
Visual Data Mining in Software Archives
To Detect How Developers Work Together

Peter Weißgerber Mathias Pohl Michael Burch
Computer Science Department

University of Trier
54286 Trier, Germany

{weissger, pohlm, burchm}@uni-trier.de

Abstract

Analyzing the check-in information of open source soft-
ware projects which use a version control system such as
CVS or SUBVERSION can yield interesting and important
insights into the programming behavior of developers. As
in every major project tasks are assigned to many devel-
opers, the development must be coordinated between these
programmers.

This paper describes three visualization techniques that
help to examine how programmers work together, e.g. if
they work as a team or if they develop their part of the
software separate from each other. Furthermore, phases of
stagnation in the lifetime of a project can be uncovered and
thus, possible problems are revealed.

To demonstrate the usefulness of these visualization tech-
niques we performed case studies on two open source
projects. In these studies interesting patterns of developers’
behavior, e.g. the specialization on a certain module can
be observed. Moreover, modules that have been changed by
many developers can be identified as well as such ones that
have been altered by only one programmer.

1. Introduction

With the appearance of open source projects the com-
plete evolution history of large software projects have be-
come publicly available. In software archives, such as CVS
and SUBVERSION, all revisions of all files that have ever
existed during the evolution of a software are stored. Par-
ticularly, it is documented for each revision of a file when it
has been checked-in and by which developer. The explana-
tory power of CVS data is also improved by the fact that
mostly the developers of an open source project are locally
separated. Thus, there often is no direct communication be-
tween the developers.

During the last years, information retrieved from soft-
ware archives have been used by various researchers for
many different interesting analyses (see Section 7). In
our earlier work, we analyzed which software artifacts
have been changed together (e.g. to recommend further
changes [18]). In this work, we additionally examine which
developers change the artifacts, and when. This implies the
following questions:

• Is there one or more main developer(s), or rather is the
work divided equally to multiple programmers? In the
case that there are more main developers: Is the role
of the main developer occupied by various developers
during the lifetime of the project?

• Does each developer work on her own files and mod-
ules, or are there files and modules that are being
worked on by multiple developers?

• Are there phases during the evolution, when there is a
very active development, and such ones when there is
hardly any development.

A common problem for (nearly) all kinds of analysis of
software archives is to cope with the large amount of data in
these archives. One approach is to use appropriate visual-
izations (which are often developed exactly for one particu-
lar analysis) that allow to navigate through the data in order
to find interesting patterns.

We use three different visualization techniques to find
answers to the questions asked above. In Sections 2 until 4
we present these techniques in detail. Next, in Section 5
we show by the means of case studies on JUNIT and TOM-
CAT3, how these techniques supplement each other in find-
ing answers to these questions. Additionally, we present our
results in that section.

As our analysis works on the data retrieved from ver-
sion control systems, Section 6 discusses additional data
sources.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Section 7 gives an overview of the related work and pos-
sible future work, while Section 8 concludes and summa-
rizes this paper.

2. Transaction Overview

The whole set of transaction data is too large to analyze it
directly. Thus, at first we need an overview of the informa-
tion. The graphical representation of the overview should
show a maximum of the data without hiding too many in-
formation (which is often a problem with visualization tech-
niques).

The transaction overview is such a kind of visualization
technique (Figure 1). It represents a coordinate system, in
which the time axis is shown at the x-axis. The point at the
leftmost position stands for the starting point of the soft-
ware project, whereas the rightmost point shows the current
or the last committed transaction in the evolution process of
the system. The y-axis gives information about how many
files have been changed in the corresponding transaction.
A vertical line represents such a transaction at this special
point in time. The value on the y-axis of the corresponding
colored point signalizes the number of changes of the de-
veloper who did this check-in. Each developer is mapped
to a unique color. Moreover, each vertical line is marked at
the position of the y-axis where the corresponding files are
located.

Generally there are five different aspects that can be de-
tected using the transaction overview:

• Number and frequency of the transactions: A soft-
ware system normally does not evolve linearly. That
means, that there are phases, in which many check-ins
are performed, whereas the project seems to be stall
in other phases. Die density of the transactions in one
special time interval is indicated by the frequency of
the vertical lines. The bigger the distance between the
lines the more time has been passed between these con-
secutive transactions. The existence of many vertical
lines indicates that there have been many transactions
within a short time interval.

• Number of developers: The number of developers is
visualized in the number of different point colors.

• Number of changed files in one single transaction:
The higher the point is located on the y-axis, the more
files this developer changed in this transaction. This
height is always related to the number of changed files
in the biggest transaction.

• Hierarchy-level of the changed file: In earlier
work [4] we analyzed, if there have been common
changes between several hierarchy levels and we

called these phenomena outliers or anomalies. To de-
tect these outliers we sort the files hierarchically at the
y-axis. 1

• Sequence of developers that are responsible for the
changes: Patterns in the change sequence of the devel-
opers can be detected with different color sequences at
the x-axis.

Figure 1. Small example of the overview of
transactions visualization technique

3. File Author Matrix

Figure 2. Example of a file author matrix

Figure 2 shows an example of the file author matrix,
which is a space filling two-dimensional visualization. The
x-axis contains the files, and the y-axis contains the devel-
opers of the project under examination. The color of each
pixel of the matrix indicates how often the corresponding
file has been changed by the respective developer, relative
to the total number of changes to that file. In the used
color scale a blue pixel means that there are relatively few
changes while a red pixel indicates many changes. If a file
has not been changed at all by a developer, the correspond-
ing pixel is drawn in the background color.

1This means, that files which are located in the same directory or sub-
directory are located very close to each other at the axis. In the same
subdirectory they are sorted alphabetically.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Obviously, the order of the files and of the developers
on the axes is very important in this visualization. Thus,
we sort the developers descending by the number of their
check-ins. This, for example, helps to recognize, whether a
particular file has been changed primarily by the main de-
veloper or rather by such a developer who only changes few
files (e.g., because he works only on a particular module).

In addition to this, the files on the x-axis are sorted hier-
archically. This is meaningful because we assume that files
in the same directory are related to each other in some way.
For example in JAVA files in the same directory usually be-
long to the same JAVA package, and the files in subdirecto-
ries belong to sub-packages. But also non-source-code files
are often arranged as modules and each module is repre-
sented by a separate directory.

To be able to distinguish the hierarchy (directory) levels
from each other, we set the background color for each file
(e.g. the pixels corresponding to that file and developers
that have not changed the file) according to a linear color
scale from black to white: The deeper the file is located
in the directory tree, the darker is the selected background
color2. The main intention is to makes it easier to find out
whether a developer only changes files in the same directory
(including sub-directories) or if he rather changes files from
many directories, it has one major drawback: for one di-
rectory all files in (maybe multiple) sub-directories are col-
ored the same, because they have the same depth in the tree.
Another problem occurs when a file has been changed by
all developers: Then all pixels for that file are colored and
the background color is not observable any more. To solve
these issues, we use tool tips that dynamically show which
file (including the directory) is currently selected with the
mouse.

In most cases, a software project contains by far more
files than developers. As a consequence, we get very wide
matrixes. Thus, we continue drawing of the matrix in the
next screen line when there is not enough horizontal space
on the screen. By this, we get a space filling visualization
which enables to visualize even large projects such as TOM-
CAT3 (2297 files and 40 developers) on one screen page.

4. Dynamic Author-File Graph

The structure among the developers can be analyzed by
the Dynamic Author File Graph (AFG). An AFG consists of
an ordered sequence of bipartite graphs containing informa-
tion about which file has been changed by which developer
during a certain period of time. Formally an AFG can be
described as a n-tuple:

2Note, that we only used the first half of the color scale in our examples
to prevent the pictures from getting too dark.

AFG := (g0, . . . , gn−1) where
∀i ∈ {0, . . . , n− 1} : gi := (Di ∪ Fi, Ei) with

Ei ⊆ Di × Fi

Di denotes the set of all developers that commit changes
during period i and Fi denotes the set of files that have been
changed during that period. The edge set of a graph gi is
defined as follows:

Ei := {(d, f) ∈ Di × Fi | Developer d

changed the file f during period i}

There is no recommendation for the time ranges of each
graph. Depending on the agility of the development pro-
cess of a software either shorter periods (e.g. one week)
as well as longer terms (e.g. one month) are valid. In our
examples we studied the behavior of the development pro-
cess using AFGs with one month per graph. Developers are
depicted by circles with a large diameter whereas files are
represented by nodes with a small diameter.

An AFG can be drawn for a project using a sequence of
node-link diagrams (as shown in Figure 3). The sequence is
interactively displayed step-by-step with animated changes
of the graphs. The layout of the graphs is computed using
the extended Foresighted Layout by Diehl et al. [7, 11].
This allows for the preservation of the user’s mental map
when viewing the sequence in an animation.

As the AFGs in the examples presented here usually con-
tain many graphs, only short excerpts of them are presented
and discussed. Besides, only the most important nodes are
labelled in this work in order to keep the static pictures read-
able.

Figure 3. Example of a graph in an AFG se-
quence

5. Case studies

In the next subsections we apply the presented visualiza-
tion techniques to CVS data obtained from two projects: a)
the testing framework JUNIT, and b) the application server
TOMCAT3. JUNIT has been created by 7 developers and
has a size of 629 files and 522 transactions. TOMCAT3 is a

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

considerably larger project, containing 2297 files and 3917
transactions. 40 developers changed the CVS data of TOM-
CAT3.

5.1. JUNIT

Figure 4 shows the transaction overview of JUNIT in the
time interval between December 3 2000 until October 18
2006. One can see easily that in the beginning of the project
only EG 3 is checking in his changes to the repository.

Later, several different developers also committed their
changes, namely KB and CS. In about the middle of the
figure two very large distances between two consecutive
transactions can be detected. Thus, in this time interval no
check-ins have been done over a long period of time. The
only active developer here seems to be CS. At the end of
the analyzed time interval DS committed the largest trans-
action. The black marked files additionally show that many
new files have been added at the end of the regarded time
interval.

Figure 5 shows the file author matrix for JUNIT. The
top-most part shows the root directory, the doc directory
and the source-code directory of an old JUNIT version. The
part below shows the directories containing the source of
recent JUNIT versions as well as a directory with the name
tries which has been used to test new ideas.

As the names of the authors are sorted, it is possible to
recognize that KB is the developer with the highest number
of check-ins. DS and EG are also very active. Except for
these three, four additional developers have checked-in their
changes into the JUNIT CVS repository. However, they
have only performed a few changes as we can see regarding
the only sporadic pixels in the matrix.

KB as well as DS and EG have changed a lot of differ-
ent files. However, for EG it strikes out that he has done
most changes of nearly all files in the old source directory,
but only few changes at the source code of the recent ver-
sion (except some tests and files in samples). Moreover,
EM, who is the developer with the 4th most check-ins, has
changed no file in the new source directory. Instead, CS has
done some changes there.

But, have the developers worked together (as team) on
the files or does every developer work on his own part of
the software system? Looking at the source code we find a
lot of files that have been changed by all three (old source)
respectively all four (new source) main developers. But it
catches our eyes that in both source directories files and sub-
directories exist which have been changed only by one or
a part of the developer team. For the old source code we
also see that nearly all files have been altered mainly by
EG. The tests directory is the only one where EG and
KB have done about the same number of changes. Here,

3We are only using the initials of the developer names in this work.

both developers work on the same tests, but with a different
amount of intensity.

In the new source directory, most files have been changed
nearly only by KB or nearly only by DS. There are only
few files on which both have worked with about the same
amount—except the tests. One module that has been
changed exclusively by DS is request, which is a sub-
module of internal. Furthermore, it is interesting that
the “new” main developers KB and DS have done only little
work at the documentation. Instead, the documentation has
been mainly done by EG. However, the file FAQ has been
checked-in mostly by CW. As this is also the only file that
has been checked-in by CW, obviously CW is the owner of
this important documentation file.

Figure 6 shows a small excerpt from the dynamic AFG.
Within the selected period KB reduced the number of files
that he worked on. In June 2002 he only committed changes
to files that have also been changed by EG. The fact that all
three graphs became smaller within these months might be
an indication of a less dynamic development process.

In all three months EG contributed the most of the files.
However, while he apparently concentrated on a different
part of the software than KB in April 2002, EG covered most
of the files changed in June 2002.

(a) March 2002 (b) April 2002 (c) June 2002

Figure 6. Three months of development on
JUNIT. There were no activities in May 2002.

5.2. TOMCAT3

Figure 7 shows the transaction overview for TOMCAT3
in the time interval since October 19 1999 until Novem-
ber 21 2004. One typical aspect for this project is that in
the first half of the analyzed time period many transactions
have been done. The number of developers seems to de-
crease over the evolution of the project. At the end of the
shown time interval only HG and BB have been working on
TOMCAT3.

Figure 8 shows the complete file author matrix for TOM-
CAT3. For the viewer’s comfort, we have manually anno-
tated the module names in the matrix. Looking at the ma-

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 4. Overview of the transactions between Dec 03 2000 and Oct 18 2006 in JUNIT.

Figure 5. File Author Matrix of JUNIT

trix, we see that there are modules that have been changed
by few (or even only one) developers (e.g., j2ee, build,
and some modules within the tests), as well as modules that
have been altered by 10 or more developers. The module
that has been changed by the highest number of developers,
is org.apache.jasper: 22 different developers have
worked on this module, while for example the files within
the module j2ee have been changed nearly only by CM,
who has done the most check-ins of all developers.

Looking at the core of the TOMCAT3 project, i.e.
the JAVA package org.apache.tomcat and its sub-
packages, it caches our eyes that CM has contributed by
far most of the changes. However, there are complete mod-
ules on which he has not worked much, among them the
sub-modules of src/native which are programmed in
C: these modules have been changed mainly by BB, RS, GS
and AL. But also the module org.apache.jasper (see
the previous paragraph) has not been changed by CM. Thus,
we can say that CM is the main developer, but he leaves the
work on single modules - mostly modules which are not part

of the core - to other programmers.
We find it quite interestingly that the developer with the

second most check-ins, LI, seems to have done quite lit-
tle work at the source code. Instead, he has done a lot at
the documentation within the proposals and at the web
page. As this example shows, also people that do not work
often on code, can be very important for a software project.

A look on the dynamic AFG for TOMCAT3 from
September 2003 to February 2004 discovers a curios be-
havior of the two developers HG and BB. While HG con-
tributed quite a lot in September and October he didn’t com-
mit any changes until end of February 2004. However, BB
contributed only to a few files before he committed changes
to nearly all files of the project. This observation is a indica-
tion for a change of the main developer role in this project.

Another interesting fact is the weak connection between
the developers (except of February where LI performed
only changes to files also changed by BB). TOMCAT3
seems to be developed in a separated process where each
developer has his own domain of work.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

Figure 7. Overview of the transactions of TOMCAT3, which have been made in the time interval since
October 19 1999 until November 21 2004.

Figure 8. File Author Matrix of TOMCAT3

6. Additional Data Sources

In this work, we took only a look on quantitative changes
in software archives. Beside the software archive, there are
additional data sources that are interesting to examine for
finding out how programmers work as a team:

• Email archives: Most projects have a mailing list on
which the developers (which may be spread around the
world) coordinate their work, and discuss ideas and re-
cent changes. Thus, in email archives there is a lot of
information on how developers work together. Recent
work [3] on mining such archives also addresses chal-
lenges like alias detection (e.g., the same programmer
uses different mail addresses).

• Bug databases: Bug tracking systems contain a func-
tionality to comment each bug report. These com-
ments are often used by developers to communicate
how to solve exactly this particular issue. Thus, bug
databases also contain information about which devel-
opers work together on which tasks. There are several
approaches to combine bug database data and CVS
data [8, 1] as well as to relate bug reports to source-
code changes [13]. Recently, D’Ambros and Lanza
proposed a combined visualization [6] for metrics re-
trieved from CVS data and from BUGZILLA to asses
the evolution of a software project.

In future work, data of these additional sources should be
merged with the CVS data and integrated into our analyses.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

(a) September 2003 (b) October 2003

(c) January 2004 (d) February 2004

Figure 9. The AFG for TOMCAT3 for four dif-
ferent months. There were no changes in
November and December 2003.

7. Related Work and Outlook

Apart from mining other data sources (see Section 6)
most of the related work is from the area of software vi-
sualization and mining of software repositories.

Visualizing changes during the evolution of a software
has been topic of recent research by several working groups.
Using the SEESOFT tool [2] the changes of software arti-
facts over time can be examined. Gevol [5] helps to watch
structural changes.

Other visualizations to show evolution of source code
have recently been presented: CVSSCAN [15] by Voinea
et. al. features a space-filling evolution overview for one
file of a project. Each line of this file is represented by a
pixel line on the screen. However, the line does not show
the structure of the code (unlike as in SEESOFT). Instead
the pixels in the line encode the subsequent versions of the
file. The color of a pixel can encode several metrics, among
them the author of the line (which enables to answer ques-
tions about how developers work together). However, while
the evolution of each file can be examined on the granularity
of lines, CVSSCAN can only show the evolution for one

file at the same time, which makes it hard to get a global
overview on all files of the project. This is indeed possible
with our transaction overview (for each file it can be seen
when which developer has done changes) and with the file
author matrix (for each file it can be seen how many percent
of the changes have been done by each developer).

Gı̂rba et. al. [12] came up with a similar space-filling
visualization that, in contrast to CVSSCAN, works on the
level of files and represents each file (the files are ordered
hierarchically) by one line on the screen. Again, the pixels
within the line are used to show the successive versions of
the file. Each developer is mapped to a unique color and
each pixel in the visualization is drawn in the color of the
developer that owns most of the lines of that file in that ver-
sion. Moreover, each change of a file is represented by a
dot in the color of the developer. Using their visualization
the authors were able to identify patterns in a project such
as takeover (one developer performs so many changes in
one session that he takes over ownership of a file), famil-
iarization (one developer performs small changes on one or
more files again and again until he gets ownership), bug-
fixing periods and periods of silence. This visualization is
very similar to our transaction overview, as it shows the evo-
lution of all files over time. However, our visualization fo-
cuses more on showing the density of the transactions while
Girba’s technique nicely shows changes of code ownership.

The file author matrix visualization is related to the de-
pendency structure matrix (DSM) [14]. We already used
such visualizations to mark concurrent changes of files and
methods [4] and to make statements about the module struc-
ture of a project [17].

Data mining techniques have been used by us [18] as
well as by other researchers [9, 16, 10] to detect recurring
development patterns. Such patterns can help to guide de-
velopers along related changes [18, 16] or to find starting
points for reverse engineering [10]. However, these work
focused more on the changes of the software itself than on
the behavior of the developers.

Currently, we have independent tool prototypes for each
of the three visualizations. As these visualizations work
hand-in-hand we are planning to integrate these into one
single tool that can be used e.g. by project managers for
analyzing the social networks in their project.

8. Conclusion

In this paper we described by means of two case stud-
ies, how the combination of three visualization techniques
helps to examine the development behavior of the program-
mers and the partitioning of the tasks between them in de-
tail. The three visualizations work hand-in-hand: The trans-
action overview yields a global overview on all transactions
that have been done during the project lifetime. Among

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

other things, we can recognize when particular developers
have been especially active. In the file author matrix one
can see which developer(s) have worked together or alone
on which files. Thus, using these two visualization tech-
niques we can find interesting phases during the evolution
as well as interesting relationships between the developers,
which can be examined even more with the dynamic author
file graph.

For both projects we have detected that there are mul-
tiple main developers. However, during the evolution of
the projects the role of the main developer has been played
by varying persons. While in JUNIT the main developers
have performed changes in nearly all modules, we found for
TOMCAT3 that there are also modules that have not been
developed by any main developers. Moreover, we detected
that in JUNIT many files have been altered by all main de-
velopers. In contrast, in TOMCAT3 there are such modules
that are developed by one particular developer, as well as
such ones that are altered by more than 20 developers. The
development of JUNIT is divided into two major phases.
Between these phases, there have only been relatively few
transactions. For TOMCAT3 it cached our eyes that there
was a lot of development from the beginning until the mid-
dle of the period under view. Later, the number of changes
decreased tremendously.

The question, to what extent the programmers work as
a team has to be answered for each project independently.
In JUNIT the whole development has been concentrated
on 1–2 main developers who have been supported in se-
lective tasks by additional programmers. TOMCAT3 had
a lot more active developers who partly worked together
on some modules and partly worked independently on their
own modules.

Acknowledgments

Patrick Reuther gave helpful comments on earlier revisions
of this paper. Mathias Pohl is partially supported by the
Deutsche Forschungsgemeinschaft (DFG), grant no. DI
728/6-2.

References

[1] G. Antoniol, M. D. Penta, H. Gall, and M. Pinzger. To-
wards the integration of versioning systems, bug reports and
source code meta-models. Electronic Notes in Theoretical
Computer Science, 127(3), 2005.

[2] T. Ball and S. Eick. Software Visualization in the Large.
IEEE Computer, 29(4), 1996.

[3] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swami-
nathan. Mining email social networks. In Proc. of Int.
Workshop on Mining Software Repositories MSR, Shanghai,
China, May 2006.

[4] M. Burch, S. Diehl, and P. Weißgerber. Visual Data Min-
ing in Software Archives. In Proc. ACM Symposium on
Software Visualization SOFTVIS, St. Louis, Missouri, USA,
May 2005.

[5] C. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and
K. Wampler. A System for Graph-Based Visualization of the
Evolution of Software. In Proc. of ACM Symposium on Soft-
ware Visualization SOFTVIS, San Diego, USA, June 2003.

[6] M. D’Ambros and M. Lanza. Software bugs and evolution:
A visual approach to uncover their relationship. In Proc.
of 10th European Conference on Software Maintenance and
Reengineering CSMR, Bari, Italy, March 2006.

[7] S. Diehl and C. Görg. Graphs, They Are Changing. In Proc.
of Int. Symposium on Graph Drawing GD, Irvine, USA, Au-
gust 2002.

[8] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proc. of Int. Conference on Software Maintenance
ICSM, Amsterdam, The Netherlands, September 2003.

[9] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. In Proc. Int. Workshop
on Principles of Software Evolution IWPSE, Helsinki, Fin-
land, September 2003.

[10] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proc. of Int. Conference on Soft-
ware Maintenance ICSM, Chicago, Illinois, USA, Septem-
ber 2004.

[11] C. Görg, P. Birke, M. Pohl, and S. Diehl. Dynamic
Graph Drawing of Sequences of Orthogonal and Hierarchi-
cal Graphs. In Proc. of Int. Symposium on Graph Drawing
GD, New York, USA, September 2004.

[12] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Proc. Int. Workshop on
Principles of Software Evolution IWPSE, Lisbon, Portugal,
September 2005.

[13] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr. Auto-
matic identification of bug introducing changes. In Proc. of
Int. Conference on Automated Software Engineering ASE,
Tokyo, Japan, November 2006.

[14] D. V. Steward. The Design Structure System: A Method for
Managing the Design of Complex Systems. IEEE Transac-
tions on Engineering Management, 28, 1981.

[15] L. Voinea, A. Telea, and J. J. van Wijk. CVSScan: Visual-
ization of code evolution. In Proc. of ACM Symposium on
Software Visualization SOFTVIS, St. Louis, Missouri, USA,
May 2005.

[16] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting
Source Code Changes by Mining Change History. IEEE
Transactions of Software Engineering, 30(9), 2004.

[17] T. Zimmermann, S. Diehl, and A. Zeller. How History Justi-
fies System Architecture (or Not). In Proc. Int. Workshop on
Principles of Software Evolution IWPSE, Helsinki, Finland,
September 2003.

[18] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining Version Histories to Guide Software Changes. IEEE
Transactions of Software Engineering, 31(6), 2005.

29th International Conference on Software Engineering Workshops(ICSEW'07)
0-7695-2830-9/07 $20.00 © 2007

	cp: ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

