
DependencyViewer – A Tool for Visualizing Package Design Quality Metrics

Michael Wilhelm
Computer Science Department

Saarland University
66041 Saarbrücken, Germany

Stephan Diehl
Computer Science Department
Catholic University Eichstätt
85072 Eichstätt, Germany

diehl@acm.org

Abstract

DependencyViewer helps to control package depen-
dencies to avoid degeneration of package designs. To this
end it computes design quality metrics including stabil-
ity and abstractness for each Java package and draws the
package graph in a way, such that violations of various de-
sign principles are immediately visible. In addition Depen-
dencyViewer provides several features to inspect the pack-
ages at various levels of details including at the level of
source code.

1 Introduction

Existing tools that compute package level metrics either
do not provide visualizations at all or use standard graph
layout for the package graph and simply show the metrics as
tables or annotations. In contrast DependencyViewer uses
an extended hierarchical layout algorithm that uses the met-
rics, here abstractness or stability, to determine the graph
layers. In the resulting layout backedges are highlighted
(colored red1) as they indicate violations of design princi-
ples.

Packages can be expanded to show more detail on de-
mand, i.e., the classes with their methods and attributes con-
tained in each package. Both expansion of packages as well
as the navigationwithin a package preserves the mental map
of the graph, i.e., the overall layout of the graph. Inner edges
are connected to ports at the border of the package, when the
user selects other classes in a package or browses through
the method list, the inner edges are updated while the outer
graph remains unchanged.

1All screendumps in this paper have been converted into grey scale
images. In these images the darker edges are the backedges. Color versions
can be found at http://www.eposoft.org/depview/figures

2 Design Principles

Robert Martin suggested various principles and met-
rics [4] for package designs. DependencyViewer provides
analyses and visualizations that help in particular to enforce
the following of these principles2:

Dependency Inversion Principle: Depend upon abstrac-
tions. Do not depend upon concretions.

Acyclic Dependencies Principle: The dependencies be-
tween packages must not form cycles.

Stable Dependencies Principle: Depend in the direction
of increasing stability.

Stable Abstraction Principle: Stable packages should be
abstract packages.

3 Metrics

The above principles should not only guide the design of
a system, but also be enforced during evolution of the sys-
tem. To this end DependencyViewer computes package
design quality metrics from the compiled source code by
traversing Java class file directories (or JAR files), includ-
ing:

Number of Classes and Interfaces The number of con-
crete Cc and abstract classes Ac (and interfaces) in a
package is an indicator of its extensibility.

Afferent Couplings (Ca): The number of other packages
that depend on classes within the package is an indica-
tor of the packages responsibility.

Efferent Couplings (Ce): The number of other packages
that the classes in the package depend upon is an indi-
cator of the independence of the package.

2For a detailed and illustrated discussion of each of these principles
see [3]



Abstractness (A ∈ [0 . . . 1]): The ratio of the number of
abstract classes (and interfaces) to the total number of
classes. A = 0 indicates a completely concrete pack-
age and A = 1 a completely abstract package.

Instability (In ∈ [0 . . . 1]): The ratio of efferent coupling
to total coupling In = Ce

Ce+Ca
. In = 0 indicates a

completely stable package and In = 1 a completely
instable package.

Distance from the Main Sequence (Dn ∈ [0 . . . 1]): The
perpendicular distance of a package from the idealized
line A + In = 1 indicates the packages balance be-
tween abstractness and stability. Ideal packages are ei-
ther completely abstract and stable or completely con-
crete and instable.

In Figure 1 the values of the above metrics
are shown as colored columns3 for the package
eclipse.swt.events: It has 26 abstract classes
or interfaces and 16 concrete classes, so its abstractness
is A = 0.6. Furthermore it has about as many afferent as
efferent couplings, such that its instability is In = 0.4. In
total the class is quite balanced (Dn = 0.0).

Figure 2 summarizes the metrics computed for the pack-
ages of SWT. Figure 3 and Figure 4 show the package graph
of SWT with respect to abstractness respectively instabil-
ity. At first glance we see that there are many red backward
edges when using abstractness and only a few when using
stability to layer the package graph.

4 Implementation

DependencyViewer analyzes byte code stored in class
files or JAR archives. Metrics are either computed by the
internal analyzer or external ones and stored in the reposi-
tory. The contents of the repository can be stored as XML
reports and even reloaded from these. The package graph
is built from the information of the repository and rendered
by the client which allows the user to interactively explore
the graph.

Our analyzer uses the BCEL API [2] to parse class files
and produce an internal object-oriented representation of
the symbolic information contained in the class files. Most
metrics can be easily computed by traversing this internal
representation.

Access to external analysis tools is done throughwrapper
classes that we call plugins. DependencyViewer has cur-
rently plugins for JDepend [1] and Dependency Finder [6].

Many graph drawing algorithms for hierarchical graphs
follow the Sugiyama approach [5]. It works in four phases:

3The value of the metrics are visually encoded both by the color (using
a linear optimal color scale) as well as the height of the columns.

assigning the nodes to layers, reducing edge crossings, com-
puting absolute coordinates for the nodes and finally edge
routing. We adapted in particular the first phase, such that it
uses metrics instead of the connectivity of a graph to form
layers. As some layers would become very large and to bet-
ter fit the graph on the screen, we then compute sub-layers
for each layer by a depth-first traversal of all nodes in the
layer.

Packages and classes are shown as boxes similar to the
UML notation for packages and classes. When a package
is expanded, one of its classes is shown within the box (and
others can be selected via a pull down menu or the scroll
bar) and the dependencies of this particular classes are ex-
plicitly shown4. Thus additional edges have to be drawn. As
the expansion does not change the order on the layers, the
routing of the existing edges does only slightly change to
accommodate the new edges. By using ports at the borders
of the expanded packages it is possible to browse through
the classes of the package without having to reroute the ex-
ternal edges. Only the inner edges (within the box of a pack-
age) which connect the ports to the attributes and methods
of a class have to be redrawn.

DependencyViewer is freely available for download
at http://www.eposoft.org/depview5.

References

[1] M. Clark. JDepend Homepage. http://www.
clarkware.com/software/JDepend.html.

[2] M. Dahm. Byte Code Engineering. http://bcel.
sourceforge.net/downloads/paper.pdf.

[3] R. C. Martin. Design Principles and Design Pat-
terns. http://www.objectmentor.com/
resources/articles/Principles_and_
Patterns.PDF, 2000.

[4] R. C. Martin. The Single Responsibility Principle.
In The Principles, Patterns, and Practices of Agile
Software Development, pages 149–154. Prentice Hall,
2002.

[5] K. Sugiyama, S. Tagawa, and M. Toda. Methods for
visual understanding of hierarchical system structures.
IEE Transactions on Systems, Men, and Cybernetics,
11(2):109–125, February 1981.

[6] J. Tessier. Dependency Finder Homepage. http://
depfind.sourceforge.net.

4By pressing the SHIFT key and clicking at a method or attribute only
the dependencies for that method or attribute are shown.

5A compressed XML report for SWT can also be downloaded from this
site. The XML report allows to inspect the package design of SWT without
having to download the Eclipse source code to compute the metrics.

2



3



4


	cp: ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 
	published: in Proceedings of the 3rd IEEE International Workshop on Visualizing Software for Program Understanding and Analysis, 2005.


