
Mining Refactorings in ARGOUML

Peter Weißgerber, Stephan Diehl
University of Trier

Computer Science Department
54286 Trier, Germany

weissger@uni-trier.de, diehl@acm.org

Carsten Görg
�

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332, USA

goerg@cc.gatech.edu

ABSTRACT
In this paper we combine the results of our refactoring reconstruc-
tion technique with bug, mail and release information to perform
process and bug analyses of the ARGOUML CVS archive.

Categories and Subject Descriptors: D.2.8[Software Engineer-
ing]:Metrics; D.2.5[Software Engineering]:Testing and Debugging

General Terms: Algorithms, Management, Measurement.

Keywords: Refactoring, mails, bugs, evolution, re-engineering.

1. INTRODUCTION
In this study we mine the CVS archive of ARGOUML for refac-

torings that have been performed during the development and evo-
lution of ARGOUML. We relate the refactorings of each day to the
number of overall changes on that day to detect both phases with
many and phases with almost no refactorings. We look especially
at the phases before major release dates, because this may help the
project manager in planning pre-release phases, or to plan release
dates ahead.

To see if refactorings in ARGOUML have an effect on the occur-
rence of new bugs and on communication between the developers,
we relate the refactorings to bug reports in ISSUEZILLA respec-
tively to mails on the developer mailing list. If the error rate would
increase with the refactoring ratio, the project manager would have
to enforce the use of automated refactoring tools, or the used refac-
toring tools or methods may be poor.

Finally, we examine if there are incomplete refactorings which
could possibly lead to errors. Mining changes for such incomplete
refactorings can uncover bugs that have been introduced long ago.

2. MINING REFACTORINGS IN ARGOUML

2.1 Computing the Refactoring Ratio
In [1] we introduced our technique to reconstruct refactorings

from software archives such as CVS. For each day, we determine
�
The author was supported by a fellowship within the Postdoc-

Program of the German Academic Exchange Service (DAAD).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’06, May 22–23, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

which blocks (fields, methods in a class) have been changed and
which of these are affected by refactorings. Thus we get values for
the following metrics:

Normalized number of changed blocks (per day):�������	�
���
��
���
������
where ��������� ��!#"%$'&)(*�	��� �)+ , day in project’s lifetime -

Number of refactorings per changed block (per day):�/.�� � �0
�1�� �
���
 � where ��23� � is the number of non-overlapping,
disambiguated refactoring candidates for day

,

2.2 Computing Bug and Mail Ratios
To determine if days with a high refactoring ratio result in fewer

errors than other days, we look at the number of bugs filed per day
in the ISSUEZILLA system of ARGOUML. As developers usu-
ally do not detect errors immediately after the program change that
caused them, we compute the number 4 � �

of all new defects filed
within the next five days (which roughly approximates a working
week). For each day we relate this value to the number of changes:

Normalized number of bugs per changed block:�/�%� � �
�56
 �
���
���7
�56
����8�
where ��9:� �3�*� !;"%$'&)(*�	9<� �=+ , day in project’s lifetime -

Additionally, we are interested in whether refactorings have an
effect on the amount of communication between the developers.
Therefore, we consider the development mailing list of ARGO-
UML and count for each day the number >�? �

of archived mails.
We relate this number to the number of changes as follows:

Normalized number of mails per changed block:� ? � � �
6@�A	�
���
���7
6@�A<���8�
where �	B3CD�3� �	!;"/$E&)(*�	B3C � + ,

day in project’s lifetime -

3. ARGOUML RESULTS

3.1 Process Analysis: The Pre-Release Phase
Figure 1 shows the time periods before and after the four release

dates of the stable series of ARGOUML from 2002 until 2005. In
all cases, we see the same pattern:

F Before the release dates, there seem to be testing phases where
only few changes have been done at all, but many new bug
reports have been opened.

F In each case after the testing phase and immediately before
the release, changes with high refactoring ratio have been
performed.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
0

1
.0

9
.2

0
0

2

0
8

.0
9

.2
0

0
2

1
5

.0
9

.2
0

0
2

2
2

.0
9

.2
0

0
2

2
9

.0
9

.2
0

0
2

0
6

.1
0

.2
0

0
2

1
3

.1
0

.2
0

0
2

2
0

.1
0

.2
0

0
2

2
7

.1
0

.2
0

0
2

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

7
.2

0
0
3

0
8
.0

7
.2

0
0
3

1
5
.0

7
.2

0
0
3

2
2
.0

7
.2

0
0
3

2
9
.0

7
.2

0
0
3

0
5
.0

8
.2

0
0
3

1
2
.0

8
.2

0
0
3

1
9
.0

8
.2

0
0
3

2
6
.0

8
.2

0
0
3

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

6
.2

0
0
4

0
8
.0

6
.2

0
0
4

1
5
.0

6
.2

0
0
4

2
2
.0

6
.2

0
0
4

2
9
.0

6
.2

0
0
4

0
6
.0

7
.2

0
0
4

1
3
.0

7
.2

0
0
4

2
0
.0

7
.2

0
0
4

2
7
.0

7
.2

0
0
4

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3
1

.0
3

.2
0

0
5

0
7

.0
4

.2
0

0
5

1
4

.0
4

.2
0

0
5

2
1

.0
4

.2
0

0
5

2
8

.0
4

.2
0

0
5

0
5

.0
5

.2
0

0
5

1
2

.0
5

.2
0

0
5

1
9

.0
5

.2
0

0
5

2
6

.0
5

.2
0

0
5

%CB %RB %BB

Release 0.12

9.10.2002

Release 0.14

17.8.2003
Release 0.16

19.7.2004

Release 0.18

29.4.2005

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
0

1
.0

9
.2

0
0

2

0
8

.0
9

.2
0

0
2

1
5

.0
9

.2
0

0
2

2
2

.0
9

.2
0

0
2

2
9

.0
9

.2
0

0
2

0
6

.1
0

.2
0

0
2

1
3

.1
0

.2
0

0
2

2
0

.1
0

.2
0

0
2

2
7

.1
0

.2
0

0
2

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

7
.2

0
0
3

0
8
.0

7
.2

0
0
3

1
5
.0

7
.2

0
0
3

2
2
.0

7
.2

0
0
3

2
9
.0

7
.2

0
0
3

0
5
.0

8
.2

0
0
3

1
2
.0

8
.2

0
0
3

1
9
.0

8
.2

0
0
3

2
6
.0

8
.2

0
0
3

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0
1
.0

6
.2

0
0
4

0
8
.0

6
.2

0
0
4

1
5
.0

6
.2

0
0
4

2
2
.0

6
.2

0
0
4

2
9
.0

6
.2

0
0
4

0
6
.0

7
.2

0
0
4

1
3
.0

7
.2

0
0
4

2
0
.0

7
.2

0
0
4

2
7
.0

7
.2

0
0
4

%CB %RB %BB

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3
1

.0
3

.2
0

0
5

0
7

.0
4

.2
0

0
5

1
4

.0
4

.2
0

0
5

2
1

.0
4

.2
0

0
5

2
8

.0
4

.2
0

0
5

0
5

.0
5

.2
0

0
5

1
2

.0
5

.2
0

0
5

1
9

.0
5

.2
0

0
5

2
6

.0
5

.2
0

0
5

%CB %RB %BB

Release 0.12

9.10.2002

Release 0.14

17.8.2003
Release 0.16

19.7.2004

Release 0.18

29.4.2005

Figure 1: Relative number of changes, refactorings and bugs before major releases.

3.2 Bug Analysis: Correlation between Refac-
torings, Mails, and Bugs

Figure 2 shows the values of the normalized number of bugs
per day

�%�%� �
, as well as the normalized number of mails per

day
� ? � �

compared to the refactoring ratio per day. While the
Spearman correlation between

�%.��
and

�/���
is only about

��� �
,

it stands out that after days with a high refactoring ratio only few
bug reports have been opened in the bug tracking system. The same
holds for mails: When the refactoring ratio is high, few mails have
been written. However, we are aware that these correlations could
be accidental or caused by other factors like feature freezes that we
did not yet take into account.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,2 0,4 0,6 0,8 1

%RB (Number of refactorings per changed block)

%
B

B
(N

o
rm

a
li
z
e

d
n

u
m

b
e

r
o

f
b

u
g

s
p

e
r

b
lo

c
k

w
it
h

in
n

e
x
t
5

d
a

y
s
)

%
M

B
(N

o
rm

a
li
z
e

d
n

u
m

b
e

r
o

f
m

a
il
s

p
e

r
b

lo
c
k
) %BB

%MB

Figure 2: Few bug reports and mails after days with high refac-
toring ratio.

3.3 Bug Analysis: Incomplete Refactorings
Refactoring reconstruction can also be used to detect incomplete,

and thus erroneous refactorings [2]. In these cases, parameters have
been added to or removed from methods, but the developer did
not change the corresponding methods in super-, sub-, or sibling
classes accordingly. In ARGOUML we found 33 transactions con-
taining such incomplete refactoring candidates between Jan 2003
and Dec 2005.

Figure 3 shows a candidate for a possibly incomplete refactor-
ing: the sibling classes ActionSaveGraphics and Action-

Figure 3: Missing Remove Parameter refactoring.

SaveProjectAs both contained the method trySave(bool).
The refactoring RemoveParamter was applied only to the method
in the class ActionSaveGraphics and possibly it also should
be applied to the method in the class ActionSaveProjectAs.

Figure 4: Missing Add Parameter refactoring.

Figure 4 shows the application of an AddParameter refactoring
to the method modelChanged() in the class FigSeqStimulus.
The refactoring has not been applied to the method modelChan-
ged() in its superclass FigNodeModelElement. However,
some transactions later the AddParameter refactoring has been ap-
plied to the method modelChanged() in the superclass and also
to methods in five other subclasses of FigNodeModelElement.
Apparently the refactoring was incomplete in the beginning.

Acknowledgments. Michael Stockman kindly provided the bug data for
ARGOUML.

4. REFERENCES
[1] C. Görg and P. Weißgerber. Detecting and visualizing refactorings

from software archives. In Proceedings of International Workshop on
Program Comprehension (IWPC05), St. Louis, Missouri, USA, May
2005.

[2] C. Görg and P. Weißgerber. Error detection by refactoring
reconstruction. In Proceedings of International Workshop on Mining
Software Repositories (MSR05), St. Louis, Missouri, USA, May 2005.

