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ABSTRACT
Identifying refactorings in software archives has been an ac-
tive research topic in the last decade, mainly because it is
a prerequisite for various software evolution analyses (e.g.,
error detection, capturing intent of change, capturing and re-
playing changes, and relating refactorings and software met-
rics). Many of these techniques rely on similarity measures
to identify structurally equivalent code, however, up until
now the effect of this similarity measure on the performance
of the refactoring identification algorithm is largely unex-
plored. In this paper we replicate a well-known experiment
from Weißgerber and Diehl, plugging in three different sim-
ilarity measures (text-based, AST-based, token-based). We
look at the overlap of the results obtained by the different
metrics, and we compare the results using recall and the
computation time. We conclude that the different result
sets have a large overlap and that the three metrics perform
with a comparable quality.
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1. INTRODUCTION
Refactoring has been widely accepted as one of the prin-

cipal techniques to restructure a software system’s design
and decrease it’s complexity. In his book on refactoring [7],
Fowler defines refactoring as “a change to the internal struc-
ture of software to make it easier to understand and cheaper
to modify without changing its observable behavior.”

The key idea is to redistribute instance variables and meth-
ods across the class hierarchy in order to simplify the struc-
ture of a software system whilst preserving the behavior of
the system and consequently prepare the software for future
extensions [12]. If applied well, refactoring is said to im-
prove the design of software, make software easier to under-
stand, help to find bugs, and help to program faster [7]. As
such, refactoring has received widespread attention within
both academic and industrial circles, and is mentioned as a
recommended practice in the software engineering body of
knowledge (SWEBOK) [1].

Identifying refactorings in software repositories is a pre-
requisite for various applications. It can be used for error
detection [8] or as a reverse engineering technique to find
the intent of certain changes [19, 21]. It can also be used
to capture the performed refactorings and replay them on
other software that depends on the refactored system [9]. Or
it can be used to correlate refactorings to software metrics
and as such provide new insights on how software projects
evolve over time [18].

For these reasons refactoring detection has been an ac-
tive research topic in the academic community. Weißgerber
and Diehl proposed a signature-based technique that uses
similarity metrics to rank refactoring candidates [22].

In this paper we try to replicate their results and inves-
tigate how it compares when we use other similarity met-
rics. We use their algorithm and rank the refactoring can-
didates based on three different similarity metrics: shingles,
CCFinder and JCCD. shingles is a text-based technique
taken from natural language processing to gauge the sim-
ilarity between two documents. CCFinder and JCCD are
both code clone detection tools. The fundamental differ-
ence is that JCCD is an AST-based clone detector whereas
CCFinder is token-based. In this paper we consider two
main research questions: (i) How big is the influence of a
similarity metric within the signature-based refactoring de-
tection? and (ii) How do the similarity metrics differ?

The rest of this paper is structured as follows. In Sec-
tion 2 we summarize the algorithm used to detect refactor-
ings and elaborate on the different similarity metrics used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00

53

©ACM, 2011. This is the authors' version of the 
work. It is posted here by permission of ACM 
for your personal use. Not for redistribution. 
The definitive version was published in 
Proceedings of MSR 2011 {May 2011} 
doi:10.1145/1985441.1985452



in Section 3. We then look for an answer for our two re-
search questions in Section 4 before ending with a summary
of some threats to the validity of our experiment (Section 5),
the related work (Section 6) and the conclusions (Section 7).

2. SIGNATURE-BASED
REFACTORING DETECTION

There exist several refactoring detection techniques. One
of which is the signature-based technique by Weißgerber
and Diehl which has already been proven to be a good ap-
proach and has also demonstrated success on many applica-
tions [22]. Therefore we chose this technique to evaluate the
effect of choosing different similarity metrics on the perfor-
mance and accuracy of the refactoring detection.

Weißgerber’s algorithm starts with a preprocessing step
that stores the most important data of the source code repos-
itory in a relational database in order to get fast access to it.
Then the technique looks for added, changed, or removed en-
tities (classes, interfaces, fields, or methods) to obtain refac-
toring candidates. Most important for this paper, the tech-
nique relies on a similarity metric to rank these candidates
to indicate which are more likely to retain their behavior
and are thus more likely to be real refactorings.

The preprocessing step is used to extract and clean up
the data about the versioning of the software system. This
results in versions and transactions. A version describes one
revision of a file in the software repository. A transaction
is the set of versions that were committed to the software
repository at the same time by the same developer. A de-
tailed description of how data from a software repository can
be preprocessed can be found in [25].

After the preprocessing a light-weight parser computes for
each version v ∈ V of a JAVA file the following sets:

● Cv: The set of classes of the software system. This set
contains elements (p,n,w), where p is the name of the
package to which the class belongs, n is the class name
and w is the visibility of the class.

● Iv: The set of interfaces of the software system. This
set contains elements (p,n,w), where p is the name of
the package to which the interface belongs, n is the
interface name and w is the visibility of the interface.

● Mv: The set of methods of the software system. This
set contains tuples (c,m, p, r,w) where c is the fully-
qualified name of the class to which the method be-
longs, m is the method name, p is the parameter list
of the method, r is the return type of the method and
w is the visibility of the method.

● Fv: The set of fields of the software system. This
set contains elements (c, f, t,w), where c is the fully-
qualified name of the class to which the field belongs,
f is the field name, t is the field type and w is the
visibility of the field.

The next step in the technique is to determine which en-
tities were added and removed in each transaction. This
results in the sets C+

t , C−
t , I+t , I−t , M+

t , M−
t , F +

t and F −
t . C+

t

is the set containing the classes that were added in trans-
action t, C−

t is the set that contains the classes that were
removed in transaction t. The other sets contain the added
and removed interfaces, the added and removed methods,
and the added and removed fields.

Table 1: Conditions for refactoring candidates

Refactoring Kind Condition

MoveClass ∃(p,n,w) ∈ C−
t and∃(p′, n,w) ∈ C+
t

RenameInterface ∃(p,n,w) ∈ I−t and∃(p,n′,w) ∈ I+t
HideField ∃(c, f, t,w) ∈ F−

t and∃(c, f, t,w′) ∈ F+
t and w′ ≺ w∃(c,m, p, r,w′) ∈ F+

t and w′ ≺ w
UnhideMethod ∃(c,m, p, r,w) ∈ F−

t and∃(c,m, p, r,w′) ∈ F+
t and w ≺ w′

AddParameter ∃(c,m, p, r,w) ∈M−
t and∃(c,m, p′, r,w) ∈M+
t and p ⊏ p′

RemoveParameter ∃(c,m, p, r,w) ∈M−
t and∃(c,m, p′, r,w) ∈M+
t and p ⊐ p′

The order ⊏ on lists of types and the order ≺ on visibility levels
is defined as follows:

● [t1, ..., tp] ⊏ [t′1, ..., t′q] ⇔ q > p and ∀ti∃j ∶ ti = t′j
● private ≺ default ≺ protected ≺ public

Using these sets and the tuples they contain, we can for-
mally describe the criteria used in the signature-based anal-
ysis to find the refactoring candidates. The sets of added
and removed entities are compared as described in Table 1
to identify which entities are candidates for refactorings1.
Let s′ be a signature of a removed entity and s be a signa-
ture of an added entity and k a refactoring kind. If s′ and
s satisfy one of the conditions in Table 1 for the particular
refactoring kind k, then the tuple (s, k, s′)t is a candidate for
a refactoring of the kind k in the corresponding transaction
t. This way we can find a set of refactoring candidates RCt

for each transaction t.

2.1 Detecting Multiple Refactorings
A common problem in the field of refactoring detection is

when more than one refactoring is performed on the same
artifact. For instance when a RenameMethod and an Ad-
dParameter refactoring are performed on the same method,
then the conditions in Table 1 will not generate a candidate.
To counteract this effect, the refactoring detection technique
is extended with the possibility to capture multiple refactor-
ings. This is done by adapting the conditions for refactoring
candidates in such a way that the only thing that matters
is the value of the element in the tuple that is supposed
to be changed. This is done by changing the conditions in
Table 1 and changing the values of the elements in the tu-
ples that do not matter by a wildcard “*”. For example,
a candidate for an AddParameter refactoring is created if∃(∗,∗, p,∗,∗) ∈M−

t and ∃(∗,∗, p′,∗,∗) ∈M+
t and p ⊏ p′.

This new type of candidates is called weak candidates to
distinguish such candidates from the ones described in Ta-
ble 1, which are called strong candidates from now on.

While weak candidates allow to identify refactorings for
an entity even if multiple refactorings have been applied to
that entity, they have an important disadvantage: As the
conditions for such candidates are much weaker than the
conditions for strong candidates, the chance that a weak

1We only show a subset of the conditions to identify refac-
torings, the other Rename, Hide, Unhide and Move refac-
toring conditions can be defined analogously.
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candidate describes a real refactoring is much lower. This
also means that taking weak candidates into account will
result in a large number of candidates that are likely to be
wrong. However, this problem is not as severe as it seems
because the technique is at this point only working with
refactoring candidates. The difficulty lies in disambiguat-
ing, ranking, and filtering these candidates in such a way
that only the valid candidates remain. This is done using a
similarity metric to calculate the similarity of the bodies of
an old and new entity in a refactoring candidate.

3. SIMILARITY METRICS
For each of the refactoring candidates, we compare the

bodies of the old entity and the new entity. If these bodies
are not equal then we use a similarity measure to determine
whether the bodies are similar in a way that it is likely that
the external behavior did not change. The main assumption
here is that the more similar the body of the old entity is
to the body of the new entity, the higher is the probabil-
ity that the behavior of both artifacts is the same and thus
that the refactoring candidate really describes a refactoring.
Originally, the technique used CCFinder, a token-based code
clone detection tool. In this paper we try to find out how
heavily the results depend on the choice of similarity mea-
sure. We therefore plug in two other: JCCD, an AST-based
clone detector, and shingles, a text-based technique.

Code clone detection is an established technique for iden-
tifying similar pieces of code in one or more files. In the spe-
cific scenario of refactoring detection, however, only clones
between the bodies of two entities are interesting. If these
bodies are not clones of each other, it is still interesting
whether parts of the bodies are clones.

3.1 CCFinder
CCFinder is a scaleable token-based tool for detecting

code clones in various programming languages [11]. It was
used in the original technique by Weißgerber and Diehl as
a code clone detection tool to determine the similarity be-
tween the body of an old entity and the body of a new entity
in a refactoring candidate [22]. They configured CCFinder
to find pairs of similar Java code fragments j1, j2, such that
j1 is equal to j2 or if j1 can be transformed into j2 by per-
forming one or more of the following operations: adding
or deleting white spaces, adding, deleting or changing com-
ments, changing visibility, adding or removing the pack-
age name, consistently renaming variables, consistently re-
naming method names, consistently renaming references to
member names, or consistently renaming types.

One problem is that when the two code fragments are not
clones, then it could still be that token sequences within
the bodies could be clones. To take this into account, for
each refactoring candidate one can count how many tokens
of the body of the old entity are cloned in the body of the
new entity. Fortunately, for two code fragments j1 and j2,
CCFinder does not only determine if j2 is a clone of j1. It
also identifies all substrings of j1 and j2 that are clones of one
another. This is used in the similarity metric CloneFrac-

tion, which was precisely defined by Weißgerber in [20].

3.2 JCCD
JCCD is an AST-based code clone detection API that is

based on a generic pipeline model [2]. This model coor-
dinates the interplay of all required steps in a code clone

detection process. By combining and parameterizing prede-
fined API components as well as by adding new components,
JCCD facilitates to build custom code clone detectors. As
JCCD is highly configurable and extensible, we configured it
differently for each refactoring kind. For instance to check if
a particular RenameMethod candidate is a real candidate,
we can ignore the method declaration and the method name;
to check if a HideMethod candidate is a real candidate, we
can ignore the modifiers of the method, etc. We instanti-
ated the JCCD pipeline in such a way that Weißgerber’s
CloneFraction metric could also be used.

3.3 Shingles
The third way that we used to measure the similarity of

method bodies is to use shingles—a text-based approach. In
natural language processing a w-shingling is a set of unique
shingles —subsequences of adjacent tokens in a document—
that can be used to gauge the similarity of two documents [3].
The ‘w’ represents the window used to create the shingles,
it denotes the number of tokens for each shingle. The re-
semblance of two documents A and B can be expressed as
the ratio of the magnitudes of their shinglings’ intersection
and union.

In our technique, the shingles similarity takes two strings
of program code (s1, s2) and tokenizes these strings in or-
der to build 2-shinglings (whith w = 2 we create shingles of
size 2) from these tokens. Let SH(s1) be the set of unique
shingles for s1 and SH(s2) for s2. The shingles similarity
between these two strings can then be defined as

ShinglesSimilarity(s1, s2) = ∣SH(s1) ∩ SH(s2)∣∣SH(s1) ∪ SH(s2)∣
In other words, the shingles similarity is computed by the

ratio of the number of common shingles and the number of
all shingles.

3.4 Disambiguation and Filtering
The metrics described above are used to rank the refac-

toring candidates. They are used to (i) identify ambiguous
candidates (i.e. several refactoring candidates on the same
entity) and (ii) to filter out candidates that are likely to be
wrong.

It is possible that several refactoring candidates work on
the same entities. There are two kinds of ambiguous refac-
toring candidates: two refactoring candidates (s1, k1, s′1)t
and (s2, k2, s′2)t are source ambiguous if and only if s1 = s2
and s′1 ≠ s′2 meaning that both refactoring candidates have
the same source, but different targets. Analogously, we can
define target ambiguousness, where two refactoring candi-
dates have the same target but different sources. The entire
set of refactoring candidates for a transaction RCt can now
be split into several sets of refactoring candidates that are
(target) ambiguous. In these sets of ambiguous refactoring
candidates we need to define a ranking. We do this based on
the similarity measures defined above. The more similar the
body of the old entity is to the body of the new entity, the
higher the refactoring candidate is ranked. Each refactoring
candidate in a set of n ambiguous candidates is given a nat-
ural number between 1 and n. In this ranking the candidate
with the lower natural number is better than one with the
same target s, but that is ranked with a larger number.
With this ranking we can filter out the worst candidates. In
total we can filter on three metrics:
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Disambiguation mode dis ∈ {none,b1,b2}: The b1 and
b2 filters are based on the ambiguousness ranking. b1

only allows the refactoring candidate that is ranked
best of the ambiguous refactoring candidates. b2 only
allows the best two to pass the filter.

Similarity threshold thr ∈ {0%,1%,⋯,100%}: The sec-
ond filter is to use a threshold on the similarity metric,
i.e., we allow only those candidates that have a simi-
larity measure higher than a given threshold t. In all
three metrics, the similarity is a number in the range[0,1], where 1 indicates that the two bodies body(s)
and body(s′) are identical.

Signature matching sig ∈ {strong,weak}: The final filter
is to only allow either strong or weak (all) candidates.

Thus, the whole refactoring detection process can be con-
sidered as a function rede(sig, dis, thr) which yields a set C
of refactoring candidates.

4. EVALUATION
In this section we evaluate the similarity metrics described

in Section 3 in order to find out what their effect is on the
signature-based refactoring detection technique. We do this
with a replication experiment, where we replicate the results
obtained by Weißgerber and Diehl. However, where they
only used CCFinder to calculate the similarity of two enti-
ties in a refactoring candidate, we extend this experiment by
plugging in the two other similarity metrics. Thus, the ex-
tended refactoring detection method rede(sim, sig, dis, thr)
gets a fourth argument sim ∈ {CCFinder,shingles,JCDD}.

During the entire experiment we kept two basic questions
in mind: (i) How big is the influence of any similarity metric
within the signature-based refactoring detection? (ii) How
do the similarity metrics differ?

4.1 Experimental Setup
For the replication experiment we selected four software

projects out of seven which were already analyzed in the
study by Weißgerber [20]. In order to get a representative
case selection we considered two main aspects: Firstly, we
want to analyze projects of different levels of maturity. This
is measured by the amount of transactions. Secondly, we
want to analyze projects that showed varying performances
in the previous study. The software archives we selected on
this basis is shown in Table 2.

Table 2: Basic data of the evaluated projects.

Project # Txns Time Frame

Azureus 10664 Jul 10 2003 – Feb 12 2007

Jfreechart 2412 Oct 18 2001 – Feb 14 2007

Jftp 209 Jan 25 2002 – Mar 23 2003

Tomcat 3 4158 Oct 09 1999 – Nov 21 2004

A lot of time was invested by Weißgerber and his students
to manually gather all documented refactorings of these soft-
ware archives. In order to reuse this data in our Quality
Assessment (see Section 4.8) we considered the exact same
time frames. Additional data of the previous study was not
required during our replication.

In our study we used an improved version of Weißgerber’s
refactoring detection library and extended it with JCCD and
shingles. We run the analysis separately, for each of these
measures and each project. This ensures that no similarity
metric could affect the results of another.

We have ignored refactorings concerning fields (Rename-
Field, MoveFIeld, HideField and UnhideField) since a
field is an entity with only a signature and no body. There-
fore using the similarity measures on the body of a field is
useless.

4.1.1 Filter Options
As explained in Section 3.4 the refactoring detection pro-

cess provides three main filter options. This results in 600
possible combinations of (sig, dis, thr) for one similarity met-
ric. Which leads us to question: What combinations are
useful for the comparison of the three similarity measures?
Weißgerber only used 7 combinations in his evaluation. Our
first idea was then to take only these combinations into ac-
count. If we did this, then every similarity measure uses
the same threshold value. The problem is however, that
a threshold for one particular similarity metric can mean
something entirely different for another one. On the other
hand, the strong/weak and ambiguity settings have the same
effect regardless of the similarity measures. This results
in 6 million possible combinations of (sig, dis, thrCCFinder,
thrshingles, thrJCCD). Therefore, it is necessary to have an ob-
jective method to adjust the thresholds thrCCFinder, thrshingles,
and thrJCCD of each similarity metric independently, in order
to get comparable candidate sets.

4.1.2 Adjustment of the Similarity Thresholds
The idea is to use a number x of candidates as a cali-

bration value and to give each similarity metric the chance
to present its x best candidates. As a result, we obtain
comparable candidate sets, that reflect the characteristics
of each similarity metric. More precisely, we implemented
a function minthreshold(sim, sig, dis, x) = thr such that ∣x −∣rede(sim, sig, dis, thr)∣∣ is minimal. To actually compare
the different similarity metrics, we use a range of values for
x as described in the next subsection.

4.1.3 Threshold List
For each project we first compute 100 subsequent cali-

bration values x1,⋯, x100 to be used as predefined numbers
of refactoring candidates. Then, for each filter combina-
tion (sig, dis) we created a threshold list with 100 calibrated
threshold triples of the form (thrxi

CCFinder, thr
xi
shingles, thr

xi
JCCD)

where thrxi
sim=minthreshold(sim, sig, dis, xi).

Since a threshold of 0% is equivalent to no filter, a thresh-
old of 0% lets all refactoring candidates pass. A threshold of
100% is the most restrictive, but might result in a different
amount of remaining candidates for each similarity thresh-
old. Thus, the range of all calibration values that can be
reached by adjusting the threshold for each similarity metric
is given by the interval [max

sim
∣rede(sim, sig, dis,100%)∣,⋯,

min
sim

∣rede(sim, sig, dis,0%)∣].
In other words, we get the minimal and maximal number

of candidates for each similarity metric and chose this as the
lower and upper limit that can be reached by each similarity
metric. This range is divided into 100 equal parts to get the
different calibration values.
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4.2 Strong and Weak Candidates
In this section we characterize, how the influence of the

similarity metrics varies when using the weak or strong fil-
ters. At first we computed for each entry in the threshold
list (see Section 4.1.3) the overlaps of the related candidate
sets. For example, the overlap of all three candidate sets is

∣ ⋂
sim

rede(sim, sig, dis, thrxi
sim)∣

Next we created charts with the calibration values on the
x-axis and the related overlaps on the y-axis. Figure 1 shows
two such diagrams for Jfreechart. A closer look reveals
that in both filters a lower calibration value leads to a lower
overlap. This is because for a lower number of candidates,
we have higher (more restrictive) thresholds. We can also
see that this effect is more accentuated for the weak filter.
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Figure 1: Overlap when using only the strong and
weak filters for Jfreechart.

Table 3: Minimal overlap for weak and strong can-
didates.

Azureus Jfreechart Jftp Tomcat 3

weak 11.6% 13.3% 22.8% 2.1%

strong 69.3% 51.5% 74.3% 81.2%

Since the curves for the strong and weak filters show a
similar behavior, we illustrate the difference between these
filters using only the minimal overlap values in Table 3. We
do not use the maximal overlap value, since this is the same
for both filters. We can see that there is a big difference
between the overlap of the results obtained with the strong

filter and the results obtained with the weak filter. For in-
stance, in the Tomcat 3 project the minimal overlap of the
strong filter is 81.2%, this means that we can choose any
calibrated threshold triple and yet their candidate sets have
at least an overlap of 81.2%. This suggests that in this case
it is not as important which similarity metric is used. In con-
trast, in the same project the minimal overlap of the weak

filter is 2.1%. This suggests that for the weak filter each
similarity metric has a big influence on the candidate set.
Therefore, the selection of a particular similarity metric is a
significant configuration when using the weak filter.

Since we found that for the strong filter the similarity
metrics have a smaller influence on the candidate set, we
will focus on the weak filter in the rest of the evaluation.

Table 4: Overlap of all candidates with a similarity
threshold of 0% for each metric.

Azureus Jfreechart Jftp Tomcat 3

b1 60.9% 37.1% 33.3% 49.0%

b2 47.9% 39.4% 30.7% 43.4%

4.3 Ambiguous Candidates
In this section we investigate the relation of similarity

metrics and disambiguation. With a threshold of 0% and
without disambiguation for both the weak and the strong

filter the overlap is at 100%. In this case, all candidates
pass the filter no matter how similar the entities of the can-
didates are. Thus, at this point, the similarity metrics have
no influence.

As we described in Section 3.4, several refactoring can-
didates are ambiguous. On average, without filtering, each
entity refers to about 90 ambiguous refactoring candidates.
By using the b1 filter only the candidates that are ranked
best in their sets of ambiguous refactoring candidates will
pass the filter. Since the similarity metric is also considered
in the ranking of ambiguous candidates, the overall results
of the b1 filter can be very different. With a threshold of
0% but using disambiguation (b1 or b2) the overlap is con-
siderably below 100%, as can be seen in Table 4.

Furthermore, in this table we can see that the biggest
overlap can be found in Azureus2 with the b1 filter. This
means that all similarity metrics came to a similar ranking
of the ambiguous candidates. In Jftp, on the other hand,
using the same filter, the similarity metrics have ranked the
ambiguous candidates more differently and thus the overlap
is much smaller.

Another interesting observation is that for all projects (ex-
cept for Jfreechart) , the overlap when using the b2 filter
is much smaller than when using the b1 filter. This can
be explained by the fact, that b2 allows the two top-ranked
refactoring candidates while b1 only allows the top one. As
a consequence, the candidate set of the b1 filter is a subset
of the one of the b2 filter. Nevertheless, the overlap in the b2
filter is smaller, since in most cases, each similarity metric
also uses a different ranking for the second best candidate.

All in all, with the b1 or b2 filters, each similarity metric
has a significant influence on the filtering process. While
we computed all the data and figures for both filters, in the
following we will only discuss our findings for the b1 filter.
For the above reasons, they are similar for the b2 filter.

By focussing on weak signature matching and the b1 dis-
ambiguation mode, we can take the two points into account
where the similarity metrics have an influence on the refac-
toring detection process: Firstly, the ranking of the candi-
dates for which we use the b1 filter; And secondly, the simi-
larity between the two entities in a refactoring candidate for
which we use a similarity threshold.

4.4 Correlation of the Similarity Thresholds
We showed in previous sections, that the effect of a sim-

ilarity metric can be influenced by adjusting the similarity
threshold. In this section we investigate if we can find a
correlation between adjusting the similarity threshold and
the effect of the similarity metric. We measure this corre-
lation by adjusting the similarity threshold and observing
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the changes in the number of candidates. We have already
learned two facts from previous sections: first, using the
same threshold value for each similarity metric leads to a
different number of candidates and second, by increasing
the threshold values, the number of candidates gets smaller.

When using the CCFinder metric, we observed in all four
projects that the number of candidates decreases linearly
when increasing the threshold. With shingles and JCCD,
on the other hand, we observed threshold ranges in which
the number of candidates decreased more rapidly. Thus,
the adjustment of the similarity threshold could have a big-
ger effect on the results of one similarity metric than on
another. In other words, there exists no fixed offset be-
tween the threshold values. Rather a small adjustment of
the threshold could mean for one particular metric a small
and for another a big difference.

Table 5: Number of candidates for b1 by a common
threshold value of 100%.

CCFinder JCCD shingles

Azureus 9029 7050 8847

Jfreechart 1105 733 724

Jftp 191 195 208

Tomcat 3 3532 2773 2945

Another fact is that when using a threshold of 100% for
each similarity metric, we find a different number of refac-
toring candidates. This is shown in Table 5, in which we give
an overview of the number of candidates produced using the
b1 filter and a threshold of 100%. We can see that CCFinder
produces the most candidates whereas JCCD tends to pro-
duce smaller result sets. This is a well-known issue for these
kinds of clone detectors [15]. In general, most token-based
clone detectors like CCFinder have a good recall, yet a weak
precision. The opposite is true for tree-based approaches like
JCCD. These mostly have a good precision and a weak re-
call. It seems that this property of CCFinder (to return more
code clones than JCCD) was handed over to the refactoring
detection. This applies analogously to JCCD and shingles.

4.5 Overlap of the Similarity Metrics
In the previous sections we have mostly been concentrat-

ing on our first main research question: How influences each
similarity metric the results of the signature-based refactor-
ing detection, and how can this effect be influenced with
some adjustments? In the next parts we investigate how
the three similarity metrics differ within this signature-based
approach, and thus, formulate an answer for our second re-
search question: How do the similarity metrics differ?

In this section, we investigate the overlap of the candidate
sets for each calibrated threshold triple using the b1 filter.
To realize this, for each calibration value from the threshold
list (see Section 4.1.3) we computed the overlaps for all three
similarity metrics and additionally the overlaps for all pairs
of metrics. Figure 2 gives an overview of these overlaps.

The first impression is that all charts look quite similar. It
is however peculiar that most overlap curves have an S-shape
(decrease, increase, decrease) and that the biggest overlap is
achieved for small but not for the smallest calibration values
(i.e. the highest threshold values). To explain this we have
to remember the effect of the b1 filter. As described in
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Figure 2: Overlap of all metrics and all thresholds
by using the b1 filter.

Section 4.3 each similarity metric uses another ranking for
ambiguous candidates. Note that this ranking is fixed for
all threshold values. One thought is that the overlap of all
similarity metrics should not become bigger when increasing
the threshold values, since a candidate set obtained with a
particular threshold is a subset of a candidate set using a
smaller threshold. This is however not the case, because at
the threshold of 0%, many of the best ranked candidates
might still have a small similarity. Thus, by increasing the
thresholds, these worse candidates will be pruned and in the
end, the different result sets have a bigger overlap. Another
fact is that the influence of each similarity metric grows quite
slowly, leading to a point in which all metrics have an equally
significant influence, and thus, the point with the biggest
overlap. After that, each metric influences the results in its
own direction.

A closer look at the diagrams also reveals, that the over-
laps of two similarity metrics are more balanced in the bigger
projects Azureus and Tomcat 3. In the other two projects
these overlaps have a bigger variation of about 20%. Never-
theless, if we take the overlap of all metrics into account we
can determine that all metrics have a much lower overlap
than only two metrics. This means that any two metrics
have quite a big subset of candidates which is not present in
the candidate set of the third one.

To conclude, we have seen that the selection of a particular
metric can significantly influence the direction of the results.
However, none of these three similarity metrics was able to
change the results in something completely different. There
is still a common candidate basis of 30–40% which can be
found in the results of each similarity metric.
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4.6 Differences of the Similarity Metrics
To get a better understanding why a particular similarity

metric filters out a candidate that can still be found in the
result set of another metric, we selected for each project the
calibrated threshold triple for which the overlap of all can-
didate sets is the largest. So we expect that the candidates
within the complements (the set of candidates that are re-
jected by the other two metrics) reflect the characteristics
of a similarity metric best.

Figure 3 shows Venn diagrams of the candidate sets for
each similarity metric considering the selected thresholds for
each project. As we can see, in each project the proportions
of the sets are quite similar to another. This illustrates again
the previous mentioned claim that there exists a big basis of
common candidates (more than 50%), but also that none of
the other intersections is empty, they contain at least 2.5%.

Figure 3: Biggest possible overlap (in %) of all sim-
ilarity metrics compared to other threshold combi-
nations by using the b1 filter.

We have manually inspected a total of 328 candidates
(about 8–13% of all candidates) from the complements of
Jftp (95 candidates) and Jfreechart (233 candidates). In
general, we observed many candidates with very small code
fragments. In total 195 candidates (59% of the inspected
candidates) refer to code fragments which have less than
three lines of code. However, we noticed that the computed
similarity metrics were rather random. This is because a
small difference in a token can lead to a low similarity value
and thus such a candidate is unable to meet the threshold
value. By ignoring smaller code fragments the common can-
didate basis will even increase (e.g. in JFreechart from
51.63% to 62.6%, or in Tomcat3 from 53.77% to 82.32%).

Furthermore, some candidates did not represent real refac-
torings. For example, two unrelated getter-methods could

be rated as similar, since both clone detectors have a big
tolerance for identifiers. Additionally, we found that 83 can-
didates (25% of all inspected candidates) had only a small
difference, and thus, for some thresholds this was enough to
be passed and for others not.

Another interesting observation is that JCCD is more sta-
ble against clojust nes with missing lines or clones with a
permutation of the statements than when we use JCCD in
a standalone way (i.e. to detect clones and not within this
refactoring detection framework). This is because JCCD
returns a lot of small clones which are merged by the com-
putation of the CloneFraction.

We also found candidates that looked very similar and
were only found by shingles. The only difference was that
in one code fragment several lines were commented out.
While JCCD and CCFinder ignore comments, the shingles
metric takes them fully into account. Another character-
istic of shingles is that the smaller code fragments tend to
be ranked more dissimilar and bigger code fragments more
similar. The reason for this is that the probability of new
unique shinglings in large documents is much lower than in
smaller documents, because the amount of different tokens
and their permutation possibilities are limited. Thus, we
found two code fragments which were rated as 100% similar
by shingles, but in the second code fragment a whole part
was copied to another position in the code.

All in all, subtle peculiarities of the similarity metrics can
make themselves felt in the end results.

4.7 Correlation of the Recall Values
In this section, we investigate how the recall values of each

similarity metric relate to the calibration values. With that
we want to find out if one particular similarity metric leads
to a higher recall value than another one for a given number
of candidates.

We have no information about the exact refactorings that
have been performed during the development of the four
projects and thus we have no way of calculating the ex-
act recall of the signature-based refactoring detection. We
can, however, estimate the recall based on the documented
refactorings (DR). Weißgerber and his students scanned the
commit messages in the source repositories for log messages
mentioning refactorings. They then manually inspected the
exact source code changes that were made during this refac-
toring to categorize them correctly. The documented recall

can then be calculated as drecall = ∣RC∩DR∣∣DR∣ where RC is the

set of computed refactoring candidates.
For all four projects, Table 6 lists all documented refactor-

ings broken down into three refactoring categories. We can
see, that most documented refactorings are method refactor-
ings followed by class refactorings and interface refactorings.
Thus, the overall documented recall value includes a spe-
cific weighting based on the distribution of the documented
refactorings. Within this exploration we have excluded Jftp
because for this case we only have a total of 6 documented
refactorings and this will therefore not produce any mean-
ingful results.

By analyzing the drecall values for each calibrated thresh-
old triple we find that the drecall is similar for each threshold
of the triple. Which is a surprising fact, since we mentioned
in a previous section, that JCCD has a high precision and
CCFinder has instead a high recall. It seems that this is not
reflected in the drecall of the signature-based refactoring de-
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Table 6: Number of documented refactorings

Project ClassRefs InterfaceRefs MethodRefs

Azureus 249 59 243

Jfreechart 28 2 266

Jftp 1 0 5

Tomcat 3 75 20 271

tection. Only in Azureus we note that the drecall values of
JCCD behave a bit different. Just by increasing the thresh-
old value of JCCD from 0% to 1% the drecall of JCCD drops
from 92% to 77% while, using the other metrics, the drecall
values remain up to 92–95% with higher threshold values.
If we compare the numbers of documented refactorings we
can determine that Azureus has significantly more class
refactorings. It could be that class refactorings can be more
reliably detected by using shingles or CCFinder. Neverthe-
less, this distribution remains the same for the rest of the
threshold combinations.

Additionally, we determine that the drecall of the inter-
section is quite high, and thus, most detected documented
refactorings can be found using any of the three metrics.
Hence, with a combination of all similarity metrics it could
be possible to increase the precision, since the candidate set
can be reduced while keeping the drecall more or less equal.
The drecall of the union is as expected slightly higher than
the drecalls of each similarity metric. Thus, by taking the
union candidate set it is possible to increase the drecall and
the recall respectively.

4.8 Quality Assessment for each Metric
In this section, we estimate the quality of the results ob-

tained using each of the similarity metrics. We base this
estimation on the drecall values and the calibration values.
For the estimation we assume that if the drecall value for
a particular candidate set remains the same while reducing
the number of candidates, then the precision value should
increase. In other words, with a fixed number of candidates,
the similarity metric that leads to a result with a higher
drecall than the other metrics, will also lead to a higher
precision. Nevertheless, we are unable to estimate concrete
values for the precision.

We have again taken the same result sets as in Section 4.6
and listed their recall values in Table 7. As we can see,
most recall values are comparable to each other per project
and per refactoring kind. Overall, with these similar re-
call values, the similarity metrics could lead to comparably
high precision values. Thus, we believe that the quality of
the results is comparable, independent of the used similarity
metric.

We note that the drecall of JCCD in Azureus for the set
of class and interface refactorings is much lower than for the
other similarity metrics. In detail, JCCD only found 24% of
the RenameClass refactorings while shingles has a drecall
of 76% and CCFinder 85%. This could support our claim
from the previous section that JCCD is weaker for detecting
class refactorings. However, this effect can only be observed
in Azureus.

On average for method refactorings CCFinder seems to
generate the lowest drecall values. As already mentioned
by Weißgerber we observed several problems to detect Add-

Table 7: Documented Recall.

RefKind Project CCFinder JCCD shingles

Class Azureus 0.94 0.72 0.91

Jfreechart 0.96 0.96 0.96

Jftp 1.00 1.00 1.00

Tomcat 3 0.88 0.89 0.93

Interface Azureus 0.97 0.76 0.98

Jfreechart 1.00 1.00 1.00

Jftp — — —

Tomcat 3 1.00 1.00 1.00

Method Azureus 0.68 0.75 0.79

Jfreechart 0.70 0.71 0.69

Jftp 0.60 0.60 0.60

Tomcat 3 0.75 0.82 0.85

Parameter and RemoveParameter refactorings. But this
does not seem to be a problem of the signature-based ap-
proach in general but of the used similarity metric. By se-
lecting a more appropriate similarity metric this can be in-
fluenced in a positive way. For example, in the Tomcat 3
case CCFinder has only found 41% of the documented Add-
Parameter refactorings while shingles has found 89% and
JCCD 81%.

Surprisingly, on average the simplest similarity metric,
shingles, leads to the best drecall values for this particular
threshold combination.

All in all, this is only a rough quality assessment which
is strongly based on the documented refactorings. In many
cases all similarity metrics seem to have a comparable qual-
ity. Additionally, as we have seen before, the results are
largely overlapping, and thus we do not expect a large differ-
ence in the quality. It is however not entirely clear why par-
ticular peculiarities of the similarity metrics in some cases
shine through and in other cases they do not.

4.9 Computation Time
We ran the experiments on a server with four processors

(eight cores, 2Ghz) and 32GB of memory. The computa-
tion times for each of the analyses (on the four cases), using
the three metrics is shown in Table 8. This table shows the
average computation time per transaction. Note that these
runtimes include the time needed for the preprocessing step
of the signature-based analysis. However, the computation
time for the preprocessing step is equal for each of the sim-
ilarity metrics. For instance in the case of Jfreechart the
preprocessing step took about two hours (or three seconds
per transaction). So in reality the runtimes of calculating
the similarity metrics are lower than shown in this table,
the difference between the runtimes of the three different
metrics, however, remains the same.

We can observe that CCFinder is much slower than the
other two similarity metrics and the shingles similarity met-
ric (the simplest) is calculated fastest. As in the original
implementation, CCFinder needs to be run through wine2

which adds about five milliseconds per refactoring candi-
date to the total runtime, yet even when we take this into

2Wine is a program that allows us to run Windows applica-
tions on Linux or Mac OSX.
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Table 8: Average Runtime per Transaction

Project # Txns CCFinder JCCD shingles

Azureus 10642 20.1s 10.8s 6.1s

Jfreechart 2411 29.2s 7.0s 4.0s

Jftp 208 55.3s 12.9s 5.5s

Tomcat 3 4148 45.0s 8.1s 4.1s

account CCFinder is still outperformed by the other two.
This confirms the conclusions drawn in [2], where JCCD was
compared to CCFinder and JCCD was found to be faster.

5. THREATS TO VALIDITY
In this section, we identify factors that may jeopardize

the validity of our results. Consistent with the guidelines
for case studies research (see [16, 24]) we organize them into
four categories.

Construct validity. (Do we measure what was intended? )
We compared three different similarity measures. We can
still extend this experiment with other similarity measures.
A recent survey by Roy and Cordy showed more than forty
different approaches to code clone detection. These can be
roughly categorized by the kind of information they process:
strings, tokens, abstract syntax trees, program dependence
graphs, metrics, or hybrid approaches [15].

Internal validity. (Are there unknown factors which might
affect the outcome of the experiment? ) For each of the four
cases, we used a set of documented refactorings to estimate
the recall. These documented refactorings are based on the
commit messages in the log of the source repository. It is
very likely that this is only a subset of all the performed
refactorings, since sometimes a developer might find a refac-
toring not relevant to mention in the commit message, or
the refactoring might be so complex that the developer did
not realize he was refactoring the code. The real recall val-
ues might still vary from our estimated recall based on the
documented refactorings. The estimated recall however is
sufficient to compare the different similarity metrics.

External validity. (To what extent is it possible to gener-
alize the findings?) We performed our experiment on four
open source Java projects of varying sizes and application
domains. We therefore cannot claim that these findings can
be held true for other programming languages or for projects
of a larger scale. Nevertheless, while the optimal configura-
tions for the clone detection tools differ across projects, there
is a clear trend that a lot of the refactorings are found by
all three metrics with a comparable drecall value.

Reliability. (Is the result dependent on the researchers and
tools? ) We relied on tools of our own making. The tool that
we used to detect the refactorings is the same one as used by
Weißgerber and Diehl [22] and we have extended that with
a similarity metric calculated by JCCD and with shingles.

We used the documented refactorings found and analyzed
by Weißgerber and his students, and since they are no ex-
perts in the development of the open source cases, there
could be some misclassifications in the refactorings.

6. RELATED WORK
There has already been quite some work on techniques to

find refactorings. Many of which use code clone detection
as a basis for their algorithm:

Danny Dig et al. have developed an open source refac-
toring detection tool RefactoringCrawler, which uses a com-
bination of syntactical and semantical analysis to identify
refactorings [5, 6]. Their approach is very similar to the one
by Weißgerber and Diehl [22] (which we explained in Sec-
tion 2). The difference lies in the fact that Dig first uses
the (shingles) similarity metric to identify possible refactor-
ing candidates and then uses the signature based analysis to
filter out the bad candidates.

Van Rysselberghe and Demeyer use clone detection on two
versions to look for a decrease in the number of clones. Since
many refactorings are aimed at eliminating software clones
a decreased number of clones in one version would suggest
that refactorings were performed [19].

Other approaches don’t use clone detection, but do show
promising results:

Xing and Stroulia have developed an algorithm that com-
pares two subsequent versions of a system at the design level.
Their UMLDiff algorithm is capable of detecting some basic
structural changes in the system such as the addition, re-
moval, renaming or moving of UML entities. More complex
structural changes can be found using a suit of queries that
try to find a composition of elementary changes [23, 17].

Demeyer et al. have developed a set of heuristics to iden-
tify refactorings. Each heuristic is a combination of change
metrics to reveal refactorings of a certain kind. What they
do is compare different source code metrics on subsequent
versions of a system. However code metrics do not provide
sufficient information to pinpoint which elements were in-
volved in the refactoring [4].

Prete et al. proposed a refactoring detection technique,
which is stronger than all previous techniques because they
not only detect primitive refactorings (which all previous
techniques can do to some extent) but also “complex refac-
torings” (i.e. refactorings which are combinations of primi-
tive refactorings). To do this they rely on a fact base with
a strong query engine (Tyruba logic) [13].

7. CONCLUSIONS
At MSR 2010 the paper by Robles [14] and the invited

talk by Juristo and Vegas [10] on non-identical replication
led to a lot of discussion on the lack of replicated experi-
ments in the area of mining software repositories. In this
paper we presented a replication experiment, where we took
a refactoring detection technique that used a specific code
clone detector (CCFinder) and investigated what the effect
was of plugging in two other similarity measures.

We found that the similarity metric has an influence on
the signature-based refactoring detection in several places.
When using the strong filter, the similarity metrics have
a much smaller influence, than when using the weak filter.
This is because the strong filter is already very selective.
The similarity metrics also have an influence in the disam-
biguation of the refactoring candidates, since the ambiguous
candidates are ranked using the similarity metrics and then
the b1 or b2 filter is used to only allow the highest ranked
candidates. However depending on the similarity metric, the
ranking of the refactoring candidates differs. Even though
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each of the similarity metrics have an influence on the result
sets, there is still a common basis of refactoring candidates
that can be found in the results of each similarity metric.
The little differences in the result sets that do occur, are
due to subtle peculiarities of the similarity metrics, like the
fact that shingles takes comments into account, or the fact
that many of the refactoring candidates involve entities with
very short bodies (e.g., getter and setter methods). We also
looked into the quality of the result sets and found that in
many cases the similarity metrics show a comparable quality.
When we look at the computation times needed to calculate
the three similarity metric, we see that shingles outperforms
the other two and that CCFinder is by far the slowest.
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