
Small Patches Get In!

Peter Weißgerber
Computer Science
University of Trier

54286 Trier, Germany
weissger@uni-trier.de

Daniel Neu
Computer Science
University of Trier

54286 Trier, Germany
danielneu81@googlemail.com

Stephan Diehl
Computer Science
University of Trier

54286 Trier, Germany
diehl@uni-trier.de

ABSTRACT
While there is a considerable amount of research on analyz-
ing the change information stored in software repositories,
only few researcher have looked at software changes con-
tained in email archives in form of patches. In this paper
we look at the email archives of two open source projects
and answer questions like the following: How many emails
contain patches? How long does it take for a patch to be
accepted? Does the size of the patch influence its chances
to be accepted or the duration until it gets accepted? Ob-
viously, the answers to these questions can be helpful for
the authors of patches, in particular because some of the
answers are surprising.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—documentation, restructuring, reverse en-
gineering, and reengineering, version control ; D.2.9 [Software
Engineering]: Management—programming teams

General Terms
Documentation, Experimentation, Measurement

Keywords
Email archives, Patches, Patch acceptance, Case study

1. INTRODUCTION
For virtually every open source project there exists a de-

veloper mailing list. For many open source projects this
mailing list can also be read by everyone who is interested
using a web front-end. One important function of such a
mailing list is that people can submit patches. Patches are
change sets that can be applied to the software using a spe-
cific tool: the patch tool. Patches may, for example, intro-
duce new features, fix bugs, translate strings to a different
language, or re-structure parts of the software (by applying
refactorings).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

So far, change information in software repositories like
CVS has been leveraged by tools for defect prediction, rec-
ommender systems and the like. The change information
in mailing lists could be used in a similar way or to im-
prove these tools. Unfortunately, not all patches submitted
actually make it into the real software and thus may lead
to wrong predictions or suggestions. Only few studies [1,
2, 4] exist that address the submission and acceptance of
patches. In this paper we want to examine by means of a
case study, which data we can obtain by combining patch
extraction from mailing list archives with detection of patch
acceptance in CVS repositories, and what we can learn from
these data.

1.1 Patch submitters and CVS committers
In this paper we distinguish two not necessarily disjoint

groups of developers: submitters and committers. Submit-
ters are people who send patches to the developer mailing
list of a project, while committers check-in new revisions
of files to the CVS respectively Subversion repository of the
project.

Usually submitters have at least read-access to the source
code of the project1. Thus, they can read and review the
source code, and try to improve things or add new func-
tionality. There are two typical reasons for submitters to
send their patches to the mailing list: either they want to
discuss their changes with others, or they want that one of
the committers changes the code in the software repository
accordingly by applying the patch and committing the re-
sulting file revision. Note, that also committers sometimes
send patches to the mailing list for discussion and become
submitters this way.

One part of our study focuses on the submitters and com-
mitters. We explore which group is larger, and if there is
a group of core submitters. Furthermore, we take a closer
look on how these groups intersect.

1.2 Getting the patch accepted
In any case, a patch sent to the mailing list may be applied

to the source code of the project and the generated new
revision of the particular file committed to the repository
at a later time. In this case, we say the patch has been
accepted. It goes without saying that not all patches must
be accepted.

Obviously, a patch submitter hopes that his or her patch

1As in open-source projects the source code is available for
free, everyone who is interested can become a submitter
quite easily.

67

is accepted, and that it is accepted within a preferably short
amount of time. Thus, one focus of our case study is to
examine how many percent of the submitted patches are
accepted at all, and how long it takes until patches are ac-
cepted. We also address the question, if it is easier to get
small patches accepted than large ones.

The paper is organized as follows: In Sections 2 and 3 we
describe how we extract patches from the emails contained
in mailing list archives and how we find out for each patch
if it has been accepted. In these sections we use mainly
techniques which have been presented by Christian Bird et
al. in their last year’s MSR paper [2]. Furthermore, we
define exactly when we consider a patch as being accepted.
The most important part of this paper is Section 4 which
contains the case study on patch submission and acceptance.
In Section 5 we refer to and discuss related work. Possible
threats to validity are discussed in Section 6. Finally we
conclude in Section 7.

2. PATCH EXTRACTION
According to Bird et al.’s technique we implemented a

parser that extracts patches from e-mail archives in MBOX
format. MBOX is a standardized format (see RFC 4155)
to store a set of emails, e.g. all emails sent to a particular
address or mailing list. Thus, for many open-source projects
it is possible to obtain a MBOX file containing the complete
mailing list archive. An MBOX file for local mails is also
easily obtainable, because some email clients, e.g. Mozilla
Thunderbird, store their local email folders in MBOX for-
mat.

Patches can be in three different formats: standard diff,
context diff, and unified diff. Standard diffs only describe
which lines (identified by line numbers) are added or deleted,
but they do not contain any context information. They even
do not contain the name of the file to be changed. As this
makes it nearly impossible to detect these patches in the
CVS repository within an acceptable time frame and with an
acceptable exactness, we omit standard diffs. In our opinion
this is not a big limitation: because of the missing context
such diffs are not very useful for developers and are only
used very seldom2.

As both the unified diff and the context diff have a well-
defined header which contains the name of the patched file
and the length of the diff, it is quite easy to extract patches
of these types. The only problem, as noticed by Bird et
al., is that sometimes mail clients add extra line breaks.
As these line breaks are inserted before the mail is actually
sent, they will also appear in the MBOX. However, it is easy
to hand-tune the parser in a way that it works reasonably
exact.

3. PATCH DETECTION
In Section 2 we have extracted patches out of emails. In

the following we explain how we find out whether a patch
has been accepted, i.e. applied by a developer to the sources
of the project and committed to the CVS resp. Subversion

repository.

2We manually inspected the MBOX files for FLAC and Open-
AFS and found that only 3 and 24 patches resp. are in
standard diff format and thus ignored, while 196 and 1628
patches resp. have been recognized by our approach.

As patches of type context diff and unified diff contain the
name of the modified file in their header, the main idea is
to look for the application of the patch in all revisions of
that file that are checked-in at a later time than the patch
has been sent to the mailing list (with respective to the
timestamps of the revision resp. the email containing the
particular patch).

In detail our algorithm to detect submitted patches in
the CVS repository works as follows: We treat each patch
as a tuple (dp, fp, tp, Ap, Rp) where dp is the directory of
the patched file as specified in the particular diff, fp is the
name of the patched file as specified in the particular diff,
tp is the time stamp of the patch3 which is obtained from
the time stamp of the email containing that patch, Ap is
the set of lines added by the patch (for each line leading
and ending white spaces are removed), and Rp is the set of
lines removed by the patch (for each line leading and ending
white spaces are removed). Note that in our definition each
patch addresses exactly one file. Thus, if a submitter wants
multiple files to be changed, the particular email will contain
several patches.

Let the tuple (dr, fr, vr, tr, Ar, Rr) be a file revision in
the repository, where dr is the directory, fr is the filename,
vr is the revision number, tr is the time stamp when the
revision has been committed, Ar is the set of added lines
with respect to the predecessor version, and Rr is the set
of removed lines with respect to the predecessor version.
Again, for each line in Ar and in Rr leading and ending
white spaces are removed. If no predecessor version exists,
Ar contains all lines present in the revision, and Rr is the
empty set.

We consider a patch (dp, fp, tp, Ap, Rp) as being accepted,
if a file revision (dr, fr, tr, vr, Ar, Rr) exists in the repository,
for which the following condition holds:

dp ∼dir df

∧ fp ∼file fr

∧ tp ≤ tr

∧ Ap ⊆ Ar

∧ Rp ⊆ Rr

Note that our formalization ignores both the line num-
bers of the added respectively removed lines, and the order
of them. Furthermore, we also allow that the lines added by
the patch and the lines deleted by the patch are only subsets
of the lines added and deleted resp. of the new file revision.
The reason for this it that we want to detect a patch ap-
plication even if other changes have been performed within
the same file or if the patch has been restructured to some
extent, e.g. by adding comments between the added lines,
or by changing the order of some lines.

One problem of detecting whether a patch has been ac-
cepted, is that the directory information of patches is often
incomplete or even one directory in the path has been re-
named. Analogously patch submitters tend to rename the
patched file (e.g. by adding suffixes like “.new”, “-patched”,
. . . , or by renaming the extension itself). Thus, we do not
require the directories and filenames of patch and revision
to be exactly equal, but only to be similar.

In our heuristics f1 ∼file f2 holds, iff f1 and f2 are equal,

3time stamps are treated as natural numbers representing
the elapsed seconds since 1970-01-01 00:00:00.

68

or f1 starts with f2 but has a suffix, or f1 and f2 are equal
except of different file extensions.

For directories d1 ∼dir d2 is true, iff d1 and d2 are equal, or
d2 ends with d1, or d2 is equal to or ends with d1 if only one
part of d1 is renamed (“one part” means one subdirectory in
the directory path given by d1).

4. CASE STUDY
We used the technique described above to perform a case

study on two open source projects (see also Table 1):

FLAC is a tool for lossless compression of audio files. For
FLAC we looked at the email archives of the develop-
ment mailing list flac-dev4 starting from January 2001
until the 18th July 2007. As we want to detect sub-
mitted patches in the CVS repository also for patches
that have been submitted near the end of this time
window, the observed time window for the CVS repos-
itory has to end later. We chose a look-ahead of 3
months, i.e. we examined the FLAC CVS repository
within the time frame between January 2001 and the
18th October 2007.

OpenAFS is an open-source implementation of the net-
work file system AFS. For OpenAFS we examined the
archives of the openafs-devel mailing list5 during the
time period starting from the 5th November 2000 un-
til the 11th June 2007. Again, our observation time
period of the CVS repository is three months longer:
it reaches to the 11th September 2007.

We selected these projects because for both the MBOX
data can be downloaded directly and the CVS repositories
can be accessed using a guest account. Unfortunately, for
many other projects the mail data is only available via a
custom web interface. We tried to parse the HTML code
that is produced by SourceForge for their projects when
accessing the mail archives. However, it turned out that
parsing this generated HTML code is very tedious and of-
ten attachments—which may contain patches—cannot be
accessed correctly. Thus, we were not able to obtain a reli-
able parser within an acceptable time frame (given that the
time between the call for papers and the submission deadline
was very short).

In this study we want to answer the following questions
for the two selected projects:

• How many of the mails sent to the developer mailing
list contain patches?

• How many files of the project are patched and which
are patched most often?

• How often are accepted patches applied?

• What is the chance that a patch gets accepted? Is it
influenced by the size of the patch?

• How long does it take until a patch is accepted? Is it
influenced by the size of the patch?

4available at http://lists.xiph.org/pipermail/
flac-dev/
5available at https://lists.openafs.org/pipermail/
openafs-devel/

• How many people submit patches and how many peo-
ple commit changes and patches to the repository. Do
the sets of submitters and committers intersect? Is
there a “core group” of submitters?

4.1 Basic Data
First of all, we want to find out how many mails sent to

the mailing list contain patches at all. Furthermore, we take
a closer look on which files are patched. One might think
that the patches are equally distributed to all files of the
project, but maybe in reality some files are patched more
often than others. Additionally, we find out how often one
patch is applied.

4.1.1 How many mails contain patches?
Table 2 shows for FLAC and OpenAFS how many mails

have been sent to the developer mailing list, how many mails
contained at least one patch, the ratio of mails with at least
one patch, the total number of detected patches, and the
average number of patches for mails with patches.

For FLAC in average every 26th–27th mail contains pat-
ches. Although only 82 emails contain patches, the total
number of patches is 196. Thus, sometimes one mail con-
tains multiple patches. We looked at the maximum number
of patches in one mail and found it to be 32. However,
most times when a mail contains patches, it only contains
few ones: the average number of patches per mail (only for
mails containing at least one patch) is 2.39.

For OpenAFS the patch ratio is slightly higher as for FLAC:
here in average every 23rd mail contains at least one patch
(i.e. 4.34% of all mails). The total number of patches for
OpenAFS is 1628. For mails with patches the average num-
ber of patches is 3.63.

4.1.2 Patched Files

Project total # files # patched files Ratio

FLAC 987 57 5.78%

OpenAFS 7823 460 5.88%

Table 3: Number of files and number of patched files
for FLAC and OpenAFS.

Table 3 shows for both projects how many files exist in the
particular CVS repository and how many files are patched
at least once. Only accepted patches have been taken into
account.

Although the total number of files is quite different for
both projects (OpenAFS has about 8 times as much files
than FLAC), the ratio of patched files is nearly the same:
about 6% of all files are affected by at least one accepted
patch.

Tables 4 and 5 show the most frequently patched files
for both projects. In FLAC the mostly patched file has 10
revisions that contain patches. There are two files with 3
revisions with patches, 12 files with 2 revisions containing
patches, 42 files with one revision containing patches, and
930 files that have not been patched at all. For the three files
with the highest patch ratio, 50% resp. 33% of all revisions
(except the initial revision) contain patches.

In OpenAFS the first rank in this list is occupied by the file
src/afs/LINUX/osi vnodeops.c. This file has been changed

69

Project mailing list name observed time period (mailing list) observed time period (CVS repository)

FLAC flac-dev from 2001-01-01 to 2007-07-18 from 2001-01-01 to 2007-10-18

OpenAFS openafs-devel from 2000-11-05 to 2007-06-11 from 2000-11-05 to 2007-09-11

Table 1: Observed time periods for mailing list and CVS repository.

Project # Mails # MwP Ratio # Patches minPpM maxPpM ANPMP

FLAC 2258 82 3.63% 196 1 37 2.39

OpenAFS 10317 448 4.34% 1628 1 142 3.63

Table 2: Basic Data (# MwP = number of mails with patches, minPpM / maxPpM = minimum / maximum
number of patches in one mail, ANPMP = average number of patches for mails containing patches)

Filename # chg # cwp Ratio

configure.in 151 10 6.62%

src/plugin xmms/plugin.c 68 3 4.41%

src/libFLAC/Makefile.am 77 3 3.90%

12 files - 2 -

42 files - 1 -

930 files - 0 -

src/flac/local string utils.c 2 1 50%

src/test libFLAC/bitwriter.c 3 1 33.33%

src/share/utf8/utf8.c 6 2 33.33%

Table 4: Most frequently patched files (by total
number of revisions with patches and by patch
quote) for FLAC (chg = revisions of the file except
the initial revision, cwp = revisions of the file con-
taining at least one patch).

276 times. 17 of these 276 revisions—that are 6.16%—
contain patches sent to the mailing list. However, only few
files have a high number of revisions with patches. Anyhow,
for this project there is even one file that has a patch ra-
tio of 100%. However, this file has been changed only once.
Overall, for both projects it seems that the files with high
patch ratio are changed very seldom. The reason may be,
that in general files are patched relatively seldom, and thus
for files with a lower number of total changes, the ratio is
automatically higher.

From Tables 3, 4 and 5 we can easily conclude that in
both projects under view, some files are more likely to be
patched than others.

4.1.3 How often are patches applied?
Naively one may think that a patch submitted to the mail-

ing list has to be applied only once to the CVS repository
of the software, if it is accepted. However, some situations
can cause that an accepted patch has to be applied multiple
times. Most notably it may be required to apply it to several
development branches.

Both projects use branching mostly for maintenance, but
also for development: The FLAC repository contains 9 bran-
ches at all. Looking only at the branch names, 7 of these can
be clearly recognized as being maintenance branches. For
OpenAFS we found 24 branches at all, from which 9 have a
name that clearly identifies them as maintenance branches.
The remaining branches are probably used for integrating

Filename #chg #cwp Ratio

afs/LINUX/osi vnodeops.c 276 17 6.16%

afs/VNOPS/afs vnop write.c 86 9 10.47%

WINNT/afsd/smb3.c 247 7 2.38%

afs/LINUX/osi sleep.c 63 7 11.11%

libafs/MakefileProto.LINUX.in 93 7 7.53%

config/afs sysnames.h 133 7 5.26%

4 files - 6 -

3 files - 5 -

17 files - 4 -

36 files - 3 -

89 files - 2 -

305 files - 1 -

7363 files - 0 -

export/export5.exp 1 1 100%

aklog/linked list.c 3 2 66.67%

afsd/rc.dkload.client.rs aix 2 1 50%

afsd/rc.afs.rs aix 2 1 50%

config/param.i386 fbsd 51.h 2 1 50%

Table 5: Most frequently patched files (by total
number of revisions with patches and by patch
quote) for OpenAFS (chg = revisions of the file ex-
cept the initial revision, cwp = revisions of the file
containing at least one patch).

new features or supporting new architectures. Let us take a
look on how often accepted patches have been applied.

Figure 1 shows for both projects how often accepted pat-
ches have been applied. In FLAC only 5 accepted patches out
of 82 ones (i.e. about 6%) have been applied more than once,
namely exactly twice. The remaining 77 accepted patches
have been applied once. Thus, one can conclude that in
FLAC accepted patches are normally applied only once. We
find this a bit surprising because have expected that in more
cases patches had been incorporated into the trunk as well
as into at least one of the maintenance branches.

For OpenAFS the situation seems to be different: 57% (or
in total 361 patches) have been applied once, but 43% have
been applied multiple times. This means that nearly half of
the accepted patches have been applied to more than one file
revision! One patch has even been applied to seven different
revisions—that is the maximum.

70

Figure 1: Number of applications per accepted
patch

4.2 Patches and Patch Acceptance
In the following part of our case study we want to exam-

ine the acceptance of patches. For each person who sub-
mits patches or is interested in submitting patches, it is an
interesting question how good the chances are to get the
patch accepted. There might be several parameters that
have an influence on the probability that a patch will get ac-
cepted. Intuitively, one might think that especially the size
of the submitted patch has a high influence on the accep-
tance probability. Thus, we examine whether the acceptance
ratio is different for different patch sizes.

4.2.1 How many patches get in?

Project # submitted p. # accepted p. Ratio

FLAC 196 82 41.84%

OpenAFS 1628 637 39.13%

Table 6: Patch submission and acceptance in FLAC

and OpenAFS.

Table 6 shows for both projects how many patches have
been submitted, how many patches have been accepted, and
the ratio of accepted patches to submitted patches.

Although for OpenAFS there are a lot more patch submis-
sions than for FLAC (1628 vs. 196), the acceptance ratio is
nearly equal for both projects. It is about 40%.

4.2.2 Does it depend on patch size?
As shown by Figure 2, slightly more than half of all sub-

mitted patches to FLAC change only one or two lines. The
chances that such small patches get accepted are higher than
average: 57% of the accepted patches are that small. This
still holds if we look at patches which change at most 4 lines:
While about 2/3 of all patches fall in this category, 78% of
the accepted patches fall in it. The opposite holds for large
patches (more than 15 lines of code changed): Despite this
group includes 16% of all patches, only 3.6% of the accepted
patches fall into this group.

For OpenAFS trends are the same as for FLAC: Figure 3
shows that about one third of the patches change at most
two lines, but one third of the accepted patches fit in this cat-
egory. Slightly more than one third of all submitted patches
alter at most 4 lines, but 50% of the accepted patches fit in
this category. 18% of all submitted patches to OpenAFS are
large patches, i.e. change 25 or more lines. However, only

11% of the accepted patches are that large. In both projects
patches that change two lines are the most popular ones.

Overall, the numbers allow us to conclude that small patches
have a higher chance to be accepted than average, while large
patches are less likely to be accepted.

4.3 How long does it take until a patch is
accepted?

Another important question for a patch submitter is, how
long it will take until the submitted patch is accepted and
applied. Again, the duration may be influenced by several
parameters and one might think that patch size has a big in-
fluence, in the sense that small patches are accepted quicker.
We looked for FLAC and OpenAFS if this is true.

4.3.1 General Overview

Figure 4: Number of days until a patch has been
accepted

Figure 4 shows for FLAC and OpenAFS how many days it
took for accepted patches until they have been committed6.
We see that in both projects a lot of accepted patches have
been committed to the repository within 3 days. The cate-
gory with the highest number of patches is “at the same day”
(0) for OpenAFS and “at the next day” (1) for FLAC. With
rising number of days, the number of applied patches tends
to fall. However, for both projects there are some peaks:
For OpenAFS it catches the eye that especially after 3, after
10, and after 13 days many patches have been accepted. For
FLAC we see an noticeable peak after 11 days.

Figure 5 shows the same values as a pie chart. While peaks
are harder to observe, it is easier to recognize percentages:
For FLAC one quarter of all accepted patches have been com-
mitted to the CVS repository on the same or the next day.
Nearly half of all patches have been accepted within one
week. For about one third of the accepted patches it took
longer than two weeks until they have been committed.

For OpenAFS one quarter of all accepted patches have
even been applied on the same day. After at most three
days 61% of all accepted patches have been applied. Only
13% needed more than two weeks until being committed.

One can conclude that if patches are accepted, they nor-
mally are accepted quickly. For FLAC only one third and
for OpenAFS even only 13% of the accepted patches needed
longer than two weeks.

6For patches that have been committed multiple times, we
took the first commit into account.

71

Figure 2: Patch size for the FLAC project

Figure 5: Number of days until a patch has been
accepted

4.3.2 Does it depend on patch size?
To find out whether the duration until a patch is accepted

depends on the size of the patch we look at Figures 6 and 7.
These show for both projects how many days it took in av-
erage until a patch has been accepted (restricted only on
accepted patches), broken down to the size of the patch.

Figure 6: Average number of days until a patch is
accepted, broken down by patch size (FLAC)

In FLAC the average is for all sizes around 1 to 10 days,

while for OpenAFS it is mostly below ten days, excepting
some outliers. However, overall one cannot determine that
the patch size has a significant influence on the time until a
patch is accepted. But note that, as shown in Section 4.2.2,
at least for the examined projects it has an influence on the
probability that a patch is accepted at all.

4.4 Submitters and Committers
While we have looked on the number and the acceptance

of patches, as well as on the time it takes until patches are
accepted, we have not yet regarded who submits the patches
and who commits them, if they are accepted.

4.4.1 Submitters
First, we want to look at the patch submitters to find out

if there are persons who submit patches very often and if
there are submitters with an especially high success quote
(in terms of accepted patches).

Figure 8: Patch submitters for the FLAC project
and their success rate

Figure 8 shows for each patch submitter of the FLAC

project how many patches he or she has submitted and how
many of the submitted patches have been accepted. For pri-
vacy reasons we made the names of the submitters anony-
mous. The three most frequent submitters (Submitters A,
B, C in Figure 8) have sent between 35 and 39 patches to

72

Figure 3: Patch size for the OpenAFS project

Figure 7: Average number of days until a patch is accepted, broken down by patch size (OpenAFS)

the mailing list. Submitter D follows with 27 patch submis-
sions. Then there is a major jump: Submitter E has only
submitted 13 patches. Thus, Submitters A to D seem to be
the “hard core” of frequent submitters of FLAC.

The ratio of accepted patches does not vary that much be-
tween these submitters: ratios lie within a range of 36–53%.
Thus, the success ratio of these most frequent patch submit-
ters is near the average acceptance ratio of FLAC which is
about 42% (see Table 6). There are three developers with a
success ratio of 100%. However, they have only committed
one single patch. From the submitters with more than 10
patches, Submitter E was most successful with a rate of 69%
of accepted patches.

Figure 9 shows the same data for OpenAFS. One obvious
fact is that OpenAFS has much more distinct submitters
(112 submitters) than FLAC (22 submitters). It faces that
Submitter A has submitted by far the highest number of
patches (252 patches). Submitters B to E follow with 187,

170, 143, resp. 141 submissions. The next one, Submitter F
only has submitted 63 patches. Thus, Submitter A can be
seen as the main submitter and seems to build the team of
core submitters together with B, C, and E (D has submit-
ted many patches, but only very few have been accepted).
The acceptance ratio for patches broken down to submit-
ters is interesting for OpenAFS. Remember that the average
acceptance ratio for OpenAFS is nearly 40% (Table 6). For
Submitters A, B, C, and E the success quote is clearly higher
than average (66% for A, 52–60% for B, C, E). However, the
success ratio of D is only 10% and the success ratio of F even
0% although they have submitted many patches (C: 143, F:
63). When looking at the particular patches, it turns out
that nearly all patches submitted by these two submitters
were not for OpenAFS, but for the Linux kernel (in order
to improve the compatibility of Linux with OpenAFS). This
is interesting, because we expected that all patches sent to
the mailing list of a project are change sets for exactly that

73

Figure 9: Patch submitters for the OpenAFS project
and their success rate

project. However, this shows that some of the patches may
also address other projects that are related in some way.

4.5 Committers
In the previous paragraphs we have examined who sub-

mits patches to the developer mailing lists. Next, we focus
on the people who commit changes—among them applied
patches—to the repositories: the committers. It is espe-
cially interesting how many committers a project has com-
pared to the number of submitters, and if the check-ins of
some committers contain more patches than of others. Fur-
thermore we want to examine how often committers are also
submitters, i.e. they send patches to the mailing list (prob-
ably to discuss their changes) although they would be able
to commit these instantly.

Committer IwS # cfr # pfr ratio

1 P 10988 74 0.0067

2 n/a 78 0 0.0000

3 D 66 8 0.1212

4 n/a 5 0 0.0000

Table 7: FLAC committers (IwS = identical with sub-
mitter, cfr = number of changed file revisions, pfr =
number of changed file revisions containing at least
one patch).

Committer IwS # cfr # pfr ratio

1 S 36979 656 0.0177

2 yes 8457 25 0.0030

3 yes 3853 10 0.0026

4 n/a 995 1 0.0010

5 P 914 44 0.0481

6 M 549 10 0.0182

7 n/a 513 6 0.0117

8 yes 164 0 0.0000

Table 8: OpenAFS committers (IwS = identical with
submitter, cfr = number of changed file revisions,
pfr = number of changed file revisions containing at
least one patch; yes in the IwS row means that the
submitter is not one of the top-most 26).

Tables 7 and 8 show the committers of FLAC respectively
OpenAFS together with the number of their changed file re-
visions (total and such that contain patches).

It strikes out that for both projects there are significantly
less committers than submitters: FLAC has 22 submitters,
but only 4 committers, giving a ratio of 0.18 between com-
mitters and submitters. Two of the four FLAC committers
are also submitters. While Committer 3 is also a very fre-
quent submitter (4th rank in the list of the most frequent
submitters, see Figure 8), the by far most frequent commit-
ter only submits patches quite rarely (only 1 patch at all).

For OpenAFS the ratio of committers to submitters is even
lower than for FLAC: 8 committers face 78 submitters, giv-
ing a committer-to-submitter ratio of about 0.1. Six of the
eight committers (75%) also appear as submitters. However
only three committers are in the list of the top 26 submitters
(see Figure 9), the best one at position 13 with 34 patch sub-
missions. Thus, in both projects committers tend to discuss
possible changes only seldom on the mailing list.

5. RELATED WORK
While software repositories have been analyzed extensively

during the last years, only few researchers have tried to ex-
ploit the information provided by email archives. For ex-
ample, one can construct a social network where nodes rep-
resent developers and directed edges with edge weights in-
dicate who sends how many mails to whom [3]. But some
emails also contain change information similar to the one
stored in software repositories: patches. In his socio-techni-
cal study [4], Ducheneaut found out that patches play an
important role in the integration of new members in an open-
source project. To get access to patches in email archives we
basically use the approach first presented by Bird et al. [2],
see Sections 2 and 3. Alternatively, one could only look for
keywords in the subject of the mails. Asundi and Jayant
report a relatively high precision of this simple approach [1],
but no information about the presumably low recall is given.
In their case study they mainly concentrate on the patch re-
view process itself and address questions such as how many
different developers reply to the mail with the patch, or how
many replies are sent to a patch mail at all.

6. THREATS TO VALIDITY
To this end we have studied two open-source projects

and obtained several interesting results. However, in or-
der to check to what extent these results are valid for other
projects, a larger number of software systems should be
examined. It should be taken into account, that different
projects may have different policies concerning patch sub-
mission.

Currently we assume that all detected patches are inde-
pendent from each other. However, in some cases patches
may be discussed, overhauled, and then resubmitted. Thus,
patches that are connected in this sense should be marked
at least. Furthermore, the patch detection algorithm itself
should be evaluated thoroughly concerning its precision and
recall.

7. CONCLUSIONS
In this paper we have used a re-implementation of Bird et

al.’s techniques [2] to extract patches from emails and find

74

their application in the repository. Furthermore, we have
defined when we consider a patch as being accepted.

We applied these techniques to the mailing lists and CVS

repositories of two open-source projects. The most impor-
tant results we obtained for those projects in our case study
are the following:

• In both projects about 3–4% of the emails sent to the
mailing list contain patches.

• Only about 6% of the files are affected at least once by
an accepted patch.

• For both projects the probability that a patch is ac-
cepted is about 40%.

• If patches are accepted, they normally are accepted
quickly: for FLAC half of the accepted patches have
been committed during one week. For OpenAFS even
61% of the accepted patches needed only three days.

• For small patches (at most 4 lines changed) the chances
to get accepted are higher than average. For very large
patches they are significantly lower than average.

• While the patch size has an effect on the chances to get
the patch accepted, it does not influence significantly
the duration until the patch is accepted.

• For both projects the number of committers is low
compared to the number of submitters (ratio about
0.1–0.2). Although 50% (FLAC) resp. 75% (OpenAFS)
of the committers appear at least once as submitters,
they tend to send only few patches to the mailing list.
Although the number of submitters is large, in both
projects a small group of 4–5 core submitters exist who
make a specially high number of patch submissions.

• Not all patches sent to the mailing list of a project
necessarily are for patches for that project. Instead,
patches may address related projects (e.g. to assure or
improve compatibility).

As part of our future work, we want to go beyond this and
find out if there are specific reasons for some of our findings.
Before, we want to address the threats of validity described
above, and especially explore more projects.

Additionally, as now e-mail patches are available for us as
a new data source, we plan to integrate it into our existing
analysis tools [5] to improve the quality of the results.

Acknowledgments
Michael Burch gave helpful comments on earlier drafts of
this paper.

8. REFERENCES
[1] J. Asundi and R. Jayant. Patch review processes in

open source software development communities: A
comparative case study. Los Alamitos, CA, USA, 2007.
IEEE Computer Society.

[2] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In Proc. 4th
Workshop On Mining Software Repositories (MSR07),
May 2007.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 2006 international workshop on
Mining software repositories MSR06, pages 137–143,
New York, NY, USA, 2006. ACM.

[4] N. Ducheneaut. Socialization in an open source
software community: A socio-technical analysis.
Computer Supported Cooperative Work, 14(4):323–368,
August 2005.

[5] P. Weißgerber, M. Pohl, and M. Burch. Visual data
mining in software archives to detect how developers
work together. In Proc. 4th Workshop On Mining
Software Repositories (MSR07), May 2007.

75

