
Visual Data Mining in Software Archives

Michael Burch
michael.burch@ku-eichstaett.de

Stephan Diehl
diehl@acm.org

Peter Weißgerber
peter.weissgerber@ku-eichstaett.de

Catholic University Eichstätt-Ingolstadt
Ostenstr. 14, 85072 Eichstätt,Germany

Abstract

Software archives contain historical information about
the development process of a software system. Using
data mining techniques rules can be extracted from these
archives. In this paper we discuss how standard visualiza-
tion techniques can be applied to interactively explore these
rules. To this end we extended the standard visualization
techniques for association rules and sequence rules to also
show the hierarchical order of items. Clusters and outliers
in the resulting visualizations provide interesting insights
into the relation between the temporal development of a
system and its static structure. As an example we look at
the large software archive of the MOZILLA open source
project. Finally we discuss what kind of regularities and
anomalies we found and how these can then be leveraged to
support software engineers.

1. Introduction

During the life time of a software system many versions
will be produced. Analyzing the source code of these ver-
sions, as well as documentation and other meta-information
can reveal regularities and anomalies in the development
process of the system at hand [7].

Some very general rules have been suggested based on
some case studies by Lehman, basically stating that the size,
functionality, and complexity of a software system increase
over time, while its growth rate and quality decrease [10].
For many of the rules published in software engineering lit-
erature [6] the relevance with respect to other projects is
unclear: either the rules are too general, or results of the
case studies cannot be transferred, because the constraints
of the case studies are not well documented. To remedy this
situation the development of tools for validating rules based
on the history of ones own project or even discovering new
project-specific rules is an active area of research. In this
paper we use visual data mining to this end.

Industrial, as well as open source projects keep track of

versions and changes using configuration management sys-
tems [4] like RCS and CVS. Other tools keep track of ad-
ditional information, e.g. bug databases or electronic mail.
The information stored by a configuration management sys-
tem and related tools is called a software archive. The soft-
ware archive provides the history of a software system.

In previous work we have used data mining to extract as-
sociation rules from such archives to characterize the devel-
opment process [17] or to support programmers [18]. We
also introduced the term evolutionary coupling, which is
based on the simultaneous changes of files rather than on
one referencing the other.

In this paper we discuss the visualization techniques that
we implemented to analyze both association as well as se-
quence rules. Association rules suggest further changes that
should be performed for a set of given changes. Sequence
rules additionally indicate the order of these changes. By
means of examples we show the kinds of insights that can
be gained about the evolution of a software system by visu-
alizing these rules.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the features of our visualization tool EPOSee
that integrates various visualization techniques. In Section 3
we introduce hierarchical items. Sections 4, 5 and 6 de-
scribe visualization techniques for different kinds of rules
with hierarchical items. A case study is presented in Sec-
tion 7. Finally, we discuss related work in Section 8 and
Section 9 concludes this paper.

2. An Integrated Visualization Tool

To interactively explore the mining rules extracted from
software archives we developed EPOSee 1 (see Figure 3)
which provides the following visualizations:

• Visualization of Binary Association Rules

– Pixelmap (overview, context)
– Support Graph (force-directed, polar layout)

1Evolution Patterns of Software



– 3D Bar Chart (of selected association rules, fo-
cus)

– Rule Detail Window (of selected rule, focus)

• Visualization of n-ary Association Rules

– Association Rule Matrix (overview, context)
– Bar Charts (for support and confidence)
– Rule Detail Window (of selected rule, focus)
– Item Legend Window

• Visualization of Sequence Rules

– Parallel Coordinates View (overview, context)
– Decision Tree (overview, context)
– 3D Branch View (of selected sequence rules, fo-

cus)
– Rule Detail Window (of selected rule, focus)

• Histogram (distribution of confidence and support)

Typically the visual data mining process works as fol-
lows: first an overview of the rule set is provided, here in-
teresting visual patterns like clusters can be detected. Next
the user can inspect the rules of a visual pattern by selecting
the rules involved and viewing them in a zoomed display
(for example in the 3D view). Additionally, filters allow
her to constrain the set of rules that are shown at all. Last
but not least, she can select single rules which are shown in
detail then.

This conforms to Ben Sheiderman’s visualization
mantra: ”Overview first, zoom and filter, then details on
demand” [12].

In the following we will explain how EPOSee integrates
the different views for binary association rules, n-ary asso-
ciation rules and sequence rules and how the visualizations
interact with each other.

Figure 3(a) shows our tool in the binary association rule
mode. There are three windows (which can be resized and
moved according to the user’s need) that show the pixelmap,
the support graph and the 3D bar chart view for a set of
rules. At the bottom of the window the selected rule is
shown in textual detail. When a user selects an interest-
ing part of the pixelmap, this part is zoomed in the 3D bar
chart view. Next, the user can select a single rule from the
bar chart view which will be shown in detail. An advantage
of EPOSee over single applications for each view is that the
different views are internally connected, e.g. if a rule is se-
lected in the 3D bar chart view, the corresponding items are
emphasized in the support graph.

When displaying n-ary association rules EPOSee opens
a window containing the rule matrix and a second window
that shows the list of items involved. The user can select a

single rule in the matrix which will be shown in the detail
view at the bottom of the application window. The n-ary as-
sociation rule mode of our application is shown in Figure 1.
The histogram in the bottom right corner shows the distri-
bution of support respectively confidence over the rules and
can be displayed for all kinds of rules.

If the user opens a file containing sequence rules EPOSee
enters the sequence rule mode which is illustrated in Fig-
ure 2. In this mode EPOSee displays windows that show
the parallel coordinates view, the decision tree, as well as
the 3D Branch view. The parallel coordinates view and the
decision tree give the user an overview of the set of rules.
Additionally, the selected rule is zoomed in the 3D branch
view and shown in detail in an additional window at the
bottom of the application.

Independent of the kind of rules, EPOSee allows to filter
the set of rules according to their support and confidence,
and to search for keywords (see Figure 3(c)). Moreover,
various schemes for color-coding can be used as shown in
Figure 3(b). Thus EPOSee supports visual data mining on
data mining results, i.e. large sets of association and se-
quence rules. In the sequel we discuss each of the different
kinds of rules and their visualizations in more detail.

3. Hierarchical Items

The items in the rules extracted from software archives
are software artifacts like files, classes, methods or func-
tions. Instead of starting from a random order when visual-
izing these items in a rule, we will use a total order derived
from a hierarchy stemming from the application domain,
e.g. methods are contained in classes, classes are contained
in files, files are contained in directories, and directories are
contained in other directories.

4. Visualizing Binary Association Rules

To detect relations between items we first look at how
often two items have been changed together — that is, how
often have they been checked into the software archive at
the same time, i.e. in the same transaction. The support
supp(S) of a set of items S is the number of transactions
containing the set S.

The support supp({i, j}) of two items i and j indicates
how much evidence is there for their dependency. In par-
ticular, supp({i}) is the total number of times item i was
changed.

Next we compute the strength of the dependencies, i.e.
the number of changes of a pair of items relative to the num-
ber of changes of a single item. As a result we get the con-
fidence:

conf(i ⇒ j) =
supp({i, j})
supp({i})



Figure 1. Association Rules (n-ary)

Figure 2. Sequence Rules



(a) Binary Association Rules (b) Color Scale Selection (c) Filter Dialogs

Figure 3. Interactive tool to visually explore different kinds of rules.

10

3

3

4

a
/a

/a

a
/a

/b

a
/a

/c

a
/b

/a

a
/b

/b

b
/a

/a

high

low

none (support = 0)

Confidence

a/a/a

a/a/b

a/a/c

a/b/a

a/b/b

b/a/a

3/4 = 75%

3/10 = 30%

Figure 4. Pixelmap with sorted items and
color-coded confidence (numbers indicate
support)

The example in Figure 4 indicates that a change to
a/a/c2 implies a change to a/a/a with a probability of
75%, whereas the inverse implication has only a probability
of 30%.

As we sort the items hierarchically, both sets are often
the same and correspond to some level in the hierarchy, e.g.
a directory.

The strongest dependencies are those that have both high
confidence and high support. To find these dependencies,
we use 3D bar charts to emphasize strong dependencies, see
Figure 5. Here color is used to encode one value, while the
third dimension (height) is used to encode a second value.

In addition to the pixelmap and the bar chart, we can gain
insight into the dependencies between the items by drawing
the support graph, see middle of Figure 3(a). In this graph
related items are connected by edges and sets of items with
many interrelations form clusters. Using color to indicate
neighborhood with respect to the hierarchical sorting, we

2The notation x/y/z means that item z is located in the hierarchy y
which is a sub-hierarchy of x.

Figure 5. Dependency strength between
items. Left bar chart: Greater height indicates
higher confidence, red color indicates high
support, blue color indicates low support.
Right bar chart: Height indicates support, color
indicates confidence.

can also see outliers, i.e. nodes with different colors in clus-
ters of nodes with mostly the same color.

5. Visualizing n-ary Association Rules

Binary association rules describe correlations between
exactly two items. N-ary association rules improve this by
taking more items into account: The rule A ⇒ B where A
and B are disjoint sets containing at least one item each im-
plies that in cases when all items in A have been altered, all
items in B have been changed, too. We call A the antecedent
and B the consequent of the rule.

To assess the evidence and strength of an association, we
use again the two measures support and confidence. Here,
the support of an n-ary association rule A⇒ B is the support
of the set A∪B. The confidence of such an association rule



is the probability that all items in B are changed when all
items in A are changed and therefore defined as

conf(A ⇒ B) =
supp(A∪B)

supp(A)

In contrast to binary association rules, this general kind
of association rules cannot be visualized in a reasonable
way using the pixelmap technique. We would have to an-
notate sets instead of items on the axes but there is no total
order on these sets that allows us to sort them hierarchically:
For example, it is unclear if the set {a/ab,z/ab} has to be
arranged next to a/a or z/a.

Instead, we use another visualization technique. The as-
sociation rule matrix [16] is a two-dimensional view which
arranges the items in their hierarchical order on the y-axis
and the rules arbitrarily ordered on the x-axis, see Figure 9.

There are three kinds of pixels in this view:

Red pixels If an item is contained in the antecedent of the
rule, the association rule matrix has a red pixel at the
corresponding position. Multiple adjacent red pixels
in the same column appear if the antecedent contains
multiple items which belong to the same hierarchical
level, e.g. the same directory.

Blue pixels Analogous, blue pixels indicate that the corre-
sponding item is contained in the consequent of the
corresponding rule. Therefore, adjacent blue pixels in
a column mean that the rule suggests to change multi-
ple items of the same hierarchical level.

White pixels White pixels indicate that an item is not af-
fected by a rule.

Furthermore, below each association rule there is a bar
that indicates the support of the rule by the length and the
confidence by the color. A textual representation of the cur-
rently selected rule is shown at the bottom line of this view.

6. Visualizing Sequence Rules

The kind of association rules that we discussed above
provides insight into what items are related because of the
fact that they have been changed at the same time. In
addition, we would like to know in what temporal order
changes typically occur. For example, there can be a rule
claiming “if method print() and method show() of file
Account.java have been changed in a row, then later the
documentation GUI.tex has been changed, too”.

To this end we compute and visualize sequence rules.
Both the antecedent and the consequent of a sequence rule
are sequences of items. This gives the antecedent and con-
sequent a time component. For example the sequence rule
a1 → a2 → a3 ⇒ b1 → b2 means that if a1 is changed before

or at the same time as a2 and a2 before or at the same time
as a3, then it is likely that some time later b1 and simultane-
ously or later b2 will be changed.

Antecedents Consequents

Figure 6. Parallel Coordinates View with
sorted items

Similar to association rules, we characterize the evidence
and strength of a sequence rule using the two measures sup-
port and confidence. A sequence p is a subsequence of an-
other sequence q, if one can derive p from q by deleting ele-
ments from q. Several subsequent transactions into the soft-
ware archive can be combined into transaction sequences.
The support supp(s) of a sequence s is the number of trans-
action sequences it is a subsequence of. The confidence of
a sequence rule s1 ⇒ s2 is then defined as

conf(s1 ⇒ s2) =
supp(s1 ∪ s2)

supp(s1)

Figure 6 shows a parallel coordinates view [8] of se-
quence rules. In this view every sequence rule is displayed
by connecting the node in the n-th column representing the
n-th item in the sequence with the node in the n + 1-th col-
umn representing the n+1-th item. The items are sorted hi-
erarchically and we can see clusters, i.e. all rules only con-
tain items of the same directory. There is only one excep-
tion, the rule a/a/a → a/a/b ⇒ c/e indicates that when
a and b have been changed in directory a/a then also file
e in directory c has to be changed. We will discuss this
case in more detail later in Section 7 when we look at a real
software archive.

In contrast to the parallel coordinates view in which one
edge can belong to multiple rules, the decision tree visual-
ization (see upper right corner of Figure 2) allows to have
a closer look at the single rules. Due to the color coding
it is easily possible to find strong rules. Furthermore, one
can see the structure of the rules, e.g. the length of the an-
tecedents and consequents of the rule set, or the number of
consequents for one given antecedent.

7. Case Study: MOZILLA

MOZILLA is the code name of an Internet client that



was originally developed by Netscape Communications
Corporation and has later turned into an open source project
[13]. Its archive contains more than 77,000 files; conse-
quently, we obtain a pixelmap with about 77,000 × 77,000
binary association rules. Counting functions rather than
files would result in even larger maps.

For the following case study we used data mining to ex-
tract rules from the MOZILLA CVS archive and applied
the different visualization techniques described above. In
particular we looked for outliers. As we did not have prior
knowledge of the internals of the MOZILLA project, we
had to look into the files involved as well as the MOZILLA
documentation to be able to explain these outliers.

a
p
p

b
a
se

co
m

p
o
n
e
n
ts

re
so

u
rc

e
s

outlier

components/history

components/bookmarks

components/prefwindow/content

Figure 7. Pixelmap of the confidence matrix
of MOZILLA

The pixelmap in Figure 7 shows the associations of
the files in the /browser subdirectory of the CVS software
archive of the MOZILLA project, which contains the web
browser called FIREFOX. As the files are ordered hierarchi-
cally one can see that files which are next to each other, i.e.
those that are in the same part of the hierarchy, are stronger
related than others. Thus clusters typically extend along the
diagonal of the pixelmap. These clusters very much corre-
spond to the hierarchical structure of the system.

In other words, if in the pixelmap we do not find rectan-
gular areas nicely aligned along the diagonal, then it might
be a good idea to restructure the system, so that later on

related changes are restricted to a certain subdirectory.
Software developers are mainly interested in outliers.

These are those pixels representing couplings between files
in different directories. Outliers can be a sign of aspects or-
thogonal to the system hierarchy, but also a sign of a bad
system architecture.

One outlier is highlighted by a circle in the pixelmap
in Figure 7. A closer inspection reveals that in directory
/components the files

bookmarks/resources/locale/pref-bookmarks.dtd

bookmarks/skin/Bookmarks-toolbar.png

bookmarks/skin/bookmarksManager.css

are strongly related to the files

prefwindow/content/pref-popups.xul

prefwindow/content/pref-privacy.js

prefwindow/content/pref-privacy.xul

prefwindow/content/pref-proxies.js

prefwindow/content/pref-proxies.xul

prefwindow/content/pref-proxy-manual.xul

prefwindow/content/pref-scripts.js

The graphical user interface of this browser implemen-
tation is based on so-called XUL files. These are XML
files which describe the elements of GUI and link them
to actions which are JavaScript functions. These func-
tions can then access all kinds of system functionality, e.g.
COM objects, C++ code, etc. Furthermore, the appear-
ance of the GUI elements can be customized using CSS
files (Cascading Style Sheets) which for example contain
references to the images to be used to display certain GUI
elements. In the above example of an outlier, our first hy-
pothesis was that the XUL files in prefwindows/content

would directly or indirectly reference the DTD in
bookmarks/resources/locale/pref-bookmarks.dtd. In
this case the relation would have been easy to de-
tect with a textual analysis of the files. But a closer
look revealed that there is no reference from these
XUL files to this DTD, but to local DTDs, e.g. the
DTD prefwindows/locale/pref-privacy.dtd. These lo-
cal DTDs are related to the first mentioned DTD because
they follow the same naming conventions (e.g. names of
attributes) and define to some extent the same tags. So if
the naming conventions or tags change all DTDs have to be
adapted. These kinds of relations cannot be uncovered with
classical text or program analyses.

Note, that the visualization shows that there is an inter-
esting correlation between these files. However, we had to
examine manually why these files are related by looking into
the corresponding source code. Thus, it would be desirable
that the visualization would allow to look directly into the
source of the displayed items. But this is not as straight-
forward as it seems: Every item exists in different revisions
and it is unclear which of these are interesting to the user.



Figure 8. Support Graph of MOZILLA

In addition to the pixelmap we can also use the support
graph to look for clusters and outliers. Figure 8 shows the
support graph of the /browser directory of the MOZILLA
project. Nodes represent items and are colored based on the
hierarchical order of items. There is a large cluster in the
middle of the drawing. The red part of this cluster corre-
sponds to the /base subdirectory. In this red part are also a
few light blue nodes. These outliers are the following files
in directory components/prefwindow/locale/:

pref-advanced.dtd

pref-appearance.dtd

pref-applications-edit.dtd

pref-applications.dtd

A closer look reveals that only the file
pref-advanced.dtd is related to files in the /base di-
rectory, while the remaining three DTDs are only related to
the first one.

So far, we only used visualized binary rules, i.e. we
only looked at dependencies between pairs of files. Addi-
tionally, we can look at simultaneous changes of possibly
more than two files. Figure 9 shows the association rule
matrix of the /browser directory of MOZILLA. As one
can see easily, most of the n-ary association rules only
involve items which belong to the same subdirectory.

Figure 9. Association Rule Matrix of MOZILLA
(only rules with a minimum support of 11)

But there are also several rules with items belonging
to different subdirectories, most notably subdirecto-
ries of browser/base and browser/components.

One of these outliers is marked in the picture: If
base/content/browser.js has been changed, then
components/prefwindow/locale/pref-tabs.dtd has been



Figure 10. Parallel Coordinates View of
MOZILLA (only rules with a minimum support
of 11)

changed too. A remaining problem with the association
rule matrix is that the rules on the x-axis have no special
order. In Figure 9 we sorted the rules by the textual
representation of the antecedent and consequent.

So far, we have looked at files that were often changed
simultaneously. Next we look at the temporal order of
changes. Figure 10 shows a parallel coordinates view of
the /browser directory. The color of the nodes indicates the
weighted sum of the support values of the prefixes of all
rules which share this node, while the color of the edges in-
dicates the weighted sum of the confidences. As the nodes
are ordered with respect to the hierarchical order of the
items, we see multiple clusters consisting of many edges
which are only related to items in the same subdirectory.
We also see that the files base/content/browser.js and
base/content/browser.xul are related in a very interest-
ing way to almost all Javascript respectively XUL files: they
are typically changed after one of these other files has been
changed.

Figure 11 shows a part of the parallel coordinates view in
larger scale. There are two green edges leading to the light
blue node representing the file browser.xul in the conse-
quent column. The green edges indicate high confidence.
But if we look at both items where these edges come from,
we see that there are no edges with high confidence coming
into these nodes. What does this mean? To inspect the rules

we used the decision tree view of EPOSee and found that the
rule browser.js ⇒ browser.xul has a confidence of 30%,
while the rule browser.js→browser.dtd ⇒ browser.xul

has a confidence of 61%. In other words, the confidence in-
creases considerably as soon as the second file is changed.

8. Related Work

Data Mining Agrawal and Srikant introduced the Apriori
Algorithm algorithm to compute n-ary association rules [1].
While the antecedents and consequents in their rules can
be sets of items, we only consider single items to express
associations between pairs of files for example.

Mining of sequence rules was described by Agrawal and
Srikant [2]. However, in our work we mine in software
change transactions rather than in customer transactions.

Rule Visualization There are several well-known ap-
proaches for visualizing association rules: The pixelmap
technique is space-filling but only works good for associ-
ation rules between exactly two items. In contrast, the vi-
sualization as directed graph supports rules between more
than two items but needs a large screen.

Pak Chung Wong et al. improved the pixelmap tech-
nique to visualize n-ary rules with multiple items in their
antecedent and/or consequent by aligning the rules on the
x- and the items on the y-axis [16]. Later, they visualized
sequence rules [15] using parallel coordinates as introduced
by Inselberg and Dimsdale [8]. In contrast to our work, they
did not deal with software evolution and did not explore re-
lations based on hierarchically ordered items.

Visualizing Software Evolution There has been only lit-
tle work on visualizing the evolution of software, so far.
Tools like WinCVS [11] and VRCS [14] show the version
graph in a vertical tree representation, which is sometimes
called an explorer view. In three dimensional visualizations
(see for example VRCS [9]) the Z axis can be used as a time
axis and each vertical plane contains the versions checked
in at the same time.

SeeSoft [5] introduced a space-filling visualization for
metrics related to lines of code. The evolution of a system
is shown as an animation of the changing values of these
metrics.

The GEVOL system uses force-directed layout to draw
call graphs, control-flow graphs and inheritance graphs of
Java programs [3] and produces animations by showing
graphs of subsequent program versions using linear inter-
polation for smooth transitions.

So far, case studies about the evolution of software sys-
tems are mostly using plots of metrics over time. In such
plots either several metrics are shown for a single module



Figure 11. Enlarged Area of the Parallel Coordinates View of Mozilla

(or the whole system) or one metric is shown for a small
number of modules.

9. Conclusions

Successful software changes and adapts to new situa-
tions. Configuration management systems keep track of
these changes. Data mining and visual data mining tech-
niques can help software engineers to extract rules from
these archives and match them with their expectations and
project rules. In this paper we presented extensions of stan-
dard visualization techniques for association and sequence
rules taking the hierarchy of software artifacts into account
and discussed some example visualizations computed from
the software archive of the MOZILLA project.

In particular we identified certain kinds of visual patterns
in the visualizations. Taking a closer look at the rules in-
volved, we found that these patterns can be interpreted as
follows and that this information could be further leveraged
to support software engineers:

Clusters in Pixelmaps and Parallel Coordinates Views
If clusters occur in these visualizations they are a sign
that the chosen hierarchical decomposition of the system
matches with the way the software system evolves, i.e.
changes are mostly local. For pixelmaps some early results
have been presented in [17].

Outliers in Pixelmaps An outlier indicates that items in
different branches of the hierarchy are often changed to-
gether. This information can be used in two ways. First,
when the programmer changes one of the items, the editor
or configuration management system could suggest that he
also should change the other item, this is what the ROSE
prototype actually does [18]. Second, one could try to re-
structure the system, i.e. move the items to the same branch.

Outliers in Support Graphs The support graph shows
which other items are related to the outlier and might have
to be moved to the same branch as well.

Outliers in Association Rule Matrices Here sets of
items are related to other sets of items. An outlier indicates
that a large number of items in the same branch is related to
one or a few items in a different branch. These few items
might be moved to the other branch.

Outliers in Parallel Coordinates Views In the parallel
coordinates view we found two different kinds of outliers.
First, similar to the cases above, we have that items in dif-
ferent branches are changed and thus as before could be a
reason to restructure the system. Second, we found that cer-
tain orders of the same changes are more likely than others,
i.e. in the simplest case, that item a is often changed before
item b, but b is never changed before a. One could easily
extend the ROSE prototype to use this information to warn
the programmer, if he does the changes in the statistically
wrong order.

10 Acknowledgements

The work presented in this paper has been partially
funded by the German Research Council (DFG) as part of
the ”Evolution Patterns” project. The authors are grateful
to all members of the project team, in particular Andreas
Zeller and Thomas Zimmermann.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. In Proceedings of the 20th Very
Large Data Bases Conference (VLDB), pages 487–
499. Morgan Kaufmann, 1994.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. In Philip S. Yu and Arbee S. P.
Chen, editors, Eleventh International Conference on
Data Engineering, pages 3–14, Taipei, Taiwan, 1995.
IEEE Computer Society Press.

[3] Christian Collberg, Stephen Kobourov, Jasvir Nagra,
Jacob Pitts, and Kevin Wampler. A System for Graph-
Based Visualization of the Evolution of Software. In



Proceedings of the ACM Symposium on Software Vi-
sualization, San Diego, USA, June 2003.

[4] Reidar Conradi and Bernhard Westfechtel. Ver-
sion Models for Software Configuration Management.
ACM Computing Surveys, 30(2), 1998.

[5] S.G. Eick, J.L. Steffen, and E.E. Summer. Seesoft -
A Tool For Visualizing Line Oriented Software Statis-
tics. In Proc. of IEEE Transactions on Software Engi-
neering, pages 957–968, , 1992. IEEE Press.

[6] A. Endres and D. Rombach. A Handbook of Soft-
ware and Systems Engineering Empirical Observa-
tions, Laws and Theories. Addison-Wesley, 2003.

[7] Ahmed E. Hassan, Richard C. Holt, and Audris
Mockus, editors. Proceedings of International Work-
shop on Mining Software Repositories MSR 2004,
Edinburgh, Scotland, UK, May (collocated with
ICSE’04), 2004.

[8] Alfred Inselberg and Bernhard Dimsdale. Parallel Co-
ordinates: A Tool for Visualizing Multi-Dimensional
Geometry. In Proc. of Visualization ’90, pages 361–
378, San Francisco, USA, 1990. IEEE Press.

[9] H. Koike and H-C Chu. VRCS: Integrating Version
Control and Module Management using Interactive
Three-Dimensional Graphics. In Proceedings of IEEE
Symposium on Visual Languages VL’97, Capri, Italy,
1997.

[10] M.M. Lehman, D.E. Perry, J.F. Ramil, W.M. Turski,
and P.D. Wernick. Metrics and Laws of Software
Evolution-The Nineties View. In Proceedings of Met-
rics 97 Symposium, Albuquerque, NM, 1997.

[11] Alexandre Parenteau, Karl-Heinz Brünen, Jerzy Kac-
zorowski, and committers. CvsGui - A Set of GUI
frontend for CVS.
http://www.wincvs.org.

[12] Ben Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In Pro-
ceedings of 1996 IEEE Conference on Visual Lan-
guages, Boulder, CO, 1996. IEEE Press.

[13] The Mozilla Organization. Mozilla.
http://www.mozilla.org.

[14] Walter F. Tichy. VRCE: The Visual Revision Control
Engine.
http://www.aicas.com/vrce_en.html.

[15] Pak Chung Wong, Wendy Cowley, Harlan Foote, Eliz-
abeth Jurrus, and Jim Thomas. Visualizing sequential

patterns for text mining. In Proceedings of IEEE Infor-
mation Visualization INFOVIS. IEEE Computer Soci-
ety Press, 2000.

[16] Pak Chung Wong, Paul Whitney, and Jim Thomas. Vi-
sualizing association rules for text mining. In Pro-
ceedings of IEEE Information Visualization INFOVIS.
IEEE Computer Society Press, 1999.

[17] T. Zimmermann, S. Diehl, and A. Zeller. How History
Justifies System Architecture (or not). In Proceedings
of International Workshop on Principles of Software
Evolution IWPSE 2003, Helsinki, Finland, September,
2003.

[18] Thomas Zimmermann, Peter Weißgerber, Stephan
Diehl, and Andreas Zeller. Mining version histories
to guide software changes. In Proceedings of Inter-
national Conference on Software Engineering ICSE
2004, Edinburgh, UK, May 2004.


	published: in Proceedings of ACM Symposium on Software Visualization SOFTVIS'05, St. Louis, May 2005. 


