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ABSTRACT
Reverse engineering methods produce different descriptions
of software architectures. In this work we analyze and define
the task of exploring and comparing these descriptions. We
present a novel visualization technique to compare architec-
tures based on the decomposition of the software system and
on the dependencies among the code entities. A case study
related to software clustering shows how we can apply this
technique in practice.
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Keywords
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Note. This paper makes heavy use of colors. Please read a
colored version of this paper to better understand the ideas
presented.

1. INTRODUCTION
Understanding the architecture of a software system is

important for maintaining and evolving the system. The
architecture is often described in manually created docu-
ments and diagrams. But there is no guarantee that these
files match the architecture that is actually implemented.
The only reliable data source of this factual architecture is
the source code itself. But it contains the architecture just
implicitly—in form of the code structure and its dependen-
cies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOFTVIS’10, October 17–21, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10 ...$10.00.

There are different methods to extract the implicit archi-
tecture from the code. We can just take the directory or
package structure of a project. We might ask an expert to
manually decompose the system [5]. Or we apply a software
clustering algorithm [21] to generate a hierarchical struc-
ture of the source code. These methods provide different
decompositions of the system as a partial description of its
architecture.

Dependencies between code entities reflect another im-
portant part of the architecture. For instance, inheritance
represents a dependency between two classes, while method
calls form dependencies between methods. But there could
also be hidden dependencies: Two code entities might be re-
lated by their common evolution—they might have changed
together frequently [34]. Documenting these dependencies
on a high level of abstraction also makes implicitly contained
architecture information explicit.

There are many possible descriptions of an architecture in
form of different software decompositions and dependency
types—there does not exist the architecture description of a
system. It is important to compare these different descrip-
tions because this

• could approach the factual architecture of the system,

• might hint at the design and development process of
the system, and

• may help to create more reliable architecture descrip-
tions.

For instance, comparing the initial architecture of a sys-
tem to the architecture at a later point of development could
reveal architectural drifts. Checking the implemented archi-
tecture against the documented one may identify architec-
ture violations. Or contrasting the architectures automat-
ically extracted by different algorithm might enable us to
combine the advantages of the algorithms.

There are many tools that visualize software architec-
tures [10]. But these tools only show one description of an
architecture. In this work, we present a novel software ar-
chitecture visualization that focuses on comparing different
architecture descriptions. The visualization helps to under-
stand the similarities and differences of these descriptions.

At first, we need to identify concrete tasks that enable
such a comparison of software architectures (Section 2). We
introduce our visualization technique to explore and com-
pare architectures based on software decompositions and
code dependencies (Section 3). In a case study we apply
this visualization technique to analyze package structures



and clustering results (Section 4). Finally, we compare our
approach to related techniques (Section 5) and draw some
conclusions (Section 6).

2. COMPARING ARCHITECTURES
In a previous study [4] we compared the capabilities of dif-

ferent data sources to recover the architectures of software
systems. In particular, we used different dependency types
and applied a clustering algorithm that produced a hierar-
chical decomposition of the system. To assess the quality
of the automatically generated decompositions, we had to
compare them to a reference decomposition. There exist
different metrics that implement such a comparison of soft-
ware decompositions [21]—we used MoJoFM [32], a metric
that counts the minimal number of move and join operations
necessary to transform one decomposition into the other.
This metric-based approach solved the problem of assessing
the quality of the decompositions but left some questions
unanswered:

• What are the matching and non-matching parts of the
decompositions?

• Why does the clustering algorithm produce a particu-
lar result?

• How can we explain the different results when applying
the algorithm to different software projects?

Starting from these questions, we felt that there is a need
for understanding the differences of software decompositions
and code dependencies. The experience gained from our
study now helps us to identify important tasks that enable
such a comparison of software architectures. Later, we will
return and apply our visualization technique to the data set
of this previous study (Section 4).

2.1 Decompositions & Dependencies
Our work is based on extracting the architecture of the

software system from source code. The extracted architec-
ture consists of two parts: the decomposition of the system
and the dependencies among the parts of the system.

We call the elementary code units of the system code enti-
ties. Depending on the particular application, these entities
could be methods, classes, packages, or components. Let V
be the set of all code entities. The dependency structure
of the system is a directed graph on the set of code entities
G = (V,EG) where the set of edges EG ⊂ V × V repre-
sents the dependencies between the entities V . A software
decomposition divides these entities into groups or clusters
of entities, which are usually hierarchically organized (e.g.,
like in a package structure or as a result of a hierarchical
clustering algorithm). Thus, a software decomposition is a

hierarchy (i.e., a tree) H = (V̂ , EH) where V̂ = V ∪ C con-
sists of all code entities V and all clusters C, and the tree
edges EH ⊂ V̂ × V̂ express the containment relation such
that V contains all leaf nodes and C all intermediate nodes
of the hierarchy H. In terms of graph theory, such a com-
bination of a graph and a hierarchy is called a compound
graph.

Since our approach aims at the comparison of these data
structures, we want to contrast at least two such compound
graphs on code entities.

Figure 1: Two different decompositions on the same
set of code entities: (a) totally expanded decompo-
sitions; (b) gray clusters collapsed.

2.2 Tasks
Before actually designing a tool that enables a user to

compare software architectures based on software decompo-
sitions and code dependencies, we first need to analyze the
comparison process in greater detail. To this end, we will
identify key tasks. Since the user should be able to solve
these tasks, they form the requirements for a comparison
tool.

When we only look at the dependency structure of a sys-
tem, some interesting questions already arise. For instance,
dependency information might only sparsely cover the enti-
ties, or there might be clusters of entities, outliers, or hubs.
Such characteristics emerge, in particular, when comparing
different dependency types.

Task 1. Analyze and compare different types of code de-
pendencies.

Software decompositions are supposed to follow the con-
cept of high cohesion and low coupling [29]: The code en-
tities of a cluster should be linked by many dependencies
(high cohesion) whereas there should only be few depen-
dencies that cross cluster borders (low coupling). Thus, a
decomposition of the software might be closely related to the
dependency structure. Connecting both, we might be able
to answer questions like why entities belong to the same
cluster, or how strong is the cohesion of a cluster and the
coupling between clusters. Such information might explain
the relation between a dependency type and the decomposi-
tion. If the decomposition is created automatically, it could
show how the dependencies influence the clustering results.

Task 2. Relate a software decomposition to the depen-
dency structure.

Finally, we look at the different software decompositions.
Two decompositions are similar if the clusters of one decom-
position fairly match the clusters of the other decomposition.
But finding out which clusters actually match each other and
which clusters do not have any match in the other decom-
position is quite more interesting than an overall similarity
value.

Another aspect is the level of detail of a decomposition.
The hierarchical structure of the decompositions allows con-
sidering clusters on different levels. The two decomposi-
tions presented in Figure 1 (a)—one above the entities, one
below—look significantly different at first glance. But when



Figure 2: Example of the novel matrix-based visualization technique to compare different dependency graphs
and software decompositions.

collapsing particular clusters of the decompositions as de-
picted in Figure 1 (b), the partition of code entities is iden-
tical in both decompositions. Finding such matching levels
of detail might, however, be difficult for larger decomposi-
tions. A tool that supports the user in this process would
be necessary.

With respect to comparing software decompositions, we
require such a tool to show similarities and differences of
decompositions and to support to find matching levels of
detail.

Task 3. Compare different software decompositions on a
matching level of detail.

Since these tasks focus on an explorative, qualitative—
not quantitative—analysis, we believe a visualization is most
suitable. A metric-based approach or a textual representa-
tions would not provide sufficient overview and flexibility.

3. VISUALIZATION TECHNIQUE
A visual technique that supports the user to solve the

three tasks is required

• to concurrently display dependency graphs and soft-
ware decompositions,

• to reveal similarities and differences in graphs and de-
compositions, and

• to support to find matching levels of detail in different
software decompositions.

To simplify these requirement somewhat, we decided to
only allow two dependency graphs and two software decom-
position at maximum. Nonetheless, multiple comparisons
could be realized by several pairwise comparisons.

Figure 2 provides a preview on how our novel visualization
looks. It shows a representation of the Azureus1 system, a
BitTorrent client. The following sections will introduce the
visualization step by step. We start with discussing the rep-
resentation of the dependency graphs and the software de-
compositions. Further sections explain how the visualization
helps to choose an appropriate level of detail in the software
decompositions and how sorting increases the readability.

3.1 Dependency Representation
Our visualization technique is based on an adjacency ma-

trix representation of graphs: It represents code entities as
rows and columns of a matrix, and it depicts dependencies as
cells of the matrix. A colored box at the intersection of row
A and column B thus encodes a dependency from code entity
A to code entity B. Hence, all code entities are represented
twice, once as a row and once as a column. In a usual adja-
cency matrix, rows and columns are ordered equally so that
self-dependencies form the diagonal of the matrix. However,
our visualization deviates from this paradigm; we explain
later on why.

We preferred a matrix representation over a node-link
approach—diagrams where nodes represent code entities and
visual links between these nodes represent dependencies—
for several reasons:

Scalability Node-link diagrams suffer from occlusion prob-
lems when it comes to visualizing larger and denser
graphs. Elaborate layout algorithms may ease the
problem, but cannot eliminate it. In contrast, no vi-
sual elements overlap in matrix visualizations by defi-
nition. Ghoniem et al. [11] provide empirical evidence

1now called Vuze; http://www.vuze.com



for the superiority of matrix representations of larger
graphs in many applications.

Edges Since we want to analyze differences in dependency
graphs, we are interested in the existence of particular
edges (i.e., dependencies). In contrast, tracking longer
paths—an obvious shortcoming of matrix-based graph
visualizations—is less important for our application.
A matrix visualization focuses on edges; it explicitly
shows existing and non-existing edges.

Clusters Depending on a good layout, both node-link and
matrix diagrams are able to reveal clusters. But as
Henry et al. [14] point out, for dense clusters, matrix
representations still provide detailed information while
node-link representations produce clutter.

Figure 2 shows that the matrix is the central part of our
visualization. In this example, we used 477 classes as code
entities. Thus, each cell indicating a dependency has only a
few pixels on screen, but we can still see and discern these
small points. Moreover, we observe that these colored cells
are not evenly distributed over the image. The visual clus-
ters formed by these cells hint at clusters in the dependency
structure.

Our matrix-based approach is able to visualize two graphs
on the same set of code entities in the same diagram. The
dependencies just need to be drawn in different colors—one
color for each graph and a third color to represent duplicate
dependencies (i.e., dependencies that occur in both graphs).
The legend depicts this color scheme. Concurrently visual-
izing more than two graphs with this approach is possible,
but would probably confuse the user by ambiguous colors.
A comparison of n graphs would need 2n−1 different colors
plus a background color.

3.2 Decomposition Representation
We consider software decompositions as hierarchies. A

visual representation of a hierarchy can be easily attached
to the sides of the matrix. We use a layered icicle plot [16]
to depict a hierarchy. Such an icicle plot lays out the nodes
similar to a usual tree diagram, but depicts each node as
a box that fills the available space around the node. It is
more space-efficient and easier to label than an equivalent
node-link hierarchy diagram.

3.2.1 Hierarchies
The visualization in Figure 2 displays a software decom-

position in form of the package structure on the left hand
side of the diagram. Soft shadows separate the clusters, not
only in the hierarchy but also continuously in the matrix. If
enough screen space is available, labels identify the clusters.

Since the rows and columns of the matrix can be sorted
independently, we are able to add a second software decom-
position on top of the diagram. The example in Figure 2
depicts a decomposition automatically generated by a clus-
tering algorithm.

The hierarchical structure of each decomposition implies
some constraints on the order of the code entities: Only
sibling entities or clusters are allowed to be switched without
destroying the representation of the decomposition. Hence,
code entities have to be sorted differently with respect to
rows than with respect to columns.

3.2.2 Similarity Metric
The task of comparing the two decompositions consists of

finding similarities and differences in the cluster structure.
But without assistance, this would be a time-consuming and
strenuous task: Considering a particular cluster, it is hard
to identify its most similar correspondent because it has to
be manually compared to every cluster in the other decom-
position. A metric that is able to rank the possible corre-
spondents with respect of their similarity to a selected node
might solve the problem.

A cluster consists of a set of code entities. Thus, com-
paring two clusters is equivalent to comparing two sets A
and B. To get a similarity measure, we are interested in
how many entities concurrently belong to both clusters in
relation to the size of both clusters. This can be expressed
as the size of the intersection of the two sets divided by the
size of the union of the sets—the Jaccard coefficient:

sim(A,B) :=
|A ∩B|
|A ∪B| .

We integrate the similarity information based on the Jac-
card coefficients in the background of the matrix representa-
tion. The clusters form a matrix-like meta-structure where
the cluster—not the code entities—represent the rows and
columns. Each comparison of two clusters can be repre-
sented as a cell of this matrix. We use the background
brightness of the cells to encode the Jaccard similarity value
of the according cluster: Dark backgrounds visualize high
similarity values. Coloring each possible pair of clusters like
this would, however, lead to overlapping cells and thus am-
biguous shadings. Hence, this approach is able to compare
two decompositions only on one level of clusters for each de-
composition. In our visualization the user is able to choose
this level manually or supported by an optimization algo-
rithm (details will follow in Section 3.3).

Figure 2 shows that the visualization enables the user to
identify similar clusters at a glance: We can immediately
detect the most similar cluster combinations with the help of
this background structure. Moreover, non-matched clusters
result in rows or columns consisting only of a set of light-gray
boxes without any darker one. Table 1 lists some examples
of such matched and non-matched clusters.

Table 1: Examples of matched and non-matched
clusters in Figure 2.

Package Decomposition Clustered Decomposition

disk 0.0.0
tracker.pr.u 0.1.2.6.24

ipfil 0.1.3.3

util.# –
– 0.1.1

3.3 Level of Detail
Nevertheless, when comparing two decompositions, it is

necessary to chose an appropriate level of detail. Especially
clustered decompositions tend to be deep and fine-grained
hierarchies while, for instance, package structures are nor-
mally flat and more coarse-grained.The user should be able
to collapse clusters to find an appropriate level. A level is
appropriate if the following conditions are true:



Figure 3: The example from Figure 2 without and
with an appropriately chosen level of detail.

Conformance The decompositions match as far as possible
with respect to a measure of similarity.

Significance The structure of both decompositions is pre-
served (i.e., not too many clusters should be collapsed).

It is always possible to reach maximum conformance by
totally collapsing both decompositions. But this obviously
violates the condition of significance. Hence, these two con-
ditions usually must be traded off against each other.

Figure 3 gives an example of how important the level of
detail is. While in the default visualization on the left hand
side the background patterns are much too fine-grained to
easily find differences and similarities in both decomposi-
tions, the right hand side image is much more readable be-
cause it has an appropriately chosen level of detail.

3.4 Interaction
The visualization allows the user to collapse or expand

clusters by clicking on their visual representations. Further-
more, slim markers on the side of the hierarchy enable the
user to collapse or expand whole hierarchy levels (Figure 2,
top left). These markers also indicate which levels are totally
collapsed (light gray), partially collapsed (gray), or fully ex-
panded (dark gray). A collapsed cluster still claims as much
space as an expanded cluster. The main difference is that
collapsing a cluster moves the cluster comparison to a higher
level: Larger gray scale background boxes now display the
cluster similarity metric values on this higher level.

The gray scale matrix in the background is the most im-
portant criterion to assess the similarity of the two decom-
positions at a particular level. Roughly speaking, few black
boxes and many white boxes indicate a high conformance
while many low-contrast gray boxes indicate a low confor-
mance. The interactive expand and collapse mechanism al-
lows the user to explore different levels, but especially for
larger data sets, a good automatically proposed level of de-
tail would be of great help.

3.5 Optimization Criterion
To implement an automatic algorithm, we had to find a

formal optimization criterion that assesses the quality of a
particular level of detail state. Such a state consists of the
partially collapsed decompositions. Each collapsed decom-
position implies a partition of the code entities like presented
in the example of Figure 1. Hence, an optimization criterion
is a real-valued objective function defined on two partitions.

We propose an objective function that counts the number
of matching clusters of the two partitions P1 and P2. The
degree of similarity could be again computed by the Jaccard

similarity coefficient. Adding these similarity coefficients for
all possible cluster combinations, we come up with the fol-
lowing objective function.

f(P1, P2) =
∑
A∈P1

∑
B∈P2

ωA,B ∗ sim(A,B)

To consider the different sizes of the cluster, we added a
weighting coefficient ω. For two clusters A and B, the coeffi-
cient just sums up the number of elements of both clusters:
ωA,B := |A| + |B|. It is independent of the similarity of
the clusters and gives larger cluster combinations a higher
weight.

3.5.1 Significance Level Thresholds
This objective function, however, only evaluates the level

of detail with respect to conformance and does not consider
significance. But it is difficult to balance significance and
conformance in a single objective function. An appropriate
balance might also depend on the concrete application the
user has in mind.

To allow high conformance on different levels of signifi-
cance, we introduce a significance level threshold for each of
the two decompositions. This threshold prevents collapsing
clusters beyond this level while optimizing the conformance.

The grid pattern in the upper left corner of the visualiza-
tion displays the two significance level thresholds. The user
is able to set both levels with a single click. For instance,
in Figure 2 the user has clicked on the cell at the intersec-
tion of the third column and the third row, indicated by a
black box. This means that both decompositions have to
stay expanded up to the third level while optimizing the
conformance of the decompositions.

3.5.2 Optimization Algorithm
The two decompositions, the objective function, and the

two significance level thresholds form a constrained max-
imization problem. As an optimization strategy for this
problem, an exhaustive search, however, is not applicable
for nontrivial data sets. The number of possible partitions
induced by a single hierarchy might already grow exponen-
tially with the number of leaf nodes n: In the worst case—a
binary hierarchy—at least the n

2
intermediate nodes of the

lowest level can be independently collapsed and expanded.
This leads to at least 2

n
2 different partitions.

Instead, we use a hill climbing algorithm to find a local
maximum of the optimization problem. As an initializa-
tion, the algorithm expands the two decompositions to the
minimal level, which is defined by the two significance level
thresholds. Then it tries to maximize the objective func-
tion as follows (expand operations that improve the objec-
tive function persist while all other expand operations are
directly undone):

1. Expand each collapsed node of the first hierarchy one
by one.

2. Repeat step (a) for all collapsed nodes of the second
hierarchy.

3. If nothing has improved in step 1 and 2, try to expand
two nodes concurrently, one in the first and one in
the second hierarchy (systematically over all possible
combinations).



These three steps are repeated until they cannot provide
any further improvement. The third step turned out to be
helpful to skip local maxima.

Thus, our optimization strategy provides an interactively
selectable level of detail with an adaptive refinement to un-
derline matching parts of the two decompositions. Clicking
on a cell of the threshold visualization, the algorithm auto-
matically produces a layout of few black boxes surrounded
by many white ones. Figure 3 illustrates this process: While
the image on the left hand side shows two totally collapsed
hierarchies, the image on the right hand side is actually cre-
ated applying the optimization algorithm (this image is also
depicted in Figure 2 in larger size). In our experiences using
the visualization, the level of detail optimization turned out
to be very valuable because it drastically reduces the time
to find an appropriate level of detail.

3.6 Sorting
The linear ordering of the rows and columns is elementary

for the readability of a matrix graph visualization [22]. With
a random ordering no structure would be visible, whereas
a good ordering would reveal important graph structures
like clusters, hub vertices, or outliers. Different approaches
and algorithms exist to create a reasonable layout—Mueller
et al. [22] as well as Henry and Fekete [13] survey these
techniques in detail.

The hierarchical representation of the two software de-
compositions, however, constrains this ordering in our visu-
alization. If the decomposition follows a certain semantic,
this mandatory sorting may already help to reveal the struc-
ture of the dependency graphs. Nevertheless, the ordering
still leaves some degree of freedom: The positions of sibling
clusters and code entities can be switched.

3.6.1 Local Diagonals
Interpreting matrix diagrams, the diagonal is an impor-

tant reference line [23]: In a typical matrix representation of
a graph, the cells on the diagonal represent self edges. Our
visualization depicts two decompositions at the same time.
Thus, in contrast to most matrix graph visualizations, it
uses different vertical and horizontal entity orders. A side
effect is that the former diagonal entries, which we will call
self-referencing cells in the following, are scattered all over
the diagram. To regain a local diagonal structure, we use the
remaining degrees of freedom and sort sibling code entities.

Figure 4 illustrates the algorithm: In the first decom-
position, every pair of code entities in the same cluster is
switched if the two self-referencing cells define an ascending
line (read from left to right). The same procedure is applied
to the second decomposition. Finally, all lines between sib-
ling elements are descending and form local diagonals.

3.6.2 Mutual Blocks
Besides the locally regained diagonal structure, the result

of this local sorting algorithm are blocks of neighboring en-
tities in the one decomposition that all belong to the same
cluster in the other decomposition. These mutual blocks
reveal an additional important information for comparing
the two decompositions: They show how a cluster in one
decomposition is spread over the other decomposition.

The mutual blocks are encoded as boxes on the leaf level of
the two decompositions. They look like a bar code and form
the border lines between the icicle plots and the adjacency

Figure 4: Sorting algorithm on leaf level. Black
boxes mark self-referring cells; ascending lines are
dotted; descending lines are dashed; arrows indicate
the transformations.

matrix (Figure 2). Each box represents a mutual block,
which relates two clusters from the two decompositions. The
brightness of the box corresponds to the Jaccard similarity
of the two associated clusters: A black box stands for a good
match while a gray or white box represents mutual blocks
that only partially cover the two clusters.

Although the similarity of clusters is already encoded in
the matrix background, these mutual blocks help to detect
further interesting phenomena. On the one hand, they show
more clearly whether a particular cluster is matched by a
cluster of the other decomposition—for instance, we see at
a glance that the torrent package in Figure 2 is only half
matched. On the other hand, also small differences in mostly
matching clusters become visible, as it is the case for the
disk package in Figure 2. This ability is very important for
analyzing evolving decomposition structures.

3.7 Details on Demand
In practical application, it is important to get further de-

tails on demand. Moving the mouse over a code entity or a
cluster, the tool shows its name as a tooltip and highlights
adjacent vertices (the torrent package is highlighted in Fig-
ure 2). When moving the mouse over a colored matrix cell
representing a dependency, the labels of both related code
entities appear.

4. CASE STUDY
The following visual analysis applies the introduced visu-

alization technique to a previous study on software cluster-
ing [4]. The study incorporated the software clustering tool
Bunch [19], an approach based on the principle of high cohe-
sion and low coupling of modules, to compare different data
sources for software clustering. We assessed the clustered
software decompositions retrieved from six sample projects
by comparing them to a reference decomposition: the ac-
tual package structure of the project. As discussed in the
Section 2, this quantitative assessment left some questions
unanswered.

In the following we will analyze the software decomposi-
tions again, but now in a more qualitative and explorative
approach. The tasks defined in Section 2.2 provide differ-
ent viewpoints on the data sources and clustering results.



Figure 5: Graph comparison between the SCDG and
the unfiltered ECDG for the JFtp project; the pack-
age structure provides a default decomposition.

In general, our analyses consider all six sample projects of
the study, namely, Azureus, JEdit, JFreeChart, JFtp, JU-
nit, and Tomcat. For practical reasons, we only depict the
resulting visualizations for JFtp, the smallest of the sample
projects.

The case study will only show that the approach basically
works. A task-oriented user study based on refined versions
of the tasks discussed in Section 2.2 may provide more re-
liable results on the usability, readability, and efficiency of
the proposed visualization technique. Nevertheless, it could
be difficult to define an appropriate control group because
there does not exist a directly competing approach.

4.1 Compare Dependencies (Task 1)
The dependency graphs are the basis for the clustering

process: They are the input for the clustering algorithm. On
the one hand, we used static code dependencies—like inher-
itance, aggregation, and usage—to represent a traditional
software clustering approach. These dependencies form the
Structural Class Dependency Graph (SCDG). On the other
hand, we used evolutionary couplings, which form the Evo-
lutionary Class Dependency Graph (ECDG), to represent
hidden dependencies. These evolutionary couplings relate
two classes if these classes have been frequently changed to-
gether in the history of the software project (co-changed).
The dependency strength consists of a support value—the
absolute number of co-changes—and a confidence value—a
relative number of co-changes. To reduce the noise in the
data set, a filter eliminates weak dependencies.

In this first phase of our case study, we use the visualiza-
tion as a graph comparison tool (Task 1). Since clustered
decompositions are not yet relevant, the package structure
is employed as a default decomposition. The background
structure thus only shows black boxes on the diagonal, but

Figure 6: Two different clustered decompositions,
one based on structural dependencies (vertical), the
other based on evolutionary dependencies (horizon-
tal).

does not carry any further information. The graph visual-
ization, however, reveals significant differences in the graph
structures, as illustrated for JFtp in Figure 5.

SCDG (green & red dependencies) Sparse graphs, but
with dependencies that cover most of the nodes at least
once. Some outstanding nodes with many incoming
or outgoing dependencies, which form a kind of hub
nodes.

ECDG (blue & red dependencies) Dense graphs (with-
out filtering) up to very sparse ones (with a strong
filtering). Local concentrations of edges form dense
clusters. But many nodes are not covered by any de-
pendency.

These results show two main drawbacks of the ECDG:
the local concentration of dependency information and the
overall low density of the dependency graph, especially for
stronger filtering setups. A solution might be a local fil-
tering instead of the global filtering of these evolutionary
dependencies.

Furthermore, the intersection of the dependencies (red
dependencies) of both graphs is small and mostly relates
classes of the same package. This observation explains why
it is beneficial to give those dependencies more weight in the
clustering process.

4.2 Decompositions & Dependencies (Task 2)
In this second stage of our analysis, we also consider soft-

ware decompositions produced by the employed clustering
approach. We use the vertical axis to depict the clustered
decomposition based on the structural code dependencies
(SCDG) and the horizontal axis for the one based on the



evolutionary dependencies (ECDG). Figure 6 shows such a
visualization for the JFtp project.

In the evolutionary software decomposition (Figure 6, top),
cluster x looks interesting: It roughly covers a third of the
hierarchy, but is not subdivided further. There also exists
a cluster x in the structural software decomposition (Fig-
ure 6, left), but it is much smaller. This cluster x represents
all elements that could not be clustered because there was
not any dependency information available for them. Thus,
there are no evolutionary dependencies available for about
a third of the classes of the software system, and the clus-
tering algorithm could only cluster the other two thirds of
the system. This situation is even worse in the other sample
projects. This sparse coverage seems to be the main problem
of clustering a software system exclusively with evolutionary
information (ECDG).

Admittedly, we already uncovered this fact in the previ-
ous study. But there we needed a metric to measure the
coverage, in contrast to the visualization, where we are able
to grasp the same fact without even intentionally looking for
it.

Analyzing the relation of the hierarchies and the graphs
in more detail, we observe in the visualization that deeper
hierarchies come along with clearly identifiable clusters indi-
cated by visual clusters in the dependency graphs. The clus-
tering algorithm seems to produce flatter hierarchies when
the classification of classes is more ambiguous. But we are
not able to find any significant difference between structural
and evolutionary decompositions with respect to this effect.

All in all, the conformance between the structural and
evolutionary decompositions is low. This might indicate
that both data sources actually cover different dimensions
of code dependencies—a combination of both data sources
promises to combine these two dimensions. Actually, this
lead to slightly better clustering results as we found out in
the previous study.

4.3 Compare Decompositions (Task 3)
With our visualization the user is able to detect matching

clusters at first glance—perhaps the most striking feature of
the technique. For instance, in Figure 7 the event package is
almost perfectly matched by cluster 0.0.2, as we learn from
the background shading of the matrix. The precondition is
an appropriate level of detail, which might be easily gained
by the level of detail optimization algorithm.

We use this ability of detecting well clustered packages to
identify those packages that are either fairly matched or non-
matched. In most cases, nearly perfectly matched clusters
posses a high structural cohesion—many references among
the classes of the cluster—often supported by a good evolu-
tionary cohesion—the classes of the cluster were frequently
changed together. In contrast, matching clusters predomi-
nantly based on high evolutionary cohesion are rare. This
explains why combining structural and evolutionary data
improved the clustering quality in the quantitative study
and using exclusively evolutionary data was only partly suc-
cessful.

In contrast, utility packages—packages that provide some
global functionality—could hardly be retrieved by our clus-
tering approach. The visualization supports to identify those
packages, even when they are not named utility or util,
by their characteristic structure: Utility packages do not
have outgoing dependencies to other non-utility packages,

Figure 7: Clustered software decomposition based
on the combined structural and evolutionary graphs
compared to the reference decomposition (package
structure).

but many incoming ones from diverse packages. We are
able to gain this information either by looking at the adja-
cency matrix or by using the interactive details-on-demand
that highlight all adjacent classes (including the direction of
adjacency) for a package. Once we identified these utility
packages, the visually encoded cluster similarity revealed no
significant correspondence to the clustered packages. This
problem is a known problem of dependency-based clustering
approaches [2]. A preprocessing that detects such packages
before the actual clustering, like proposed by Mancoridis et
al. [19], might improve the clustering results.

Our visualization also showed that in some setups—in par-
ticular those involving the larger projects—the clustering
algorithm was not able to create a decomposition with at
least a roughly matching granularity: All possible levels were
much too fine-grained in contrast to the reference decompo-
sition. Repairing this weakness of the algorithm might also
result in much better clustering results for these setups.

5. RELATED WORK
Software architecture visualization is an established disci-

pline in software visualization research [8, 10]. Many tools
from this area visualize software decompositions and code
dependencies—SHriMP [30], Software Landscapes [3], or
Class Blueprints [9], just to name a few. Most of these
visualizations employ the node-link metaphor to represent
a dependency graph structure. But matrix-based visualiza-
tions of graphs seem to gain importance due to their advan-
tages when it comes to visualize larger graphs. They have
already been employed to analyze dependencies of software
projects, for example, method calls [31] or evolutionary cou-
plings [7]. Originating from the analysis of manufacturing
processes, so-called Dependency Structure Matrices are also



able to visualize software architectures in a matrix struc-
ture [26]. Due to a specialized sorting, these matrices help
to detect cyclic dependencies and architecture violations.

Visualization has also played a role in software clustering
and has helped to present single clustering decompositions
in a readable way. Hierarchical decompositions have been
depicted in a form of tree diagrams [27], code dependen-
cies have been represented as graph visualizations [20], and
similarity of code entities in high-dimensional feature spaces
have been visualized as similarity matrices [17]. Other clus-
tering related research communities use similar forms of clus-
ter visualizations.

These visualizations are able to present a single software
architecture description or a single clustering result. But to
the best of our knowledge, no approach, however, uses a ma-
trix visualization to concurrently compare different graphs
and hierarchies, neither in the domain of software architec-
ture visualization nor in clustering-related visualizations.

Nevertheless, there exist specialized visualizations to com-
pare different hierarchies (without a graph structure). A
straightforward approach is to place two hierarchies face to
face with each other and connect related leaves by visual
links. Edge crossings reduce the readability of such an vi-
sualization. There exist some algorithms that alleviate this
problem by minimizing the number crossings [6]. Holten
and van Wijk [15] follow another strategy and enhance the
approach by bundling links into meaningful groups. In con-
trast, brushing is a totally different paradigm to express
similarities of hierarchy nodes. For instance, TreeJuxta-
poser [24] displays similar sub-tree structures interactively
by highlighting the best corresponding node (based on the
Jaccard coefficient). Many other visualizations that com-
pare hierarchical structures exist; Graham and Kennedy [12]
provide a more exhaustive survey.

In the field of bioinformatics, Cluster Heat Maps are a
popular visualization technique to analyze large clustered
genome data sets [33]. These heat maps consist, first, of
a color-coded matrix that usually relates genes (objects) to
a set of conditions (attributes), and second, of an attached
hierarchy retrieved by clustering. Not only the objects can
be clustered, but also the attributes: A second hierarchy
groups the attributes of the matrix. Concurrently finding
an optimal clustering of objects and attributes is known as
biclustering (e.g., [18] gives an overview). These cluster heat
maps, indeed, look similar to our approach, especially with
two hierarchies attached. Nonetheless, the fundamental dif-
ference is that the cluster maps do not compare two hier-
archies on the same set of objects, but help to concurrently
cluster two independent sets: objects and attributes.

Software clustering results are often evaluated by compar-
ing them to a reference decomposition of approved quality.
Like applied in our previous study a metric provides a simi-
larity value. These metrics usually work on flattened decom-
position. But there exist first approaches that additionally
regard the hierarchical structure of the decompositions [27,
28]. These metric-based approaches may be sufficient to get
a quality measure for an automatically created decomposi-
tion, but do not explain the difference.

Other tools allow the user to visually compare graph struc-
tures. For instance, Andrews et al. [1] present a node-link
approach to compare business processes and surveys related
node-link approaches. Beside these specialized tools, ev-
ery dynamic graph visualization enables graph comparisons:

The two contrasted graphs form a sequence of changing
graphs. There even exist dynamic compound graph visual-
izations, which are able to concurrently display a changing
hierarchy [25]. These visualizations, however, are more suit-
able for evolving graphs and hierarchies, but not to contrast
two totally different data sets like those discussed in this
paper.

6. CONCLUSION
In this paper we analyzed how to compare software archi-

tectures with respect to software decompositions and code
dependencies. To this end, we developed a novel visualiza-
tion technique based on an adjacency matrix representation
of graphs. The visual analysis of the results of a previous
quantitative study on software clustering shows that the vi-
sualization supports the analysis tasks introduced in Sec-
tion 2.2. The main capabilities of the visualization are

• concurrently contrasting software decompositions and
code dependencies,

• easily detecting matching and non-matching parts in
software decompositions, and

• semi-automatically finding a matching level of detail
comparing two software decompositions.

Our visualization technique is the first approach toward
visually comparing software architecture descriptions. It
may foster the understanding of differences in these descrip-
tions. A major application is software clustering where soft-
ware decompositions are generated automatically. These de-
compositions can be put into relation to certain dependency
types and compared to each other. The visualization might
help to improve software clustering, especially with respect
to selecting an appropriate data source.
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