
VRML++: A Language for Object-Oriented Virtual-Reality Models

Stephan Diehl
FB 14 - Informatik, Universität des Saarlandes,

Postfach 15 11 50, 66041 Saarbrücken, GERMANY
Email: diehl@cs.uni-sb.de, WWW: http://www.cs.uni-sb.de/~diehl

in Proceedings of the 24th International Con-
ference on Technology of Object-Oriented Lan-
guages and Systems TOOLS Asia, Bejing, 1997

Abstract

We present a new object-oriented language called
VRML++ which extends the Virtual Reality Model-
ing Language (VRML 2.0), a specification language
for interactive three-dimensional scenes on the in-
ternet. The new features of VRML++ are classes
and inheritance, an improved type system, and dy-
namic routing. As a net result we get type-safe inclu-
sion polymorphism and dynamic binding. We argue,
that these features are essentials of object-oriented
programming languages. Furthermore using these
new features it is possible to define abstractions of
routing structures which we call connection classes.
VRML++ increases reuseability, readability, and ex-
tensibility of specifications while reducing run-time
errors. Finally we discuss our implementation of
VRML++.

1 Introduction

The Virtual Reality Modeling Language (VRML)
is a data format to describe interactive, three-
dimensional objects and scenes which are intercon-
nected via the world wide web. Like the Hyper-
Text Markup Language(HTML), VRML is an open
standard. The involvement of major software com-
panies in the design and standardization process in-
dicates that VRML will become a key technology
for many future internet applications like multi-user
environments, computer aided cooperative work or

3D games. In VRML 1.0 it was possible to reuse
nodes by instantiating them (DEF/USE) and then
applying transformations and changes of field prop-
erties. In VRML 2.0 prototypes provide a more
powerful mechanism to define node types and cre-
ate instances of these node types. By introducing
scripts, events and routes VRML 2.0 added pro-
gramming language concepts and thus behavior to
VRML scenes. We would like to reuse and param-
eterize such behavior. This is possible to some ex-
tent in VRML 2.0, but when we look at program-
ming languages, reuse of code was greatly simpli-
fied by the development of object-oriented program-
ming languages (OOPLs). Huge libraries of classes
are common to object-oriented languages and make
programming an easier task. In software-engineering
object-oriented analysis and design is propagated as
the way to manage the development of large scale
applications. Cox [Cox,1990] predicts a revolution
in software industry by reuseable, reliable, abstract
software components which can be plugged together
to create new applications. At any time a component
can be replaced by a more efficient one, which pro-
vides the same interface. In a similar way the emerg-
ing virtual reality industry could benefit from reuse-
able, reliable, abstract virtual models and behaviors.
This paper describes the design and implementation
of VRML++, a language which integrates key con-
cepts of object-oriented programming languages into
VRML. In Section 2 we give a short introduction to
VRML 2.0 focussing on its abstraction mechanisms.
In Section 3 we discuss what we think are essential
features of object-oriented programming languages
and in Section 5 we identify those present in VRML
2.0. Next our language VRML++ and its implemen-
tation are described in Sections 5 and 6. In Section

7 some directions for future work are discussed and
Section 8 concludes this paper.

1.1 VRML++ and Authoring Virtual
Worlds

The object-oriented features of VRML++ and its im-
proved type system increase reuseability of specifica-
tions and prevent run-time errors in animated VRML
scenes. VRML++ provides a better way to struc-
ture huge libraries of objects and behaviors. Classes
can be used to abstract common properties of ob-
jects. We get more complex classes by inheriting
from other classes and adding new or overriding in-
herited properties. Instances of classes communicate
with the rest of the world via their interface, the im-
plementation details are hidden (encapsulation). In
VRML++ it is also possible to abstract routing struc-
tures by defining connection classes. These connec-
tion classes greatly increase readability.

1.2 VRML++ and Shared Virtual Worlds

We expect, that adding object-orientation to VRML
will ease the design of shared virtual worlds in a sim-
ilar way. Moreover using class libraries can help
to solve one of the main problems in shared virtual
worlds – the bandwidth problem. Using classes we
can reduce the amount of data to be sent between
browsers. Similar to the Java class library we would
have the same library of objects and behaviors on
each client. Thus messages would contain new class
definitions or instantiations of classes.

1.3 VRML++ and Animation

The combination of orthogonal animations can be
expressed by inheritance. As an example we can
combine movement, change of orientation and color
by inheriting such behaviors. Furthermore the new
dynamic, multiple routing feature of VRML++ pro-
vides a powerful means to propagate events to differ-
ent parts of an animated object.

2 Abstraction in VRML 2.0

For those unfamiliar with VRML, we review in this
section those concepts of VRML relevant in the con-

text of this paper. Consequently we do not dis-
cuss its graphics primitives, but only look at the
way abstractions are defined and ”messages” are
sent. For more information on VRML 2.0 see
[Hartman and Wernecke,1996, VAG,1996].
In VRML a scene graph is defined by nested instanti-
ations of nodes. A node has a type and several fields.
Fields have values. Values can be primitive values
like floating point numbers or 3D coordinates, but
also instances of nodes can be used as values. Many
fields also accept lists of values. The instantiation of
a node of typet with valuesv

1

; : : : ; v

n

for its fields
f

1

; : : : ; f

n

is writtent { f

1

v

1

: : : f

n

v

n

}.
For example, a cylinder of radius 5 and height 10,
which is placed 10 meters to the right of the origin of
the local coordinate system is instantiated by:

Transform { children
Cylinder { radius 5

height 10 }
translate 10 0 0 }

Such an instance can be bound to a name for later
reference:

DEF CYL Transform { ... }

Instead of using standard node types like
Transform and Cylinder one can define
new types, which are called prototypes:

PROTO BigCylinder
[field SFFloat bigheight 10]
{ Cylinder { radius 5

height IS bigheight }
}

The fields and events of the new type are declared in
[. . .]. The value of a field or event can be of prim-
itive type (e.g.SFFLOAT, SFBOOL or SFTIME), a
single node (denoted by the typeSFNODE) or a list of
nodes (denoted by the typeMFNODE). In this exam-
ple a new typeBigCylinder is defined with a field
bigheight. In the body of the definition enclosed
by { ... } the value ofbigheight is used as the
value for the fieldheight. The radius of an object
of type BigCylinder is always 5, but its height
can be provided as a value of the fieldbigheight:

BigCylinder { bigheight 20 }

In addition to fields a node can have events.
The value of an event can change while the
scene is rendered, it depends on the passing of
time or user interactions. There are input and
output events. For example, a node of type
TimeSensor periodically produces an output event
namedfraction_changed.

DEF CLOCK TimeSensor { ... }

This event can be sent to other nodes,e.g., a node of
typePositionInterpolator.

DEF PI PositionInterpolator { ... }

Depending on the value received as input event
set_fraction this node computes a position in
3D space as output eventvalue_changed. This
output event can be sent as aset_translation
input event to a node of typeTransform. What
output event is sent to which input event is defined
with the ROUTE primitive. It statically wires one-
way communication channels between nodes. Note,
that the namesCLOCK, PI andCYL have been bound
to instances usingDEF above. At run-time the scene
graph can be changed by sending messages along the
routes.

ROUTE CLOCK.fraction_changed
TO PI.set_fraction

ROUTE PI.value_changed
TO CYL.set_translation

In our example, the objects defined as children of
the Transform node change their position in the
course of time. What we just described is the basic
mechanism to program animations in VRML.

3 Essential Features of Object-
Oriented Programming Lan-
guages

In VRML 2.0 we can use OOPLs within aScript
node. The goal of our research is to lift object-
orientiation into VRML. To achieve this we first have
to identify key ideas of OOPLs. The concepts of
OOPLs we will deal with in this paper are:

Objects: Objects encapsulate state and behavior.
The state is contained in variables and the be-
havior in methods. To invoke a method or to
read or change the value of a variable a mes-
sage is sent to an object. Computation in an
object-oriented system consists in sending mes-
sages between objects.

Classes: Classes are sometimes called object-
factories. A class is a scheme, which describes
the objects of this class and is used to create
such objects. Objects are also called instances
of a class. And the process of creating such an
object is called instantiation.

Inheritance: A new class is defined by specifying
one (single inheritance) or more (multiple inher-
itance) superclasses. The new class inherits all
variables and methods from its superclasses. In
addition it can add new variables and methods
or even override the definition of an inherited
variable or method.

Dynamic Binding: Assume, we have a variable
obj, and it can be inferred statically,i.e., at
compile-time, that the object contained inobj
is a member of classK. Now the methodm of
obj is called. Assume, we run the program and
obj is bound to an object of classS andS is
a subclass ofK. If static binding is used, then
the code of methodm of K is executed. Other-
wise, if we use dynamic binding, then the code
of methodm of S is executed. Thus dynamic
binding makes sure, that at run-time the most
specific method is used.

Polymorphism: In a polymorphic language argu-
ments of operators and functions can have
more than one type. Cardelli and Weg-
ner [Cardelli and Wegner,1985] distinguish co-
ercion, overloading, inclusion and parametric
polymorphism. Due to inheritance, inclusion
polymorphism is common to object-oriented
languages: If an argument of a function is re-
quired to be an object of classK, then the func-
tion also accepts objects of every subclass ofK
as the value of this argument.

4 How Object-Oriented is VRML ?

In [Matsudaet al.,1996] Matsuda, Honda and Lea
point out, that objects in VRML have properties,
state variables and behaviors. Using standard termi-
nology of the object-oriented programming commu-
nity, this can only be considered object-based. The
extension suggested by Park [Park,1997] is to replace
ROUTEs and Scripts by Eventhandlers. He calls
the resulting language OO-VRML. But his exten-
sion does not increase object-orientation. The work
of Curtis [Beeson,1997] shows that there is a need
for object hierarchies or even better class hierarchies
when it comes to implementing simulations involv-
ing behaviors in VRML. He tries to use VRML 2.0
and Java to this end, but because of the lack of inher-
itance in VRML his implementation becomes com-
plicated.
In our view the concepts present in VRML 2.0 corre-
spond roughly to those of OOPLS as follows:

� Prototypes are classes without inheritance. In-
stantiation is done by creating a copy of a pro-
totypical instance.

� Nodes of the scene graph are objects.

� Events andScript nodes, which process
events, are methods.

� Fields are variables.

But VRML lacks inheritance, the essential feature of
object-orientation. Furthermore in VRML there is no
elaborate type system, no dynamic binding and no
inclusion polymorphism.

5 VRML++

VRML++ provides all language constructs of VRML
2.0 but in addition it provides constructs to define
classes, express type restrictions and specify dy-
namic routing. In the following sections we explain
these extensions of VRML++.

5.1 Inheritance

If we define a new classB to be a subclass of another
classA, then it has all the events and fields ofA. But
B can change some of these events or fields or add

new ones. We say,B inherits fromA. The problem
is, that if we program this in VRML 2.0 using proto-
types, we also have to list all fields and events which
remain unchanged (see [Beeson,1997]). This makes
the specifications hard to read and maintain. To solve
this problem, we extend the syntax of VRML 2.0 and
use a preprocessor, which converts the extended syn-
tax into standard VRML 2.0 syntax.

5.2 Classes

The following example shows how we use classes
in VRML++. Assume we have a prototypeRobot
which provides the input eventswalk and jump.
Now we want to define a new prototypeMyRobot
which only differs fromRobot in that it provides a
different implementation of the eventwalk.

CLASS Robot [eventIn SFTime walk
eventIn SFTime jump]

{ ...
Script
{ field SFNode self USE SELF
eventIn SFTime walker IS walk
url "vrmlscript:

function walker(value)
...."

}

Script
{ field SFNode self USE SELF
eventIn SFTime jumper IS jump
url "vrmlscript:

function jumper(value)
...."

}
}

CLASS MyRobot [eventIn SFTime walk]
EXTENDS Robot

{
Script
{ eventIn SFTime runner IS walk
url "vrmlscript:

function runner(value)
...."

}
}

Note, that thejump event, which was not changed is
passed on toRobot.
In a class definitionSELF denotes the instance of
the class, when it is instantiated. More precisely:
if the class inherits only fromSFNode, thenSELF
denotes the first node in the class definition. Other-
wise, it denotes an instance of the first superclass. A
class can inherit from other classes, from other pro-
totypes or from standard VRML nodes likeSphere
or Transform. The top class of the inheritance hi-
erarchy is alwaysSFNode.

5.3 Multiple Inheritance

In VRML++ it is also possible for a class to have sev-
eral superclasses. In this case every field and event is
only inherited from the first class in the list of su-
perclasses which supports it. In other words the val-
ues of fields and events are only propagated to the
first superclass providing it. Assume we defined a
classZoomer which has the twoSFTime events
closer andfarther. The first event moves the
current viewpoint closer to the object and the second
farther from the object. Now we can add this zoom-
ing behavior to our robot:

CLASS Zoomer
[eventIn SFTime closer

eventIn SFTime farther]
{ Script

{ field SFNode self USE SELF
eventIn SFTime closer IS closer
url "vrmlscript:

function closer(value)
...."

}

Script
{ field SFNode self USE SELF

eventIn SFTime closer IS closer
url "vrmlscript:

function closer(value)
...."

}
}

CLASS Zobot []
EXTENDS Robot, Zoomer { }

5.4 Improved Type System and Inclusion
Polymorphism

The lack of a powerful type system in VRML 2.0 can
lead to many errors at run-time. Usually these errors
are reported when a node is instantiatedwhich tries to
add a route to an event not supported by a node. The
situation becomes worse when we create new nodes
at run-time or allow dynamic routing (see below).
To make sure at compile-time, that a node passed to
another node has a certain event or field, we add user
defined types to VRML. As a result we make inclu-
sion polymorphism and dynamic binding type-safe.

CLASS MoveAble
[eventIn SFTime move]

EXTENDS SFNode
{ ...
}

CLASS MyRobot
[eventIn SFTime walk

field MoveAble legs
...]

EXTENDS Robot
{ ...
ROUTE walk TO legs.move

}

In this example we require, thatlegs is of
type MoveAble and not just of typeSFNode
as in VRML. Since by definition all instances of
MoveAble have an eventmove there can not occur
a run-time error like:

”Error: Cannot route to a node which has
noEventIn move !”

5.5 Dynamic Routing and Dynamic Binding

In an animated, interactive virtual world routes can
become obsolete and new routes have to be estab-
lished depending on the user's interaction. What we
would like to do, is to get a node at instantiation- (as
a value of a field) or run-time (as a value of an event
or exposedField) and invoke one of its methods. In
VRML 2.0 we can define nodes in a prototype and
create new routes between these nodes when instan-
tiating the prototype.

PROTO Example []
{
DEF EX1 node{}
DEF EX2 node{}
ROUTE EX1.out TO EX2.in

}

The following two examples show the dynamic rout-
ing features of VRML++. Here the nodes which the
prototype creates a route between are not known un-
til an instance of the prototype is created and the
nodes are passed as arguments to the prototype. In
Example2 these arguments can be lists (MFNode)
of nodes and a route is created from each element of
(node1) to each element of (node2).

PROTO Example1
[field SFNode node1 ...

field SFNode node2 ...]
{ ...
ROUTE node1.out TO node2.in

}

PROTO Example2
[field MFNode node1 ...

field MFNode node2 ...]
{ ...
ROUTE node1.out TO node2.in

}

Such dynamic routing can be implemented by using
a Script node and the functionaddRoute() of
the browser script interface (see 4.7.10 in the specifi-
cation of VRML 2.0 [VAG,1996]).
With dynamic routing we get dynamic binding, i.e.,
what method (Script implementing an eventIn) is ac-
tually called depends on the type at run-time. For
example, consider the classesRobot andMyRobot
defined above. If we define a classWalkRobot as
follows and instantiate it, it is not known until run-
time whether the functionwalker or runner is
invoked to process the eventInwalk:

CLASS WalkRobot
[field TimeSensor trigger NULL
field Robot robot NULL]

EXTENDS SFNode
{ ROUTE trigger.time TO robot.walk
}

If the value ofrobot is an instance of classRobot
then walker is called, if it is an instance of
MyRobot thenjumper is called. The type system
of VRML++ makes dynamic binding safer by catch-
ing potential run-time error at compile-time.
By using the keywordUNROUTE instead ofROUTE
routes can also be dynamically deleted. As an ex-
ample an object can be statically routed to a touch
sensor. If the user clicks at it, the object is dynam-
ically routed to some other node and by some other
event, e.g. when clicking at another sensor node, this
route is deleted again.

5.6 Connection Classes

Using dynamic routing we can define connection
classes. A connection class abstracts a routing struc-
ture, i.e., a connection class is a generic set of routes
which can be instantiated.
For example, given a TimeSensor as an argument the
classFanOut defined below propagates the event
fraction_changed to a set of other nodes, e.g.
Interpolators:

CLASS FanOut
[field TimeSensor trigger NULL
field MFNode targets []]

EXTENDS SFNode
{ ROUTE trigger.fraction_changed

TO targets.set_fraction
}

DEF O1
OrientationInterpolator { ... }

DEF O2
OrientationInterpolator { ... }

DEF TS TimeSensor{ ... }

FanOut { trigger USE TS
targets [USE O1 USE O2]

}

Another typical connection class isFilter which
routes different source nodes like sensors to a filter,
e.g. an Interpolator, and routes the result of this filter
to several target nodes.

CLASS Filter
[field MFNode sources []

field OrientationInterpolator
filter NULL

field MFNode targets []]
EXTENDS SFNode
{ ROUTE source.fraction_changed

TO filter.set_fraction
ROUTE filter.value_changed

TO targets.set_rotation
}

The following example shows that one can use a con-
nection class (here:Mover) to add an interface to
another class. We first define a moving ball similar
to the way it would be defined in VRML 2.0:

#VRML++ draft utf8

CLASS MoveBall
[field TimeSensor from NULL

field PositionInterpolator
to NULL]

EXTENDS SFNode
{ DEF BALL

Transform {
children
Shape {
geometry Sphere { } } }

ROUTE from.fraction_changed
TO to.set_fraction

ROUTE to.value_changed
TO BALL.set_translation

}

DEF PI PositionInterpolator
{ key [0, 0.5, 1]

keyValue [-1 0 0,
1 0 0,
-1 0 0]

}

DEF TS TimeSensor { startTime 1
stopTime 0
loop TRUE }

MoveBall { timer USE TS
interpol USE PI }

Now we can divide the object moved and the under-
lying routing structure. HereSELF is a special node

name denoting the current instance of this class:

#VRML++ draft utf8

CLASS Ball [] EXTENDS SFNode
{ Transform {

children
Shape { geometry Sphere {}}}

}

CLASS MoveBall
[field TimeSensor timer NULL

field PositionInterpolator
interpol NULL]

EXTENDS Ball
{

ROUTE timer.fraction_changed
TO interpol.set_fraction

ROUTE interpol.value_changed
TO SELF.set_translation

}

But we can even go a step further and abstract the
underlying routing structure, which can be reused to
define other moving objects:

#VRML++ draft utf8

CLASS Ball [] EXTENDS SFNode
{ Transform {

children
Shape { geometry Sphere {}}}

}

CLASS Mover
[field TimeSensor timer NULL

field PositionInterpolator
interpol NULL

]
EXTENDS SFNode
{

ROUTE timer.fraction_changed
TO interpol.set_fraction

ROUTE interpol.value_changed
TO SELF.set_translation

}

CLASS MoveBall []
EXTENDS Ball, Mover { }

5.7 Abstract Classes

As a simple example of how inheritance would make
important concepts more explicit in VRML, con-
sider that all grouping nodes likeTransform, LOD
andGroup could inherit from an abstract class like
GroupingNode. By using such an abstract class to
provide type information for events and fields, con-
straints which are currently verbally expressed in the
VRML 2.0 specification can be made explicit and
enforced by the type system, e.g. that the value
of the fieldappearance must be a node of type
Appearance. Instead of

PROTO Shape
[exposedField

SFNode appearance NULL
...

] { }

we write in VRML++:

CLASS Shape
[exposedField

Appearance appearance NULL
...

] { }

6 Implementation

We have implemented a preprocessor which trans-
lates VRML++ files into VRML 2.0 files. By us-
ing such a preprocessor VRML++ becomes very
portable and can be used with every VRML 2.0
browser. Currently these browsers have to support
JavaScript or VRMLScript.
The preprocessor is able to translate class defini-
tions with multiple superclasses and dynamic rout-
ing based on SFNode/MFNode fields and events. It
also performs static type checking on the basis of the
improved type system.
You can download the source code and executables
for Sparc stations (Sun OS) and PCs (DOS) of the
current version of our preprocessor from

http://www.cs.uni-sb.de/

~diehl/vrml++/content.html

The VRML 2.0 code generated by the preprocessor
was tested with the WorldView, CosmoPlayer and
Live3D browsers. The preprocessor was written in
C++ using GNUs g++, the standard template library,
bison and flex. So it should be fairly portable. For
dynamic routing we useScript nodes with func-
tions in VRMLScript or JavaScript code. As we only
use the browser interface, we could generate Java
source code as well.

7 Future Work

To prove the claims and design goals of VRML++
in practice we will have to write object and behav-
ior libraries and combine these with authoring tools.
Another interesting project would be to integrate
VRML++ into an implementation of a shared vir-
tual world to see to what extent it can help to reduce
the network traffic. Currently we investigate how
VRML++ can be used to program animations such
that parts of an animation can be reused. Encouraged
by the positive feedback after releasing VRML++ we
have initiated a working group officially recognized
by the VRML Consortium. The goal of the group is
to develop object-oriented extensions for VRML 2.0
or a future standard, see

http://www.cs.uni-sb.de/~diehl/ooevrml/

8 Conclusion

VRML has moved from a pure specification lan-
guage of a static scene graph to a specification lan-
guage for objects, behaviors and animations. The
need for better ways to structure these specifications
has already been noted by other authors. We consider
this paper as a proposal in which direction VRML
should evolve. We are convinced that VRML++
provides the right extensions for VRML to become
object-oriented and thus benefit from object-oriented
methodologies developed in the programming lan-
guage and software-engineering communities.

References

[Beeson,1997] Curtis A. Beeson. An Object Ori-
ented Approach to VRML Development. InPro-
ceedings of VRML'97, 1997.

[Cardelli and Wegner,1985] L. Cardelli and P. Weg-
ner. On Understanding Types, Data Abstraction
and Polymorphism. ACM Computing Surveys,
17(4), 1985.

[Cox,1990] Brad J. Cox. Planning the Software
Industrial Revolution: The Impact of Object-
Oriented Technologies.IEEE Software, 1990.

[Hartman and Wernecke,1996] Jed Hartman and
Josie Wernecke. The VRML 2.0 Handbook -
Building Moving Worlds on the Web. Addison-
Wesley, 1996.

[Matsudaet al.,1996] K. Matsuda, Y. Honda, and
R. Lea. Sony's approach to behavior and scripting
aspects of VRML: an Object-Oriented perspec-
tive. Technical report, http://www.csl.cony.co.jp/
project/vs/proposal/behascri.html, 1996.

[Park,1997] Sungwoo Park. Object-Oriented
VRML for Multi-user Environments. InProceed-
ings of VRML'97, 1997.

[VAG,1996] VAG (VRML Architecture
Group). The Virtual Reality Modeling Lan-
guage Specification – Version 2.0, 1996.
http://vag.vrml.org/VRML2.0/FINAL/.

