimizing the global number of ascending
lines that connect the self-referencing cells.

We found that this optimization problem is equivalent to the problem of minimiz-
ing edge-crossings in a corresponding node-link based hierarchy comparison, which
is called the tanglegram layout problem19 or the two-tree crossing minimization prob-
lem ,20 an NP-hard problem. Figure 6 (top) provides an example of the correspond-
ing visualizations for a graph consisting of five vertices. The diagram on the left
shows our matrix-based comparison together with the ascending lines between the self-
referencing cells, which measure the deviation from the global diagonal. The diagram
in the middle depicts a transition step where the vertices in the matrix are connected by
edges like in a node-link diagram—the number of edge crossings is equal to the num-
ber of ascending lines. Finally, the diagram on the right reflects the node-link based
hierarchy comparison, which can be created by distorting the node-link diagram from
the transition step. The distortion does not change the number of edge crossings.

This example already suggests the equivalence of the two problems, but the equiv-
alence can also be proofed by induction as sketched in Figure 6 (bottom). We want
to show that the number of ascending lines a in the matrix is equal to the number of
edge crossings b in the transition step, is equal to the number of edge crossings c in the
node-link comparison, i.e., a = b = c. The situation is trivial for n = 1 vertices, where
neither ascending lines a nor edge crossings b, c exist. In the following we will show
that, if the assumption holds for n − 1 vertices (an−1 = bn−1 = cn−1), it also holds
for n vertices: Without loss of generality, we assume that the new vertex is added at the
last position of the first hierarchy. Then, 0 ≤ k ≤ n − 1 vertices are positioned after
the corresponding new vertex in the second hierarchy. As Figure 6 shows, this means
that the number of ascending lines increases by k because of k self-referencing cells
in the respective block (an = an−1 + k); in the transition step, the number of edge

17

C D A E B

A

B

C

D

E

C D A E B

A

B

C

D

E

ascending lines: a = 5 crossings: b = 5

A

B

C

D

E

C

D

A

E
B

crossings: c = 5

n = 1 1

1 1 1

n-1 → n

n

n

Induction: a = b = c

a1 = 0 b1 = 0 c1 = 0

k vertices

an = an-1 + k

n

n

1

1

k lines

bn = bn-1 + k

n

n

k vertices

cn = cn-1 + k

Figure 6: The equivalence of minimizing ascending lines between self-referencing cells
in our matrix-based hierarchy comparison and minimizing edge crossings in a corre-
sponding node-link diagram.

18

crossings increases by k because of k horizontal lines (bn = bn−1+k); and in the final
node-link diagram, the number of edge crossings increases by k because of k skipped
vertices (cn = cn−1 + k). Hence, an = bn = cn.

Though the problem is NP-hard, there exist efficient heuristics. We implemented
the hierarchy sort heuristic by Holten and van Wijk,21 which is also able to handle non-
binary hierarchies and runs in O(n · H), where n is the number of leave vertices and
H is the maximum hierarchy height (and the number of collapse-and-expand cycles is
constant).19

The algorithm is based on collapse and expand operations, which allow a level-
by-level sorting of the hierarchies (as described in detail by Nöllenburg et al.19). A
collapse-expand phase starts with the totally expanded hierarchies, optimizes the or-
dering of the leaf vertices for both hierarchies, and then collapses the two hierarchies
to the next lower level. This process continues until the root vertex is reached and is
then reverted by expanding the hierarchies again level by level while sorting the leaf
vertices. The collapse-expand phases are repeated until no further improvements could
be reached.

The optimization of leaf vertices is based on the barycentric method originally pro-
posed by Sugiyama et al.22 to lay out the levels of a hierarchical graph: The leaf
vertices that are siblings in the hierarchy are ordered according to the barycenters of
the set of vertices they are connected with in the other hierarchy. This is done for the
first hierarchy while the second hierarchy is fixed and then repeated vice versa.

We perform global sorting once at start-up on the inner vertices of the completely
expanded hierarchies. Since the procedure to retrieve the local diagonals is exact and
simple, we still apply the local sorting algorithm to the code entities afterwards. Every
time a hierarchy element is expanded or collapsed, local sorting is re-applied to always
preserve local diagonals and mutual blocks. In contrast, global sorting does not need
to be re-applied because expanding or collapsing a particular hierarchy element has
only local effects and does not change the situation with respect to the other hierarchy
elements.

4.2.3 Evaluation

To estimate the effect of sorting, Figure 7 provides four examples—(a) and (b) illustrate
the effect of local sorting, (c) and (d) show the importance of global sorting.

Skipping local sorting as demonstrated in (a) has negative consequences for the
mutual blocksin the entity bars of the hierarchies. The blocks are scattered among
the leaves of the respective hierarchy element. Comparing (a) to (b) reveals that local
sorting creates homogeneous mutual blocks, which help analyzing how the contained
entities of a hierarchy element are distributed over the other hierarchy. Additionally,
local sorting is necessary to reconstruct the local diagonals.

The effect of global sorting is that the self-referencing cells, which are distributed
over the whole diagram without global sorting in (c), move closer to the diagonal of
the matrix like shown in (d). The black and dark-gray rectangles, which contain many
self-referencing cells, are thereby also aligned. This has some major advantages for
comparing the two hierarchies: First, it is easier to get an overview on all matching
clusters as we just have to follow the diagonal and do not have to search the whole

19

(a)

(b)

(c) (d)

Figure 7: The effect of local sorting on mutual blocks: without sorting (a), with local
sorting (b). The effect of global sorting on the background structure: without global
sorting (c), with global sorting (d).

20

diagram as necessary in (c). Second, gaps in the diagonal easily reveal outliers. These
outliers could be packages that are not well-matched and hence produce only light-
gray boxes. Or we could find the missing dark box somewhere off the diagonal. This
indicates that the two hierarchies indeed match at the current level of detail, but may
conflict at a higher level because otherwise the algorithm would have been able to
arrange the respective box near the diagonal. Third, the mid-gray boxes belonging to
the same hierarchy element are placed near to each other. This reduces the effort to
find the hierarchy elements that are united or split in the other hierarchy.

5 Case Study
The visualization approach was motivated by the application of studying software clus-
tering results. Hence, the following visual analysis will apply our visualization tech-
nique to the previous study on software clustering.6 The study incorporated the soft-
ware clustering tool Bunch,15 an approach based on the principle of high cohesion and
low coupling of modules, to compare different data sources for software clustering.
We assessed the clustered software decompositions retrieved from six sample projects
by comparing them to a reference decomposition: the actual package structure of the
project. As discussed in the Section 2, this quantitative assessment left some questions
unanswered.

In the following we will analyze the software decompositions again, but now in a
more qualitative and explorative approach. The tasks defined in Section 2.2 provide
different views on the data sources and clustering results.

In general, our analyses consider all six sample projects of the study, namely,
Azureus, JEdit, JFreeChart, JFtp, JUnit, and Tomcat. For practical reasons, we only
depict the resulting visualizations for JFtp, the smallest of the sample projects, in the
paper and provide respective visualizations of the other systems as supplementary ma-
terial. Observations and findings that supplement the original analysis of the clustering
results are reported in the following.

5.1 Compare Dependencies (Task 1)
The dependency graphs are the basis for the clustering process: They are the input for
the clustering algorithm. On the one hand, we used static code dependencies—like
inheritance, aggregation, and usage—to represent a traditional software clustering ap-
proach. These dependencies form the Structural Class Dependency Graph (SCDG).
On the other hand, we used co-change couplings, which form the Evolutionary Class
Dependency Graph (ECDG), to represent hidden dependencies. These co-change cou-
plings relate two classes if these classes have been frequently changed together in
the evolution of the software project. The dependency strength consists of a sup-
port value—the absolute number of co-changes—and a confidence value—a relative
number of co-changes. To reduce the noise in the data set, a filter eliminates weak
dependencies: We only consider two classes as coupled by co-change if the confidence
value is higher than 0.8. This threshold value was derived from the empirical results in
our previous study6 where this setup tends to produce good clustering results. In this

21

Figure 8: Graph comparison between the SCDG and the unfiltered ECDG for the JFtp
project; the package structure provides a default decomposition.

first example unrelated to clustering, we wanted, however, to analyze the raw data and
do not apply a filtering for co-change couplings.

The first phase of the case study uses the visualization as a graph comparison tool
(Task 1). Since clustered decompositions are not yet relevant, the package structure
is employed as default decomposition. The background structure thus does not carry
any further information here. The graph visualization, however, reveals significant
differences in the graph structures, as illustrated for JFtp in Figure 8:

SCDG (blue & red dependencies) Sparse graphs, but with dependencies that cover
most of the nodes at least once. Some outstanding nodes with many incoming or
outgoing dependencies form a kind of hub nodes.

22

ECDG (purple & red dependencies) Dense graphs (without filtering as shown in Fig-
ure 8) up to very sparse ones (with a strong filtering). Local concentrations of
edges form dense clusters. But many nodes are not covered by any dependency.

These results show two main drawbacks of the ECDG: the local concentration of
dependency information and the overall low density of the dependency graph, espe-
cially for stronger filtering setups.

Furthermore, the intersection of the dependencies (red dependencies) of both graphs
is small and mostly relates classes of the same package. Since those dependencies that
do not cross package borders help retrieving the package structure this tendency ex-
plains why it is beneficial to give those dependencies more weight in the clustering
process.

5.2 Decompositions & Dependencies (Task 2)
In this second stage of our analysis, we also consider software decompositions pro-
duced by the employed clustering approach. We use the vertical axis to depict the
clustered decomposition based on the structural code dependencies (SCDG) and the
horizontal axis for the one based on the co-change dependencies (ECDG). Figure 9
shows such a visualization for the JFtp project.

In the evolutionary software decomposition (Figure 9, top), cluster x looks interest-
ing: It roughly covers a third of the hierarchy, but is not subdivided further. There also
exists a cluster x in the structural software decomposition (Figure 9, left), but it is much
smaller. This cluster x represents all elements that could not be clustered because there
was not any dependency information available for them. Thus, there are no co-change
dependencies available for about a third of the classes of the software system, and the
clustering algorithm could only cluster the other two thirds of the system. This situa-
tion is even worse in the other sample projects. This sparse coverage seems to be the
main problem of clustering a software system exclusively with co-change information
(ECDG).

Admittedly, we already uncovered this fact in the previous study. But there we
needed a metric to measure the coverage, in contrast to the visualization, where we
were able to grasp the same fact without even intentionally looking for it.

Analyzing the relation of the hierarchies and the graphs in more detail, we observe
in the visualization that deeper hierarchies come along with clearly identifiable clus-
ters indicated by visual clusters in the dependency graphs. The clustering algorithm
seems to produce flatter hierarchies when the clusters in the dependency graphs are
less clear. But we are not able to find any significant difference between structural and
evolutionary decompositions with respect to this effect.

All in all, our case study confirms that the conformance between the structural and
evolutionary decompositions is low. This might indicate that both data sources actually
cover different dimensions of code dependencies—a combination of both data sources
combines these two dimensions. Actually, this lead to slightly better clustering results
as we found out in the previous study.

23

Figure 9: Two different clustered decompositions, one based on structural dependen-
cies (vertical), the other based on co-change dependencies (horizontal).

24

Figure 10: Clustered software decomposition based on the combined structural and
evolutionary graphs compared with the reference decomposition (package structure).

5.3 Compare Decompositions (Task 3)
With our visualization the user is able to detect matching clusters at first glance—
perhaps the most striking feature of the technique. For instance, in Figure 10 the event
package is almost perfectly matched by cluster 0.0.2, as we learn from the background
shading of the matrix. The precondition is an appropriate level of detail, which could
be easily gained by the level of detail optimization algorithm.

We use this ability of detecting well-matched packages to identify those packages
that are either fairly matched or non-matched. In most cases, nearly perfectly matched
packages possess a high structural cohesion, in other words, many structural dependen-
cies connect the classes. Concurrently, those well-matched packages are sometimes,
but less often supported by good co-change cohesion—the classes of the cluster were
frequently changed together. In contrast, matching clusters predominantly based on

25

high co-change cohesion are rare. This explains why combining structural and co-
change data improved the clustering quality in the quantitative study and using exclu-
sively co-change data was only partly successful.

In contrast, utility packages—packages that provide some global functionality—
could hardly be retrieved by our clustering approach. The visualization supports iden-
tifying those packages, even when they are not named utility or util, by their character-
istic structure: Utility packages do not have outgoing dependencies to other non-utility
packages, but many incoming ones from diverse packages. We are able to gain this in-
formation either by looking at the adjacency matrix or by using the interactive details-
on-demand that highlight all adjacent classes (including the direction of adjacency)
for a package as demonstrated in Figure 3. Once we identified these utility packages,
the visually encoded cluster similarity revealed no significant correspondence to the
clustered packages. This problem is a known problem of dependency-based clustering
approaches.23 A preprocessing that detects such packages before the actual clustering,
like proposed by Mancoridis et al.,15 might improve the clustering results.

Our visualization also showed that in some setups—in particular those involving
the larger projects—the clustering algorithm was not able to create a decomposition
with at least a roughly matching granularity: All possible levels were much too fine-
grained in contrast to the reference decomposition. Repairing this weakness of the
algorithm (e.g., by forcing the algorithms to produce more levels) might also result in
much better clustering results for these setups.

5.4 Threats to Validity
The presented case study is a qualitative, task-oriented evaluation of the visualization
tool, and as a consequence, does not quantitatively or comparatively measure the per-
formance or effectiveness of the visualization. The case study was performed by the
authors themselves and did not involve other users. For discussing the validity of this
study in detail, we follow the criteria for judging qualitative research introduced by
Lincoln and Guba.24

Credibility Using a data set derived from real-world software projects and analyzing
the results of a published study on software clustering increases the credibility
of the case study. On the other hand, the authors being the only participants of
the case study limits its credibility.

Transferability By analyzing the results of the clustering experiment, the case study
is focused on a specific example of comparing software architectures; in gen-
eral, it cannot be assumed that the visualization technique works in other scenar-
ios. Some aspects, however, suggest a certain transferability: Different software
projects and tasks are analyzed, which shows a certain flexibility of the approach.
The results include multiple kinds of observations, each kind having the poten-
tial to be transferable to other scenarios. Moreover, the data model is defined in
detail, which enables the reader to rate the transferability at least from a technical
point of view.

26

Dependability The case study is dependable as it could be replicated by reimplement-
ing the visualization approach, which is described in sufficient detail, and ap-
plying it to a data set. When aiming at a close replication, the data set can be
retrieved from open sources: the full process is described in previous work.6

Nevertheless, interpreting visualizations has a strong subjective component—
even a close replicate may come to different conclusions.

Confirmability Through describing the observations in detail and providing all vi-
sualizations as supplementary material, the results of the case study become
confirmable. Sometimes, however, some additional knowledge on the original
clustering experiment6 could be necessary to validate the particular conclusions.

The case study shows, with some limitations of validity, how the visualization can
be leveraged to interpret software clustering results in different tasks and software
projects. It, however, does not allow direct conclusions on the applicability and ef-
fectiveness of the approach in a real-world software development scenario.

6 Related Work
Software architecture visualization is an established discipline in software visualiza-
tion research.4, 25 Many tools from this area visualize software decompositions and
code dependencies—SHriMP ,26 Software Landscapes ,27 or Class Blueprints ,28 just to
name a few. Most of these visualizations employ the node-link metaphor to represent
a dependency graph structure. But matrix-based visualizations of graphs seem to gain
importance due to their advantages when it comes to visualizing larger graphs.10 They
have already been employed to analyze dependencies of software projects, for exam-
ple, method calls29 or co-change couplings.30 Originating from the analysis of manu-
facturing processes, so-called Dependency Structure Matrices are also able to visualize
software architectures in a matrix structure.31 Due to a specialized sorting, these matri-
ces help detecting cyclic dependencies and architecture violations. Recently, Zeckzer32

presented an approach that is similar to ours as it aims at comparing different depen-
dency types in software projects. Additional to using different colors, this approach
splits each cell of the matrix into n pieces, whereby each piece represents a certain
dependency type. This allows comparing more than two types of dependencies, but
also reduces the scalability of the visualization.

Visualization has also played a role in software clustering and has helped to present
single clustering decompositions in a readable way. Hierarchical decompositions have
been depicted in a form of tree diagrams,33 code dependencies have been represented
as graph visualizations,34 and similarity of code entities in high-dimensional feature
spaces have been visualized as similarity matrices.35 Other clustering related research
communities use similar forms of cluster visualizations.

These visualizations are able to present a single software architecture description
or a single clustering result. But to the best of our knowledge, no approach, however,
uses a matrix visualization to concurrently compare different graphs and hierarchies,
neither in the domain of software architecture visualization nor in clustering-related
visualizations.

27

Nevertheless, there exist specialized visualizations to compare different hierarchies
(without a graph structure). A straightforward approach is to place two hierarchies
face to face with each other and connect related leaves by visual links. Edge crossings
reduce the readability of such visualization. There exist heuristics that alleviate this
problem by minimizing the number of crossings.19 We employ one of these algorithms
to globally order the entities of our matrix (Section 4.2.2). Holten and van Wijk21

follow a different strategy and enhance the approach by bundling links into meaningful
groups. Furthermore, brushing is another paradigm to express similarities of hierarchy
nodes. For instance, TreeJuxtaposer36 displays similar sub-tree structures interactively
by highlighting the best corresponding node based on the Jaccard coefficient. Many
other visualizations that compare hierarchical structures exist; Graham and Kennedy37

provide a more exhaustive survey.
In the field of bioinformatics, Cluster Heat Maps are a popular visualization tech-

nique to analyze large clustered genome data sets.38 These heat maps consist, first, of a
color-coded matrix that usually relates genes (objects) to a set of conditions (attributes),
and second, of an attached hierarchy retrieved by clustering. Not only the objects can
be clustered, but also the attributes: A second hierarchy groups the attributes of the
matrix. Concurrently finding an optimal clustering of objects and attributes is known
as biclustering (e.g., Madeira and Oliveira39 give an overview). These cluster heat
maps, indeed, look similar to our approach, especially with two hierarchies attached.
Nonetheless, the fundamental difference is that the cluster maps do not compare two
hierarchies on the same set of objects, but help concurrently clustering two independent
sets: objects and attributes.

Software clustering results are often evaluated by comparing them to a reference
decomposition of approved quality. Like applied in our previous study a metric pro-
vides a similarity value. These metrics usually work on flattened decomposition. But
there exist first approaches that additionally regard the hierarchical structure of the de-
compositions.33, 40 These metric-based approaches may be sufficient to get a quality
measure for an automatically created decomposition, but do not explain the difference.

Other tools allow the user to visually compare graph structures. For instance, An-
drews et al.41 present a node-link approach to compare business processes and surveys
related node-link approaches. Beside these specialized tools, every dynamic graph vi-
sualization approach enables graph comparisons: The two contrasted graphs form a se-
quence of changing graphs. There even exist dynamic compound graph visualizations,
which are able to concurrently display a changing hierarchy.42 These visualizations,
however, are more suitable for evolving graphs and hierarchies, but not to contrast two
totally different data sets like those discussed in this paper.

7 Applications in Software Visualization and Beyond
The introduced visualization technique was originally motivated by the need to com-
pare software decompositions and different code dependency types in our research
project. Hence, the primary users of the visualization are the authors themselves. The
visualization provided additional insights as discussed in Section 5. Nevertheless, the
approach might be applied to the following more general visualization problems. These

28

scenarios, however, represent only an outlook as they are not backed by the case study
or other empirical evidence.

In the area of software visualization, the introduced technique might be directly
used by software developers. The different graphs that a developer might want to
compare could be call or aggregation graphs, inheritance dependency graphs, or other
graphs consisting of code couplings like co-change or code clones. A project is usually
decomposed by a dominating hierarchy, for instance, the directory or package structure
of the system. Other hierarchies might not only stem from clustering, but could also be
a different version of the package structure, a hierarchy induced by the cross-cutting
concern in an aspect-oriented system, or the layers of the software architecture.

For instance, the growth of a software project might have led to a flawed architec-
ture of a software system; the developers want to improve the design of the system by
re-grouping the classes. They apply a clustering algorithm, but the proposed result is
too far from their original design, which is a common problem when applying software
clustering.43 The visualization now helps comparing the original package structure and
the clustering result; it links the hierarchy to the graphs by revealing the clusters that
the algorithm detected. The background pattern shows non-matched packages, which
could be candidates for re-structuring because the clustering algorithm was not able
to confirm them. The algorithm might propose to split them or unite them with other
packages. Later on, developers who did not take part in the re-modularization phase
could track the changes by comparing the original decomposition of the system to the
current one by also using the visualization technique.

The underlying data structure of the visualization—graphs and hierarchies—are not
specific to software analysis. Basically, all hierarchical clustering approaches produce
similar data: one or more hierarchies, which might be compared with each other or
to a reference hierarchy, and one or more graph structures or similarity matrices that
provide the clustering criterion. Hence, the visualization might be of interest in gen-
eral for people who research on or apply clustering algorithms. Related to clustering,
classification algorithms, another data mining technique, work with similar structures.

The three tasks that we derived from our application scenario (Section 2.2) are
specializations of more general tasks. Abstracting the tasks allows looking for other
areas of application, not limited only to software visualization and clustering research.

• Task 1 is based on the general task of comparing graphs.

• Task 2 is based on the general task of analyzing compound graphs.

• Task 3 is based on the general task of comparing hierarchies.

In summary, the three general tasks describe the problem of comparing compound
graphs. Hence, the visualization could be applied in every application where compound
graphs evolve or could be retrieved from different data sources. To give an example,
when analyzing co-authorship in digital libraries, authors are connect by joint publica-
tions and hierarchically organized into communities. This compound graph structure
changes over time, which can be analyzed using our visualization. Moreover, different
community extraction algorithms may propose different results or competing hierarchi-
cal structures like the assignment to working groups, faculties, and universities could

29

be of interest. Furthermore, every application scenario of a hierarchy comparison37 can
be a potential application for the introduced visualization technique: In bioinformat-
ics, different variants of phylogenetic trees classify species or, in ontology research,
different hierarchical structures have to be mapped.

8 Conclusion
In this paper we analyzed how to compare software architectures with respect to soft-
ware decompositions and code dependencies. To this end, we developed a novel visu-
alization technique based on an adjacency matrix representation of graphs. The visual
analysis of the results of a previous quantitative study on software clustering shows that
the visualization supports the analysis tasks introduced in Section 2.2 in this scenario.
The main capabilities of the visualization are

• concurrently contrasting software decompositions and code dependencies (Sec-
tion 3.1 and Section 3.2),

• detecting matching and non-matching parts in software decompositions (Sec-
tion 3.2), and

• semi-automatically finding a matching level of detail comparing two software
decompositions (Section 4.1).

Our visualization technique is the first approach towards visually comparing archi-
tecture descriptions that consist of a decomposition of the software and code dependen-
cies. While it has been a valuable research tool for our application, its effectiveness in
other software engineering applications, however, is still to be verified (Section 5). In
general, the visualization contrasts compound graph structures and might be of use in
applications beyond software visualization like data mining, digital libraries research,
bioinformatics, or ontology research (Section 7).

9 Funding
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) [grant num-
ber DI 728/8-1/2].

References
[1] Bowman, I. T., Holt, R. C., and Brewster, N. V. (1999) Linux as a case study: its

extracted software architecture. ICSE ’99: Proceedings of the 21st international
conference on Software engineering, New York, NY, USA, pp. 555–563, ACM.

[2] Maqbool, O. and Babri, H. A. (2007) Hierarchical clustering for software archi-
tecture recovery. IEEE Transactions on Software Engineering, 33, 759–780.

30

[3] Zimmermann, T., Diehl, S., and Zeller, A. (2003) How history justifies system
architecture (or not). IWPSE ’03: Proceedings of the 6th International Workshop
on Principles of Software Evolution, Washington, DC, USA, IEEE Computer So-
ciety.

[4] Ghanam, Y. and Carpendale, S. (2008) A survey paper on software architecture
visualization. Tech. rep.

[5] Beck, F. and Diehl, S. (2010) Visual comparison of software architectures. SoftVis
’10: Proceedings of the ACM 2010 Symposium on Software Visualization, Salt
Lake City, Utah, USA, pp. 183–192.

[6] Beck, F. and Diehl, S. (2010) Evaluating the impact of software evolution on
software clustering. WCRE ’10: Proceedings of the 17th Working Conference on
Reverse Engineering, pp. 99–108, IEEE Computer Society.

[7] Wen, Z. and Tzerpos, V. (2004) An effectiveness measure for software cluster-
ing algorithms. IWPC ’04: Proceedings of the 12th International Workshop on
Program Comprehension, pp. 194–203, IEEE Computer Society.

[8] Chikofsky, E. J. and Cross, J. H. (1990) Reverse engineering and design recovery:
a taxonomy. Software, IEEE, 7, 13–17.

[9] Stevens, W. P., Myers, G. J., and Constantine, L. L. (1974) Structured design.
IBM Systems Journal, 13, 115–139.

[10] Ghoniem, M., Fekete, J. D., and Castagliola, P. (2004) A comparison of the read-
ability of graphs using node-link and matrix-based representations. INFOVIS ’04:
IEEE Symposium on Information Visualization, pp. 17–24.

[11] Henry, N., Fekete, J. D., and Mcguffin, M. J. (2007) Nodetrix: a hybrid visu-
alization of social networks. IEEE Transactions on Visualization and Computer
Graphics, 13, 1302–1309.

[12] Kruskal, J. B. and Landwehr, J. M. (1983) Icicle plots: Better displays for hierar-
chical clustering. The American Statistician, 37, 162–168.

[13] Shneiderman, B. (1996) The eyes have it: A task by data type taxonomy for
information visualizations. VL ’96: Proceedings of the 1996 IEEE Symposium on
Visual Languages, Washington, DC, USA, IEEE Computer Society.

[14] Rao, R. and Card, S. K. (1994) The table lens: merging graphical and symbolic
representations in an interactive focus + context visualization for tabular infor-
mation. CHI ’94: Proceedings of the SIGCHI conference on Human factors in
computing systems, New York, NY, USA, pp. 318–322, ACM.

[15] Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R. (1999) Bunch: A
clustering tool for the recovery and maintenance of software system structures.
ICSM ’99: Proceedings of the IEEE International Conference on Software Main-
tenance, Washington, DC, USA, pp. 50–59, IEEE Computer Society.

31

[16] Mueller, C., Martin, B., and Lumsdaine, A. (2007) A comparison of vertex order-
ing algorithms for large graph visualization. APVIS ’07: Proceedings of the 6th
International Asia-Pacific Symposium on Visualization, pp. 141–148.

[17] Henry, N. and Fekete, J.-D. (2006) Matrixexplorer: a dual-representation system
to explore social networks. IEEE Transactions on Visualization and Computer
Graphics, 12, 677–684.

[18] Mueller, C., Martin, B., and Lumsdaine, A. (2007) Interpreting large visual sim-
ilarity matrices. APVIS ’07: Proceedings of the 6th International Asia-Pacific
Symposium on Visualization, pp. 149–152.

[19] Nöllenburg, M., Holten, D., Völker, M., and Wolff, A. (2008) Drawing binary
tanglegrams: An experimental evaluation.

[20] Fernau, H., Kaufmann, M., and Poths, M. (2005) Comparing trees via crossing
minimization. FSTTCS ’05: Foundations of Software Technology and Theoretical
Computer Science, vol. 3821 of Lecture Notes in Computer Science, pp. 457–469,
Springer.

[21] Holten, D. and van Wijk, J. J. (2008) Visual comparison of hierarchically orga-
nized data. Computer Graphics Forum, 27, 759–766.

[22] Sugiyama, K., Tagawa, S., and Toda, M. (1981) Methods for visual understand-
ing of hierarchical system structures. IEEE Transactions on Systems, Man, and
Cybernetics, 11, 109–125.

[23] Andritsos, P. and Tzerpos, V. (2005) Information-theoretic software clustering.
IEEE Transactions on Software Engineering, 31, 150–165.

[24] Lincoln, Y. and Guba, E. (1985) Naturalistic inquiry. Sage focus editions, Sage
Publications.

[25] Diehl, S. (2007) Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer.

[26] Storey, M. A., Best, C., and Michaud, J. (2001) SHriMP views: An interactive
environment for exploring java programs. IWPC ’01: Proceedings ot the Ninth
International Conference on Program Comprehension, pp. 111–112.

[27] Balzer, M., Noack, A., Deussen, O., and Lewerentz, C. (2004) Software Land-
scapes: Visualizing the structure of large software systems. VisSym ’04: Proceed-
ings of the Joint Eurographics - IEEE TCVG Symposium on Visualization, pp.
261–266, Eurographics Association.

[28] Ducasse, S. and Lanza, M. (2005) The class blueprint: Visually supporting the
understanding of classes. IEEE Transactions on Software Engineering, 31, 75–
90.

32

[29] van Ham, F. (2003) Using multilevel call matrices in large software projects. IN-
FOVIS ’03: Proceedings of the IEEE Symposium on Information Visualization,
pp. 227–232.

[30] Burch, M., Diehl, S., and Weißgerber, P. (2005) Visual data mining in software
archives. SoftVis ’05: Proceedings of the 2005 ACM Symposium on Software Vi-
sualization, New York, NY, USA, pp. 37–46, ACM Press.

[31] Sangal, N., Jordan, E., Sinha, V., and Jackson, D. (2005) Using dependency mod-
els to manage complex software architecture. OOPSLA ’05: Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, New York, NY, USA, October, vol. 40, pp.
167–176, ACM.

[32] Zeckzer, D. (2010) Visualizing software entities using a matrix layout. SOFTVIS
’10: Proceedings of the 5th international symposium on Software visualization,
New York, NY, USA, pp. 207–208, ACM.

[33] Shtern, M. and Tzerpos, V. (2004) A framework for the comparison of nested soft-
ware decompositions. WCRE ’04: Proceedings of the 11th Working Conference
on Reverse Engineering, Washington, DC, USA, pp. 284–292, IEEE Computer
Society.

[34] Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y., and Gansner, E. R. (1998)
Using automatic clustering to produce high-level system organizations of source
code. IWPC ’98: Proceedings of the 6th International Workshop on Program
Comprehension, Washington, DC, USA, pp. 45–52, IEEE Computer Society.

[35] Kuhn, A., Ducasse, S., and Gı̂rba, T. (2005) Enriching reverse engineering with
semantic clustering. WCRE ’05: Proceedings of the 12th Working Conference
on Reverse Engineering, Washington, DC, USA, pp. 133–142, IEEE Computer
Society.

[36] Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., and Zhou, Y. (2003) Tree-
juxtaposer: scalable tree comparison using focus+context with guaranteed visi-
bility. ACM Transactions on Graphics, 22, 453–462.

[37] Graham, M. and Kennedy, J. (2009) A survey of multiple tree visualisation. In-
formation Visualization, 9, 235–252.

[38] Wilkinson, L. and Friendly, M. (2009) The history of the cluster heat map. The
American Statistician, 63, 179–184.

[39] Madeira, S. C. and Oliveira, A. L. (2004) Biclustering algorithms for biological
data analysis: A survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1, 24–45.

[40] Shtern, M. and Tzerpos, V. (2007) Lossless comparison of nested software de-
compositions. WCRE ’07: Proceedings of the 14th Working Conference on Re-
verse Engineering, Washington, DC, USA, pp. 249–258, IEEE Computer Society.

33

[41] Andrews, K., Wohlfahrt, M., and Wurzinger, G. (2009) Visual graph comparison.
IV ’09: Proceedings of the 13th Conference on Information Visualisation, pp.
62–67, IEEE Computer Society.

[42] Pohl, M. and Birke, P. (2008) Interactive exploration of large dynamic networks.
VISUAL ’08: Proceedings of the 10th international conference on Visual Infor-
mation Systems, Berlin, Heidelberg, pp. 56–67, Springer-Verlag.

[43] Glorie, M., Zaidman, A., van Deursen, A., and Hofland, L. (2009) Splitting a large
software repository for easing future software evolution - an industrial experience
report. Journal of Software Maintenance and Evolution: Research and Practice,
21, 113–141.

34

