
A new Approach for Implementing stand-alone and
web-based Interpreters for Java

Stephan Diehl
FR 6.2 Informatik

Saarland University
66041 Saarbrücken, Germany

diehl@acm.com

Claudia Bieg
FR 6.2 Informatik

Saarland University
66041 Saarbrücken, Germany

cbieg@cs.uni-sb.de

ABSTRACT
Compared to imperative programming languages like Pascal or Ba-
sic, or functional programming languages like ML or Haskell learn-
ing Java is hampered by the fact that to get even the simplest run-
ning program the learner has to define a public class and a method
with a certain signature. We present both a stand-alone and a web-
based interpreter which execute Java fragments and relieve the learner
from programming all the extra code. The implementation of these
interpreters extremely differs from other Java interpreters and ex-
ploits the Java compiler as much as possible to preserve the origi-
nal semantics of Java and allow access to all features and APIs of
Java. By virtue of these interpreters the learner can explore prim-
itive values, variables, expressions, assignments, and control-flow
statements before even knowing about classes and methods. The
web-based interpreter has been integrated into an online tutorial
for learning Java programming from basic principles.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—interpreters, com-
pilers

Keywords
Java, interpreter

1. INTRODUCTION
Right from the start Sun was marketing Java as a simple, object-

oriented programming language [3]. But object-orientation hin-
ders to learn Java step-by-step from basic principles, because right
from the beginning the learner has to define at least one public class
with a method with signature public static void main(
java.lang.String[]).

So the teacher has two choices here: trying to explain most of
the concepts involved (classes, methods, types, arrays,...) or just
provide the surrounding program text and let the learner add code
to the body of the method main.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2003 Kilkenny City, Ireland
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Instead we suggest to use Java interpreters that allow to expose
the learner just to those concepts of the language that he can under-
stand at that time and enables the learner to experiment with these
concepts. Thus the learner can start with primitive values, expres-
sions, then proceed to statements and finally define methods. Not
until these basic concepts are understood we continue with classes
and inheritance.

From a technical point of view the approach presented in this
paper enables the interpreter to access all Java APIs, to plug-in a
Java compiler of ones choice and to support multiple users over the
same server.

1.1 JOSH

JOSH is a stand-alone Java interpreter which enables the learner
to evaluate expressions, to execute simple statements, to declare
variables and to define methods without a need to define classes.

In the following we use the term simple code fragment to de-
note single expressions and statements, or declarations of methods,
variables and classes. The term code fragment is a sequence of
one or more simple code fragments. As soon as the user has en-
tered a code fragment JOSH starts evaluating or executing it. More
precisely when the user presses the RETURN key, JOSH checks
whether the input so far is a code fragment, a prefix of a code frag-
ment or otherwise. In the first case the fragment is executed, in the
second case JOSH waits for additional user input to be appended
to the current input to complete the fragment. In all other cases
the current input can not be completed to form a fragment. As a
consequence there a syntax error is reported and the input buffer is
emptied.

1.2 JOSH-online

When using JOSH in class we encountered the several problems.
One was that the JDK had to be installed and the CLASSPATH and
several paths in the configuration file had to be set correctly. To
facilitate access to JOSH such that everyone with an Java-enabled
web browser can use it, we developed JOSH-online and integrated
it into an interactive, web-based tutorial on programming in Java.

2. RELATED WORK
Recently several interpreters for Java have been developed in-

cluding MiniJava [6], DynamicJava [4] and BeanShell [5]. While
MiniJava is not publically available and there are no details avail-
able on its implementation, both DynamicJava and BeanShell are
written in Java. Both are open source. They build an abstract syn-
tax tree and then traverse the nodes of these trees and execute their
semantics functions. JIN [7] is a commercial Java interpreter also
written in Java that presumably works in a similar way. While Dy-

Read User Input

Parse Input

Generate Code

Execute

Show Result

Java

!

!

!

parse error

compilation error

execution error

complete
.java

.class

state

declared

variables

successful

output

external

Javac

previous

state

not complete

Figure 1: Processing of code fragments in JOSH

namic Java supports class and method declarations, BeanShell only
supports method declarations and JIN supports neither of both.

DrJava [1, 2] is a Java programming environment that uses Dy-
namicJava within its interaction window. For classes defined in
other windows it calls the Java compiler.

3. IMPLEMENTATION OF THE
STAND-ALONE INTERPRETER

JOSH inserts complete code fragments are inserted into a class
skeleton to produce a running Java application. For example, if the
user enters int x=0; the following Java source code is generated

package tempclasses;

public class InterpreterAux0
extends jinterpreter.InterpreterBase {

public static void main(String [] argv) {
InterpreterAux0 self=new InterpreterAux0();
self.startInterpreterAux(); }

public void startInterpreterAux() {
println("Field added");
dump("/tmp/tempclasses/state.dump"); }

int x=0;
}

The source code is compiled by starting the Java compiler as an
external process. If the compilation is successful, then the gener-
ated byte code is executed by the Java Virtual Machine (JVM) as
an external process. As we generate new applications for each code
fragment and execute these applications as individual processes,
the problem arises how we preserve state, i.e. how can we start
the next application with the final state of the previous application.
By state we mean the set of instantiated objects and their attribute

values at runtime. In addition the next application has to know all
the methods and classes of the previous one. To achieve this the
next application inherits from the previous one. In addition at the
end of the execution of an application the currently instantiated ob-
jects are serialized and stored in a file, see method call dump()
above. Continuing our previous example, if the user now enters the
expression x++, JOSH generates the following source code;

package tempclasses;

public class InterpreterAux1
extends InterpreterAux0 {

public static void main(String [] argv) {
InterpreterAux1 self=new InterpreterAux1();
InterpreterAux0 previousState=
(InterpreterAux0)

undump("/tmp/tempclasses/state.dump");
self.x=previousState.x;
self.startInterpreterAux(); }

public void startInterpreterAux() {
javaInterpreterEvaluate(x++);
dump("/tmp/tempclasses/state.dump"); }

}

Now the class InterpreterAuxm can access a serialized ob-
ject of its superclass by calling the method undump() and set-
ting the values of those variables that are not redefined in the class
InterpreterAuxm to the stored values. If the execution of a
successfully compiled code fragments leads to a runtime error (or
an infinite loop), the state can be reset to that of the previous state.
Thus serialization enables us to go backwards in the state history.

Read User Input

Parse Input

Generate Code

Execute

Show Result

Java

!

!

parse error

compilation error

execution error

complete
.java

.class

state

declared

variables

successful

output

external

Javac

previous

state

!

dynamic class

loading

Client Server
not complete

Figure 2: Processing of code fragments in JOSH-online

4. IMPLEMENTATION OF THE
DISTRIBUTED INTERPRETER

To make JOSH available online there is no immediate way to
turn it into an applet, because it would require that the applet would
have access to the Java compiler on the client. Instead we separated
different phases of the stand-alone interpreter such that some are
executed on the server and some by the applet. In particular code
fragments are compiled on the server, so that the Java compiler has
only to be available there.

In the JOSH-online applet the user enters code fragments in a
text area. After clicking at a button the code fragment is sent to the
server, the server parses the fragment. If it is complete the frag-
ment is compiled in a similar way as before. If the compilation was
successful, the client dynamically loads the newly generated class
from the server and executes its main method. All output produced
by the compiled code fragment is redirect to the text area of the
applet. JOSH-online also uses inheritance to preserve the state, but
instead of serializing the previous state and storing it in a file, the
state is stored in a class variable and kept in the clients memory.
Thus instead of calling the method undump() an instance of the
parent class is accessed e.g.:

InterpreterAux0 previousState=
InterpreterAux0.self;

Note, that this method does not allow to recover from all kind of
runtime errors as the one used by the stand-alone interpreter.

In addition to preserving the state JOSH-online has also to keep
track of different users that concurrently access the server. For each
user a directory with a new and unique name and thus a new pack-
age with the same name are created. In addition for every user the
server has to keep track of all variables defined so far. This is not
necessary for user-defined classes and methods as their ”values” do
not change.

5. THE ONLINE JAVA TUTORIAL
JOSH-online was integrated into an online tutorial on program-

ming in Java. The tutorial follows the natural way from basic con-
cepts like primitive data types and variables to method and class
abstraction. For expressions JOSH not only returns the value, but
also their types. We found this very useful for helping the students
to understand the type system and type conversion in Java. Every
unit of the tutorial ends with a set of examples and exercises that
can be interactively done in the text book. The most interesting
aspect of the tutorial is the communication between the text book
and the interpreter applet. Every source code example in the text
book can be immediately tested by clicking at a button that appears
next to it. The source code is then automatically inserted into the
text area of the applet and the learner can edit and execute it. Some
of the exercises rely on previous ones, ie. that variables have the
previously assigned value or defined methods or classes are still
known. Throughout the tutorial the learner is encouraged to come
up with own examples and test them interactively in the interpreter.
To this end the tutorial provides helpful suggestions to explore the
features of the Java language.

The text of the tutorial was developed for two courses that the
first author gave at the Universities of Duisburg and Saarbrücken.
In these courses the students were using the stand-alone interpreter.

6. CONCLUSION
JOSH and JOSH-online are basically front-ends to whatever Java

compiler you want to use. Compared to DynamicJava and thus Dr-
Java we found that JOSH executes code fragments more than 100
times faster1. For typical code fragments the external compilation
takes less than 1 second on modern hardware and thus the response
time is acceptable for interactively work with the interpreter. Also

1For example the loop for(int i=0;i<10000000;i++);
took 3 seconds in JOSH and 297 seconds in DrJava.

Figure 3: Screenshot of the tutorial with the JOSH-online applet

JOSH has no restrictions with respect to the APIs that can be used
and it is even possible to use the Java Debugger in combination
with JOSH. The JOSH approach can be summarized as follows:
First compile code fragments externally, then execute them exter-
nally or by dynamic class loading while preserving state.

We presented two approaches to preserve state: one based on
serialization (JOSH), while the other keeps copies in the clients
memory (JOSH-online). We expect that both the stand-alone and
the distributed method presented in this paper are also useful in
other contexts to extend or re-compile parts of a running system
and selectively preserve state.

7. REFERENCES
[1] E. Allen, R. Cartwright, and B. Stoler. DrJava.

http://drjava.sourceforge.net/.
[2] E. Allen, R. Cartwright, and B. Stoler. DrJava: A lightweight

pedagogic environment for Java. In Proceedings of ACM
SIGCSE 2002. ACM SIGCSE Bulletin 34(1), 2002.

[3] J. Gosling and H. McGilton. The Java Language Environment:
a White Paper, 1995.

[4] S. Hillion. DynamicJava.
http://koala.ilog.fr/djava/.

[5] P. Niemeyer. BeanShell.
http://www.beanshell.org/.

[6] E. Roberts. An overview of MiniJava. In Proceedings of ACM
SIGCSE 2001. ACM SIGCSE Bulletin 33(1), 2001.

[7] L. Vanhelsuwé. JIN. http:
//www.lv2.clara.co.uk/products/Jin.html.

