
SPECIALIZING VISUALIZATION ALGORITHMS

Stephan Diehl
FR Informatik
Universität des Saarlandes
diehl@cs.uni-sb.de

Abstract In this paper we look at the potential of program specialization tech-
niques in the context of visualization. In particular we look at partial
evaluation and pass separation and how these have been used to au-
tomatically produce more efficient implementations and how they can
be used to design new algorithms. We conclude by discussing what we
think are the applications were program specialization is most promising
in visualization.

Keywords: visualization, program transformation, partial evaluation, pass separa-
tion, marching cubes

Introduction
The design and optimization of algorithms often starts with simple

algorithms which are then transformed. These transformations are either
based on insights from the underlying domain or on the semantics of the
notation used to encode the algorithm. Such transformations have to
preserve the input-output behavior of the algorithm, while improving
its efficiency. In particular in scientific visualization, algorithms have to
process huge amounts of data and efficiency is an important issue. In this
paper we look at the specialization of visualization algorithms using two
program transformation techniques which have been extensively applied
in the context of compiler generation.

Program Specialization
The term staging transformation has been introduced by Jørring and

Scherlis, 1986 for a class of program transformations including partial
evaluation and pass separation.

1



2

Partial Evaluation: A partial evaluator takes a program and values for
some of its inputs and produces a new, specialized program parameter-
ized by the remaining inputs

Pass Separation: Pass separation splits a program into two parts. The
second part reads the output of the first part and produces the final
result.

Partial evaluation and pass separation differ in the kind of information
that they have about the program. Partial evaluation knows the exact
values of some part of the input, whereas pass separation only knows
which part of the input will be available first.

Let P be a program, x and y the static and dynamic inputs to this
program and x the statically known value of x, then partial evalua-
tion of P with respect to x yields a residual program Px, such that
Px(y) = P (x, y). In contrast, pass separation transforms the program P
into two programs P1 and P2 such that P2(P1(x), y) = P (x, y). What
is important about this equation is that here P1 produces some in-
termediate data, which are input to P2. As is well known, partial
evaluation can be used to generate compilers in various ways accord-
ing to the Futamura Projections (Jones et al., 1993; Futamura, 1971).
When it comes to the generation of compiler/executor pairs, pass sep-
aration provides an immediate solution. We pass separate the inter-
preter interp into an executor exec and a compiler comp, such that:
interp(prog, data) = exec(comp(prog), data). Despite its potential for
compiler generation there is only little work on pass separation. Ac-
tually we are only aware of the somewhat hand-waving article (Jørring
and Scherlis, 1986) and the provably correct pass separation transfor-
mations of term rewriting systems (Hannan, 1994), evolving algebras (
Diehl, 1995), as well as our fully automatic semantics-directed compiler
generator which is based on pass separation (Diehl, 1996).

Example: Partial Evaluation of Ray Tracing
Already in 1986 Mogensen applied partial evaluation to a ray tracer

implemented in a functional language (Mogensen, 1986). Ten years later
Andersen did a similar experiment with a ray tracer implemented in C
(Andersen, 1996). The ray tracer spends much of its time testing inter-
section of each object in the scene with the ray. Andersen specialized
the ray tracer with respect to a given scene (set of objects).

intersectionTest(sphere,ray)

{ ...

x=sphere.c.x - ray.p.x;

...

}



Specializing Visualization Algorithms 3

x

y Px

P
partial
Eval

P(x,y)

x P1

P
pass
Sep

P(x,y)

P2

P1: compiler,
cache loader,
preprocessor

y

Figure 1. Partial evaluation vs. pass separation

Thus for the 32nd object in the scene he got for example the following
specialized version of the intersection test.

intersectionTest_32(ray)

{ ...

x=1.0 - ray.p.x;

...

}

His partial evaluator performs inter-procedural constant propagation
and unfolds the loop which iterates over all objects, thus yielding spe-
cialized functions for each object.

Andersen reports speedups of 1.3 to 3.0 and increase in code size of
15 to 90 times, but the truth is that because he unfolds the loop, the
increase in code size is in the order of the number of objects.

Example: Pass Separation of Shaders
Although they do not use the term, Guenther et. al. pass separated

shaders into cache loaders and cache readers (Guenther et al., 1995). In
the excerpts of the program code of a Phong shader below we assume
that all parameter values be known before the value of specular be-
comes known. All values which depend on it are underlined and have to
be computed in the final pass.

Phong(i,j,surface_normal, ..., specular, ...)

{ ...

n_dot_h=VecDot(surface_normal, h_vector)

if (n_dot_h>0)

specular component=pow(n dot h,specular);



4

else

specular_component=0;

...

rgb=VecScalarMult(rgb, (kd*diffuse component+ambient)

+ ks*specular component);

SetPixel(I,j,rgb,dib);

}

The specializer separates the algorithm into a cache loader, cache
reader and a fixed driver. The cache loader forms the first pass, while
the cache reader forms the second pass. Now we look at the generated
source code of the loader and reader.

The loader shown below computes all values, which have not been
underlined and stores them in a data structure referenced by pcache:

n_dot_h=VecDot(surface_normal, h_vector)

if (pcache->c0 = n_dot_h>0)

pcache->c1=n_dot_h

...

pcache->c2= kd*diffuse_component+ambient;

The reader is obtained from the original program by replacing all
non underlined expressions by references to the precomputed values in
pcache:

if (pcache->c0>0)

specular component=pow(pcache->c1,specular);

else

specular_component=0;

...

rgb=VecScalarMult(rgb, pcache->c2 + ks*specular component);

SetPixel(I,j,rgb,dib);

After generating the loader and the reader. The user can now render
the scene with different values of specular. Note that the loader is only
executed once, while the reader is invoked each time the user enters a
new value for specular:

For all pixels (i,j): Loader(i,j, ...)

User/GUI supplies values for specular

For all pixels (i,j): Reader(i,j,specular)

The authors report speedups of up to 95 times and an increase in code
size of factor 2. Using caching instead of unfolding prevents them from
a linear increase in code size as in the previous approach.

As all currently known pass separation transformations, their ap-
proach is restricted to a very small class of programs. It seems that
their method can only be applied to functions (like Phong here) which
do not contain recursion or iteration.



Specializing Visualization Algorithms 5

Example: How to invent marching cubes
The Warren Abstract Machine WAM is the de-facto standard for im-

plementing logic programming languages (Warren, 1977). Most subse-
quent work extends or optimizes Warren’s ingenious virtual machine. In
the article “How to invent a Prolog Machine” (Kursawe, 1986) Kursawe
shows how some of the WAM instructions for unification can be system-
atically derived using partial evaluation. Later Nilsson (Nilsson, 1993)
derived most of the remaining instructions using partial evaluation and
pass separation. In a sense these papers deprived the WAM of some of
its mystique. Based on this work the current author later demonstrated
how partial evaluation and pass separation can be used to design new
abstract machines (Diehl, 1997).

The marching cubes algorithm (Lorensen and Cline, 1987) is probably
among the most influential developments in scientific visualization so far.
It reconstructs isosurfaces, i.e. locations of a constant scalar value within
a volume. In the next sections we try to reconstruct it using a similar
approach as Kursawe and Nilsson.

Surface Construction
To explore three-dimensional data sets, e.g. of medical data, iso-

surfaces are widely used. The problem of surface construction can be
briefly characterized as follows. The physical reality to be visualized can
be modelled as a continuous space of real data d(p, q, r) where p, q and r
are real numbers. But we only measure a finite number of sample data
D(i, j, k) where i, j and k are integers. D is called a grid. An isosurface
is the set of all data points (d, p, r) with d(p, q, r) = c for a constant
value c. The problem of surface construction is to find a set of triangles
which approximates the isosurface based on the sample data in the grid.

First shot
We start by a simple algorithm which processes the cubical cells of

the grid one after another. The algorithm uses a function triangulate()
which given a set of unstructured points returns a set of triangles, where
the vertices of the triangles are the given points.

For each edge of the 12 edges of a cell perform the intersection test:
e.g. edge (i, j, k) to (i, j + 1, k):

if D(i, j, k) ≥ c and D(i, j + 1, k) < c then

interpolate intersection point as P1 = (i, j + D(i,j,k)−c
c−D(i,j+1,k)

, k)
else P1 = null

Let P1, . . . , P12 be the intersection points, then T = triangulate({Pi|Pi 6=
null}) are the triangles for this cell.



6

The problem with this algorithm is efficiency, because for each cell a
triangulation has to be computed.

Second shot
In the next step we use the geometric insight, that instead of using the

interpolated intersection points we can use arbitrary intersection points,
here the mid points of each edge, and do the interpolation later.

For each edge of the 12 edges of a cell perform the intersection test:
e.g. edge (i, j, k) to (i, j + 1, k):

if D(i, j, k) ≥ c and D(i, j + 1, k) < c then
define intersection point in unit cube as P1 = (0, 1

2
, 0)

else P1 = null
Let P1, . . . , P12 be the intersection points, then T = triangulate({Pi|Pi 6=
null}) is a set of triangles in the unit cube.
Replace Pi in the triangles by the interpolated intersection point P ′

i ,
e.g. P ′

1 = (i, j + D(i,j,k)−c
c−D(i,j+1,k)

, k)

Final shot
Triangulating before interpolating does not yet improve the perfor-

mance of the algorithm, but it has changed the information on which
the triangulation depends. We can now pass separate the above algo-
rithm, all mid points of the edges of the unit cube are known, before we
have to run the algorithm for a given grid. Here the cache loader pre-
computes all triangulations for all possible combinations of mid points
of edges of the unit cube.

Cache Loader:
Let Pi be the points in the middle of each edge of the unit cube. For all
subsets S ⊆ {P1, . . . , P12} compute cache[S] = triangulate(S)

Cache Reader:
For each edge of the 12 edges of a cell perform the intersection test:
e.g. edge (i, j, k) to (i, j + 1, k):

if D(i, j, k) ≥ c and D(i, j + 1, k) < c then
define intersection point in unit cube as P1 = (0, 1

2
, 0)

else P1 = null
Let P1, . . . , P12 be the intersection points then T = cache[Pi|Pi 6= null]
is a set of triangles in the unit cube.
Replace Pi in the triangles by the interpolated intersection point P ′

i ,
e.g. P ′

1 = (i, j + D(i,j,k)−c
c−D(i,j+1,k)

, k)

As in the original marching cubes algorithm, in our presentation we ig-
nored the problem of ambiguities (Nielson and Hamann, 1991; Matveyev,
1994; Montani et al., 1994), which are caused by the cache. In the march-
ing cubes algorithm the cache is called lookup table and it is further
reduced from 256 to 14 entries by exploiting symmetries.



Specializing Visualization Algorithms 7

Future Work
In our future work we intend to look at what other optimization and

specialization tricks have been used in visualization algorithms, e.g. how
it is possible to lift the visibility test from the renderer to the isosurface
computation (Livnat and Hansen, 1998).

Specialize once, run multiple
Currently there is no pass separation tool which (semi-) automatically

transforms programs in a conventional programming language Such a
tool would be very helpful to assist the manual specialization and design
of other visualization algorithms. Automatic partial evaluators of very
different quality exist for many programming languages.

Whether we use manual or fully automatic specialization, the costs
for specializing a program can only be amortized if we intensively use
the specialized program. We briefly discuss two visualization scenarios
where the costs of automatic specialization will certainly be amortized.

Computational Steering. In computational steering visualization
is used to control scientific applications including the generation and
filtering of data (Johnson et al., 1999). If the user is restricted to change
only some parameters of the application, the visualization algorithms
can be specialized with respect to the fixed parameters.

Comparative Visualization. Different data sets can be compared
by visualizing them using the same parameters for a visualization algo-
rithm. As a result the algorithm can be specialized with respect to these
parameters.

Conclusions
The goal of this paper was to draw the attention of the visualization

community to the potential of program specialization techniques for vi-
sualization. It remains a vastly unexplored field and this paper may
serve as a first map to those who want to break new ground.

Acknowledgements. The author wants to thank Hans Hagen, Thomas
Ertl and Reinhard Wilhelm for instructive discussions and encourage-
ment.





References

Andersen, P. H. (1996). Partial evaluation applied to ray tracing. In Mackens, W. and
Rump, S., editors, Proc. of Software Engineering in Scientific Computing. Vieweg.

Diehl, S. (1995). Transformations of Evolving Algebras. Technical Report FB14 No.
A-02/95, University Saarbrücken.

Diehl, S. (1996). Semantics-Directed Generation of Compilers and Abstract Machines.
PhD thesis, University Saarbrücken, Germany.
http://www.cs.uni-sb.de/˜diehl/phd.html.

Diehl, S. (1997). An Experiment in Abstract Machine Design. Software – Practice
and Experience, 27(1).

Futamura, Y. (1971). Partial evaluation of computation process – an approach to a
compiler-compiler. Systems, Computers, Controls, 2(5).

Guenther, B., Knoblock, T. B., and Ruf, E. (1995). Specializing shaders. In Proc. of
SIGGRAPH95. ACM SIGGRAPH, Computer Graphics.

Hannan, J. (1994). Operational Semantics-Directed Compilers and Machine Architec-
tures. ACM Transactions on Programming Languages and Systems, 16(4):1215–
1247.

Johnson, C., Parker, S., Hansen, C., Kindlmann, G., and Livnat, Y. (1999). Interactive
simulation and visualization. Computer, 12.

Jones, N., Gomard, C., and Sestoft, P. (1993). Partial Evaluation and Automatic
Program Generation. Prentice Hall.

Jørring, U. and Scherlis, W. (1986). Compilers and staging transformations. In Thir-
teenth ACM Symposium on Principles of Programming Languages, St. Petersburg,
Florida, pages 86–96.

Kursawe, P. (1986). How to invent a Prolog machine. In Proc. Third International
Conference on Logic Programming, volume LNCS 225, pages 134–148. Springer
Verlag.

Livnat, Y. and Hansen, C. (1998). View dependent isosurface extraction. In Proc. of
Visualization’98.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3d surface
construction algorithm. ACM Computer Graphics, 21(4).

Matveyev, S. V. (1994). Aproximation of isosurface in the marching cubes: Ambiguity
problem. In Proc. of Visualization’94.

Mogensen, T. (1986). The Application of Partial Evaluation to Ray-Tracing. Master’s
thesis, DIKU, University of Copenhagen, Denmark.

Montani, C., Scateni, R., and Scopigno, R. (1994). Discretized marching cubes. In
Proc. of Visualization’94.

9



10

Nielson, G. and Hamann, B. (1991). The asymptotic decider: resolving the ambiguity
in marching cubes. In Nielson, G. and Rosenblum, L., editors, Proc. of IEEE
Visualization ’91. IEEE Computer Society Press.

Nilsson, U. (1993). Towards a Methodology for the Design of Abstract Machines for
Logic Programming. Journal of Logic Programming, 16:163–188.

Warren, D. H. (1977). Implementing prolog – compiling predicate logic programs.
D.A.I Research Report, No. 40.


	published: in Data Visualization -- The State of the Art, F.H. Post, G.M. Nielson, and G.P. Bonneau, eds., Kluwer Academic Publishers, 2003. 


