
Visually Exploring
Multi-Dimensional Code Couplings

Fabian Beck, Radoslav Petkov, Stephan Diehl
University of Trier

Germany
Email: {beckf,diehl}@uni-trier.de

Abstract—Dependencies and coupling relationships between
code entities can be manifold. They form a graph structure with
several different types of edges. Visualizing these graphs presents
two challenges: the often large size of the graphs and the readable
representation of the different edge types. In this paper we
present a new node-link graph visualization technique addressing
these challenges. Different types of edges are represented in
multiple, small diagrams. These diagrams are placed side-by-
side like the pictures of a comic strip. Among other things, edge
bundling is applied to improve the scalability of the visualization.
Elaborate interaction techniques with respect to focusing and
merging data aim at providing help for comparing different edge
types. A case study demonstrates how the visualization can be
used to analyze a mid-size software project in practice.

I. INTRODUCTION

The building blocks of software systems—variables, meth-
ods, classes, components, etc.—depend on each other, com-
municate with each other, or share certain characteristics. In
particular, these code entities are directly coupled by static
structures like method calls, inheritance, aggregation, but
also indirectly, for instance, by shared code clones, similar
semantic, shared code owners, or frequent co-changes. These
coupling concepts are leveraged across various applications in
software engineering, however, only usually considering one
or a combination of two of these concepts. A first step towards
understanding the yet mostly unknown relationships between
the multi-dimensional code coupling concepts is to visually
explore these data sets. Moreover, visualization can be a
vehicle to exploit the coupling information in the development
and maintenance process of software systems. In this paper,
we present a new graph visualization technique tailored for the
comparison of different coupling concepts in software projects.
Figure 1 provides a first preview on this visualization showing
three types of structural code couplings that connect the 78
classes and interfaces of the JFtp project.

A. Visualization Problem

The problem of visualizing multi-dimensional code cou-
plings can be considered as a complex graph visualization
problem: Code couplings describe a graph structure on the
code entities of a software system. Two entities could be
related with respect to different types of coupling. Further-
more, there may exist couplings of different strengths. Code
entities usually are not an unordered set but are structured
hierarchically. For instance, in a typical object oriented system,

Fig. 1. A visualization of three types of structural code coupling in the JFtp
project.

methods are grouped into classes, which are part of packages,
which are themselves hierarchically organized. The hierarchy
may help to structure the entities in the visualization.

Formally, the problem is to visualize a weighted compound
graph with multiple types of edges G = (V, T, E) where V
is the set of vertices of the graph. Furthermore, T = (V̂ , Ê)
is the hierarchy of the compound graph where V̂ is the set
of hierarchy vertices connected by inclusion edges Ê ⊂ V̂ ×
V̂ . The graph vertices V form the leafs of the hierarchy T
(hence, V ⊂ V̂ ). Finally, E is a family of sets over V ×
V × R+—different sets of weighted edges that describe the
different coupling concepts. Non-weighted edge types can be
modeled as having an edge weight of 1.

B. Requirements

Besides the obvious requirement of visualizing the data of
the introduced graph structure, analyzing software projects
poses additional challenges. One problem is the amount of
data we usually have to deal with when analyzing non-trivial
software systems. Our goal is to visualize at least mid-size
software projects on the level of classes and interfaces, which
we believe to be an appropriate granularity to explore the
abstract structure of software projects.

Presenting the coupling data in a readable way is not equiv-
alent to being able to compare different coupling concepts.

beckf
Notiz
Accepted festgelegt von beckf

beckf
Schreibmaschinentext

beckf
Schreibmaschinentext

beckf
Schreibmaschinentext

beckf
Schreibmaschinentext
VISSOFT 2011



Hence, to foster this comparison task is an additional require-
ment for the visualization. A comparison can be supported by
the layout of the visualization, but also interactions could play
an important role.

In short, the visualization should be able (data structure:) to
visualize a compound graph including different types of edges,
(scalability:) to present the complete coupling structure of
mid-size software projects on class level for a set of coupling
types (up to 10 types), and (task:) to facilitate the comparison
of the coupling concepts. Hence, the goal is to develop an
expert visualization that meets these requirements and can
be used by researchers to analyze the relationship between
different code coupling concepts as well as by software
engineers to understand, debug, and refactor their software
systems.

The visualization we came up with is based on an a
linearized node-link layout of graphs. The key contribution
of this visualization technique is the scalable comparison of
different edge types. This is implemented by space-efficient
but still scalable representations of the single edge types,
which are juxtaposed in a static image.

The remainder of this paper is structured as follows: We
first discuss how far existing approaches already solve the in-
troduced visualization problem (Section II). Then, we propose
a new visualization technique specifically designed to fulfill
the imposed requirements (Section III). Advanced interactions
enable the user to visually compare the different edge types
(Section IV). A case study shows how the visualization
approach can be leveraged in practice (Section V). Finally,
we conclude the paper (Section VI).

II. RELATED WORK

UML class diagrams [1] are the industry standard to visu-
alize code entities and their dependencies. In such diagrams,
mainly three types of edges are distinguished: inheritance,
aggregation/composition, and association. The edges are rep-
resented by visual links between the classes and interfaces of
the modeled system; edge types are encoded in different types
of arrow heads. Although this representation is intuitive, it is
not applicable to visualize larger parts of a system because
it does not scale well: The nodes of the diagram consume
much space and only a selection of code dependencies can be
visualized as links.

Software visualization research has proposed and discussed
many other approaches to visualize code coupling. A selection
is presented in a survey on software architecture visualization
by Ghanam and Carpendale [2]. But since coupling among
code entities can be considered as a graph structure, gen-
eral graph visualization techniques can be applied as well,
especially those that are optimized to display large graphs.
A recent survey by von Landesberger et al. [3] provides an
overview of the state-of-the-art in this domain including some
node-link based approaches on comparing graphs. Although
much has been achieved in visualizing code coupling and
large graphs, we are not aware of a scalable approach that
directly supports the comparison of different types of edges.

Nevertheless, there exist some approaches that partly meet our
requirements, which we introduce in the following.

Edge Bundling has been applied to improve the scalability
of graph-based software visualizations [4], [5]. These ap-
proaches use a hierarchy on the nodes to control the bundling
of edges and thereby profit from the inherently hierarchical
structure of software projects. A problem, however, is that
the technique of bundling conflicts with the representation
of multiple edge types—bundling together edges of different
types would seriously obfuscate the type; creating different
bundles for different types in the same diagram would largely
outweigh the positive effect of bundling.

Another way of integrating different types of edges or
showing the evolution of edges is to stack several two-
dimensional graph layouts on top of each other, which results
in a three-dimensional layout. Equivalency between nodes in
the different layers can be expressed by connecting them
through additional links [6] or by aligning them vertically [7].
Here, occlusion affects readability in larger graphs.

Pretorious and Wijk [8] present an elaborate approach fo-
cusing on graphs with different types of edges. They represent
each type as an additional node in the middle of the diagram.
Then, edges of a particular type are routed through the corre-
sponding edge type node. They show that the visualization can
be efficiently used to understand a graph structure and retrieve
information by interactive queries, even for large graphs and
a considerable set of edge types. But it seems that most of
the overview a graph visualization may provide is lost in the
visual clutter of the static image.

Visualizing the graph as an adjacency matrix provides good
scalability [9]. Recently, two approaches were proposed to
represent different edge types in such matrices: Beck and
Diehl [10] introduced an approach to compare two different
types of coupling relations using different colors for the types.
Showing more than two different edge types is possible,
but would not be very readable in this approach. Moreover,
Zeckzer [11] splits each cell of the matrix into n pieces, each
representing a different edge type. This approach, however,
decreases the scalability of the matrix by factor n.

A dynamic graph represents a graph that is changing over
time and is usually modeled as a sequence of static graphs.
The comparison of types of edges is related to visualizing
dynamic graphs because a static stand-alone graph can be
created for each edge type and concatenated into a sequence of
graphs. But using animation, which is the standard approach
in dynamic graph drawing, is not applicable in our application
because a precondition for a readable animation is that only
few things change between to subsequent states. Nevertheless,
there exist some approaches that depict the dynamic graph
in a single image without using animation [12], [13]. Better
than animation-bases techniques, these approaches suit our
application scenario of comparing different types of coupling,
but they do not scale well [14].

Visually similar to our visualization approach are par-
allel coordinates plots, in particular when applying edge-
bundling [15]. But they target a totally different application



as these diagrams represent multi-dimensional data instead
of relational data. Another visually related, but not directly
competing visualization technique is Code Flows [16]. Here,
bundled flows between linearly arranged icicle plots depict
the flow of code in source code documents over subsequent
versions.

Concluding this review of related work, we see no approach
that completely fulfills the imposed requirements. So far,
node-link diagrams do not scale well or do not appropriately
support the comparison of different types of edges. Matrix
diagrams are more scalable but cannot distinguish more than
two edge types without losing parts of this scalability. Finally,
dynamic graph drawing approaches are not able to handle large
difference in the structure of the edges or are not scalable
enough.

III. VISUALIZATION TECHNIQUE

In this section, we introduce a visualization technique based
on node-link diagrams that is designed to meet our require-
ments (Figure 1). This visualization approach combines known
techniques and some novel ideas to enable the interactive
comparison of different types of edges in a scalable way. The
basic layout of the approach is based on the TimeArcTrees
visualization technique [13], a dynamic graph visualization
that represents the dynamic as a sequence of diagrams shown
in a single static image. A prototype of our new approach was
implemented in Java using Processing.

A. Graph Visualization

Node-link diagrams are the straightforward way to visualize
a graph structure. They consist of nodes—often circles or
rectangles—representing objects and links—straight or curved
lines—representing the relations between the objects. In our
case, we want to compare different edge types (coupling
concepts) based on the same set of nodes. The simple idea of
overlaying different types on the same drawing area, however,
is strongly limited with respect to the number of types due to
overlap and interfering colors. Hence, we decided to juxtapose
different diagrams, each representing a different edge type.

Juxtaposition, also known as small multiples, is an alterna-
tive to overlaying when comparing visual objects. As the term
small multiples already indicates, a downside of this approach
is the limited space assigned to each single diagram. Hence,
the challenge is to display a potentially large graph in a small
area of screen space. We tackle this problem by applying two
tricks, one concerning the node layout and one concerning the
edge routing.

1) Node Layout: Arranging a set of diagrams side by side
on the screen leaves narrow stripes of screen space for each
diagram. In a traditional node-link diagram as depicted in
Figure 2 (a), matching the representation of the same node in
different diagrams becomes quickly difficult for larger graphs
because the user has to memorize the horizontal and the
vertical position of the node. It would be much easier to just
follow a horizontal line to get from one representation to the
other. This idea suggests to linearly arrange the nodes onto an

A 

B 

C 

E 

D 

A B 

C 

E D 

A 

B 

C 

E 

D 

(a) (b) (c) 

Fig. 2. A small sample graph in three different layouts: (a) a usual node-link
diagram, (b) linearized nodes, (c) linearized nodes with split ports.

imaginary vertical line (Figure 2 (b)). A similar technique was
already used in the TimeArcTrees approach [13]. But drawing
links between the nodes results in massively overlapping
arcs, crossing in small angles, which is particularly hard to
read [17].

The key trick concerning the node layout is to introduce two
ports for each node, one assembling the incoming edges, and
one summarizing the outgoing edges. The two ports of a node
normally would be positioned onto the borderline of the circle
or rectangle representing the node. In contrast, our approach
moves them apart from each other on an imaginary horizontal
line as shown in Figure 2 (c). The result is that all edges
head from left to right, in other words, from the ports of the
outgoing edges on the left to the ports of the incoming edges
on the right. It is still possible to easily follow these edges.
The direction of an edge even becomes much clearer than in a
usual node-link diagram. Moreover, the approach as presented
so far is already quite scalable because each node only require
a few pixels of the height of the drawing area. A drawback of
this layout is that following paths in the graph becomes more
difficult—this task, however, plays only a limited role in our
application scenario.

2) Edge Routing: To further improve the scalability of the
graph visualization, we apply hierarchical edge bundling [4],
a technique to visually group edges into bundles according
to a hierarchical organization of the nodes. The hierarchy is
given, in our application example, by the hierarchical structure
of the software system, in case of Java systems, the package
structure. The resulting edge routing as shown in Figure 1
is similar to a work by Holten and van Wijk that compares
two hierarchies using bundled edges [18]. The main difference
to this approach is that, in our case, the two hierarchies are
identical but the graph connects arbitrary nodes. The bundling
approach simplifies the diagram and reduces visual clutter at
the cost of obfuscating the trajectory of single edges that are
summarized into bundles. This leads to a better overview on
the graph, still preserving the outliers. The obfuscated details
of an edge belonging to a larger bundle can be retrieved
interactively as we explain in Section IV.

To retrieve the density of edges in a bundle, alpha blending
makes the edges slightly transparent. The weight of an edge
is encoded in the thickness of the line that represents the



Fig. 3. Applying different interactions techniques to the example shown in
Figure 1.

edge, which grows logarithmically with the weight. When
comparing different code couplings, the visualization has to
deal with totally different scales of weights. To overcome this
problem, we normalize each edge type to a total weight of 1,
or in other words, we divide each original edge weight by the
total weight summed over all edges of the current type.

B. Hierarchy Visualization

The hierarchical structure of a software project not only
provides a criterion to bundle edges, but also helps to linearly
arrange the nodes onto the vertical lines. The hierarchy is
shown at the left side of the diagram (Figure 1) as a layered
icicle plot [19], a simple but scalable kind of hierarchy visual-
ization. Nodes have labels if enough screen space is available.
We continue the lines separating packages over the full width
of the visualization so that it is easier to relate a particular
node in one of the diagrams to the hierarchy. Furthermore,
the vertical, separating lines between the diagrams are used to
repeat the leaf level of the icicle plot.

IV. INTERACTIONS

The static diagram already allows comparing the different
edge types in a relatively scalable way, but only adding
interactions unleashes the full potential of the approach. Basic
interactions that enable the users to query details, to focus and
zoom the diagram are supplemented by advanced techniques
that help comparing the different edge types. Figure 3 provides
an impression on how the diverse interactive features may
influence the visualization.

A. Basic Interactions

We cannot display labels for the leaves of the hierarchy
because the height of their visual representation usually is only
a few pixels. Hence, a very simple but essential interaction is to
blend in labels for these entities when hovering the mouse over
their representation. In Figure 3, the class FtpConnection
is labeled on demand.

The users are able to focus one or more entities by clicking;
when clicking on an inner node of the hierarchy all contained
entities are focused. In the example provided in Figure 3,
some elements of the net package are focused. Those focused
nodes are highlighted in green and red in the icicle plot as
well as in the separator of the diagrams. Moreover, edges
that start or end at the focused entities also become part of
the focus. Here, coloring provides the information whether
the edge starts at a focused entity (green), ends at a focused
entity (red), or both (brownish green)—red-green color blind
users may choose a different color scheme. When entities are
focused, all non-focused edges are still visible but are drawn
in a lighter blue. To facilitate retrieving the non-highlighted
sources or targets of highlighted edges, small gray markers
identify these entities.

An interaction technique that largely improves the scala-
bility of the visualization technique is zooming. The zoom-
ing feature as implemented in our tool is similar to those
introduced by Table Lens [20]. It does not globally enlarge
the diagram but always preserves the context of the zoomed
area. Since multiple entities can be zoomed independently,
horizontally as well as vertically, the technique allows setting
multiple foci as demonstrated in Figure 3 where the event
and the net package as well as the aggregation diagram are
enlarged.

An interactive feature of particular interest when analyzing
source code is to connect the visualization to the code.
In our visualization, double-clicking on a class or interface
opens an editor with the respective source code. Activating
a package this way, the corresponding directory is opened in
the file manager. This enables, for instance, to check whether
particular edges exist or to browse through the content of a
package in detail.

B. Interactively Comparing Types of Edges

Beyond the introduced basic interaction techniques, which
improve the usability and scalability of the visualization tool,
more advanced interactions directly aim at the task of visually
comparing types of edges. In general, visual comparison
techniques can be classified in three categories [21]: First,
juxtaposition is based on placing the objects just next to each
other. Second, overlaying arranges the objects being compared
in different layers on top of each other. And third, fusion
creates a new object out of the compared ones. These three
techniques do not exclude each other, but can be combined
into a staged comparison mechanism as we demonstrate in
the following.

1) Juxtaposition: As discussed in Section III, the diagrams
representing the different edge types are placed side-by-side.
The node layout is globally consistent over the diagrams
so that these diagrams can be directly compared to each
other. Thus, comparisons based on juxtaposition are inherently
enabled by the visualization. To further improve on this tech-
nique, the edge diagrams can be moved so that the diagrams
of interest become neighbors.



2) Overlay by Focusing: We extended the functionality to
focus and highlight sets of entities to implement a weak form
of overlay comparison. The idea is to focus a set of entities by
certain characteristics of one type of edges. Since the focus is
globally applied, this is a kind of overlay of the local focusing
criterion onto all other types.

We propose different algorithms to add the focus to or
remove the focus from the set of currently focused entities with
respect to the edges of a selected type: A basic characteristic
is whether an entity has any incoming or outgoing edges of
a particular type. For instance, all classes that are inherited
by some other class could be focused this way. Moreover, the
reachable entities with respect to the outgoing or incoming
edges of the type starting from the currently focused entities
can be added to the focus. Using this strategy, the user may
focus a connected component in the graph. This is demon-
strated in Figure 3 with respect to inheritance starting from
the FtpConnection class. Complementing the advanced
focusing features, reverting and resetting the set of focused
entities is possible.

3) Merging: Comparing different types of edges by merg-
ing means to generate a new type of edges that aggregates
the information. Since each edge type is represented as a set,
common set operations can be applied.

• Union: All information contained in two or more types of
edges is summarized into one type. The user may choose
to sum up or take the maximum weight as the edge weight
for the united type.

• Intersection: Intersecting two or more types leaves over
those edges that concurrently belong to all merged types.
Here, the edge weight can be set to the sum, the maxi-
mum, or the original weight of one of the merged types.

• Difference: The difference of two types deletes the edges
belonging two both types from one of the types. Hence,
this merging operation is asymmetric and can be applied
in two directions. The aggregated edge weights are auto-
matically set to the weight of first type.

Applying the merging operation, a new diagram is generated
by default. Though aggregated, it can be still retrieved which
edges are of which type by looking at the original diagrams.
If one of the former types should be replaced, the user is able
to delete the respective graph after merging. In Figure 3, an
intersection of the aggregation and usage edges was applied,
which added the rightmost diagram.

The three comparison approaches—juxtaposition, overlay,
and fusion—can be considered as different stages of escalation
as they are ordered according to their invasiveness: While a
comparison based on juxtaposition is even possible without
changing the diagram, overlaying is implemented by high-
lighting some entities temporarily, and fusion means creating
persistent, new data structures. For instance, a common visual
pattern among two juxtaposed diagrams may raise an assump-
tion, which could be checked using the advanced focusing
mechanism and may finally be recorded applying a merge
operation.

V. CASE STUDY

The case study aims at showing how to apply the intro-
duced visualization technique in practice. Beyond providing
examples, we also try to identify typical activities a developer
or researcher may perform when analyzing the code couplings
of a software project.

A. Data Set

The software project that we take as an example is Check-
style, a popular software to check coding conventions of Java
source code. It is itself written in Java and released under
an open source license. Version 5.1, which is the version we
analyze, consists of 261 classes and interfaces grouped into
21 packages. Although our visualization technique is able to
visualize larger data sets, we chose this project of moderate
size for the paper because reading the visualization is more
difficult in a printed, static version than in the interactive
version on the screen.

We extracted five different types of code couplings.
• Inheritance: This type models the inheritance or imple-

mentation relation between classes and interfaces. Each
edge of this type has weight 1.

• Aggregation: Aggregating a class or an interface means
that another class uses this entity in the declaration of a
field. The weight counts the number of fields using the
particular type.

• Usage: We agglomerate all other structural code cou-
plings except of inheritance and aggregation in this type
including method calls and usage as local variables or
method parameters. The weight counts the number of
methods using the particular class.

• Co-Change: If two classes or interfaces were changed
together in a transaction of the version archive they
were co-changed. The number of co-changes denotes the
weight of the edge.

• Code Clones: Code clones are identical or similar code
fragments that were probably created using copy-and-
paste. Two classes are coupled by clones if they share
a code clone. The weight is provided by the amount of
clone overlap, which is a value between 0 and 1.

The first three types are extracted from the bytecode using
the tool DependencyFinder, the co-change information is
mined by analyzing the transactions retrieved from the SVN
code repository, and the clone information is collected by
searching exact clones (type I clones) using the Java API
JCCD.

Figure 4 visualizes the described data set. Starting from the
default view, only two interactions were applied: The api
package was highlighted because of its central role in the
following analyses. Furthermore, inheritance and code clone
couplings were intersected for a detailed analysis.

B. Detecting Coupling Features

We provide examples of what features of the coupling
structure might be of interest for software developers and
researchers when analyzing code couplings.



Fig. 4. Five types of couplings plus one merged type of couplings for the Checkstyle project; the api package is focused.

1) Key Classes: Classes that are coupled to many other
classes form the key classes of a software system—depending
on the coupling concept we refer to, they may agglomerate
important features or changing them may also require chang-
ing many other files. Key classes can be identified by a high
out-degree or in-degree of edges. In the visualization, such a
high degree manifests in large fan-in or fan-out patterns of
edges.

In the example of the Checkstyle project (Figure 4), we
observe for inheritance coupling significant fan-in patterns, for
instance, for some classes of the api, indentation, and
naming packages. In the context of inheritance, such fan-
in patterns identify classes that are extended by many other
classes or interfaces implemented by many classes. In contrast,
fan-out patterns cannot be found for this type of edge because
classes are only allowed to extend one other class and usually
implement only a few interfaces if any.

Comparison: The visualization allows comparing visual
patterns such as a fan patterns across different edge types. For
instance, the diagrams for aggregation and usage show fan-
in patterns very similar to the ones found for inheritance. But
when comparing inheritance to code clones, we cannot retrieve
such a direct correlation directly: In the case of code clones,
too many fan patterns overlap to clearly discern the bundles.
But looking at the ports where the edges start or end, the user
is still able to judge by the thickness of the bundle whether
there might be a relevant fan pattern. Then, focusing the node
of interest clearly would reveal the fan. For instance, Figure 4
shows code clone fan-in patterns in red and fan-out patterns

in green for the focused api package. Our first impression
was that the red pattern might be congruent to the one in
the inheritance graph. We hence intersected the two types,
inheritance and code clones, which results in the diagram
attached as the last diagram of Figure 4, and found that both
types are not very congruent with respect to the api package.
Nevertheless, the last diagram also shows that there exists
one significant fan-in pattern (in blue) for both types in the
indentation package—a developer might want to check
whether all these clones are necessary within this inheritance
structure.

2) Coupling Outliers: Although simplifying the diagram,
edge bundling does not obfuscate outliers. Such an outlier
is an edge or a small set of edges that follows a certain
path through the diagram without being bundled with any
other edges. Outliers are in practice often unwanted, error-
inducing or at least notable couplings. In Figure 4 the single
inheritance edge from the api package to the grammars
package (highlighted in green) is an outstanding example: It
is even the only outgoing edge connecting the api package
to another package by inheritance.

Comparison: Now, it would be interesting to know whether
the api package is linked to other packages by aggregation
or usage, the two other forms of structural coupling. At first
glance it seems that there is a equivalent outlier connecting
the api package to the grammars package among the usage
couplings because there an edge is following a very similar
path. But focusing the api like done in Figure 4 exposes
that this coupling does not start at the api package because



otherwise it would be highlighted. Moreover, we see that
there exist no further couplings in the first three diagrams
that connect the api package to other packages—the detected
outlier of inheritance might indeed be a potential flaw in the
architecture of the system. An alternative way to retrieve this
information would have been to aggregate the first three types
of coupling and to analyze the package with respect to this
summarized information.

3) Loose Ends & Independent Components: Nodes that
have no incoming edges or outgoing edges represent the
loose ends of a coupling graph. These could be classes
that are independent of other classes (no outgoing structural
code couplings), entry points for the program (no incoming
structural code couplings), classes that were never changed
(co-change coupling), or classes not covered by any code
clones. Those loose ends that either have no incoming or
outgoing edges form the borders of independent components
in the graph structure, which might indicate, for example,
independent subsystems or independent parts of development.

Comparison: The highlighted api package might be a
loose end with respect to the structural couplings (inheritance,
aggregation, and usage) as it contains many nodes that have
no outgoing edges, at least not to other packages. But the
single outlier, which we already described, may indirectly
connect the api package to larger parts of the system. To
check this, we aggregated inheritance, aggregation, and usage
couplings into a single edge type (not documented in Figure 4).
By applying one of the assisted focusing features, we then
added all reachable entities following the outgoing edges to
the focus. The result was that only a single interface in
the grammars package was reachable. We thus localized
the potential problem and propose to consider moving this
interface from the grammars package to the api package.

4) Cohesiveness and Coupling of Packages: A good modu-
lar structure of a software system is said to follow the principle
of low coupling and high cohesion [22]. Applying this princi-
ple to a package structure, there would exist only few edges
between different packages (low coupling), but more edges
within a package (high cohesion). In our visualization, edges
within a package manifest through a simple horizontal bundle
of edges. All other edges, which usually are summarized to a
bundle on a higher level, connect different packages vertically
and thereby account to the coupling.

Taking the usage edges as an example in Figure 4, we
find such horizontal bundles expressing high cohesion values
mainly for the api and indentation package. Quite
outstanding, nearly all edges that cross package borders head
towards the api package, which seems to provide an interface
to an external library. Hence, with respect to usage, the systems
seems to be well organized.

Comparison: Also considering other types of edges, we
find that inheritance and aggregation edges show very similar
patterns with respect to cohesiveness and coupling. In contrast,
the co-change and code clone edges provide totally different
structures because, in general, more edges are included and
the graphs are symmetric. But despite the high edge density

we see differences: For instance, the indentation package
is quite cohesive for co-change. At the same time the package
is lowly coupled because it does not have too much co-
change connections to other packages. In contrast, for code
clones, this indentation package appears to be coupled to
other packages much more than it is cohesive. Furthermore,
if a package is not cohesive with respect to any of the edge
types, this can be an indicator for a badly designed package,
which needs to be restructured—the sizes package is such a
candidate for restructuring as no type of coupling reveals any
notable cohesion.

5) Layered Architectures: The architecture of software sys-
tems often follows a layered design. The idea behind these
layers is that the direction of coupling only goes from the
top layers to the low-level layers. Our visualization helps
analyzing a layered architecture because it clearly shows the
direction of the edges and groups the classes according to the
packages they are contained in.

Comparison: For checking the layers in our example pre-
sented in Figure 4, the directed, structural couplings by in-
heritance, aggregation, and usage are of particular interest.
We already observed certain outliers among those types of
coupling, which could be potentially violating the architectural
layers. Moreover, large cross-cutting fan-in patterns indicate
certain layers: Only the api package is accessed from all over
the project and hence seems to be assigned to the lowest layer.
Ignoring the few outliers, all other packages seem to belong to
the same layer—a minor exception is that there exist couplings
between some sub-packages of the checks package and the
classes that are directly included in the checks package
(represented by the checks.# package). Allowing the user
to reorder the packages or applying an automatic sorting
algorithm may further enhance the visualization with respect
to this scenario but is not implemented yet.

C. Applied Comparison Strategies

The examples we provided showed useful application sce-
narios for a visualization of code couplings. While some facts
could have been also found by using a visualization technique
based on a single type of couplings, the retrieval of many
findings relies on or at least is supported by the comparison
abilities of the visualization. We finally want to summarize the
applied comparison strategies, which can be considered as a
set of recipes to use the visualization.

1) General Characteristics: The first and very simple strat-
egy is to look at the whole picture and retrieve some general
characteristics of the edges of the different types at a glance.
For example, we easily see how dense the edge structures are,
whether a type of edge is directed or not, whether there exist
many edges that connect the classes of the same package, etc.
This comparative overview on the whole data set calls the
attention of the user to similarities and differences, which can
be analyzed in detail in further steps.

2) Equivalent Structures: Key classes and outliers are fea-
tures of a single graph, which can be retrieved searching for
certain visual patterns in one of the diagrams of a single edge



type. A major strength of the presented visualization is to
enable the users to check whether these patterns also exist
for other types of edges without the need to manipulate the
diagram. If the first check was positive, the users might want
to refine the analysis—the visualization provides different fea-
tures to facilitate this: The users could move the two types next
to each other and enlarge both. Focusing certain nodes enables
to prove that a similar looking visual pattern indeed covers the
same classes. Moreover, the merging features provide a tool
to globally compare different edge types.

3) Focusing the Analysis: Due to a previous observation
or certain knowledge of the project, users might have ideas
what could be parts of the system or combinations of types
of particular interest. The visualization allows focusing the
analysis so that users are able to check these details. For
instance, we highlighted the api package in Figure 4 because
the large fan-in pattern looked suspicious, and in the following,
the highlighting revealed interesting details with respect to
outliers and layers of the architecture. Examples for focusing
on the comparison of two types are the findings that shed light
on the relationship between code clones and inheritance.

VI. CONCLUSION

We introduced a visualization approach to compare different
types of coupling data that connects code entities with each
other modeled as a directed compound graph containing
different edge types. Since software projects create large data
sets, the design of the visualization technique thoroughly
takes scalability issues into consideration by splitting ports
for incoming and outgoing edges as well as by applying edge
bundling. The basic layout of the visualization enables the
user to compare the different edge types based on juxtaposed
diagrams. Moreover, interactions integrate more advanced
comparison techniques based on overlay and fusion.

The case study on a mid-size project provides recipes of
how the visualization can be used for analyzing the multi-
dimensional couplings of a software project. The interactive
comparison features help retrieving information that would
have been difficult to get using other visualizations. The
diverse application scenarios that we demonstrated in the case
study shows that the visualization can be applied by software
developers to improve or understand their software system
as well as by researchers for understanding the relationships
of different kinds of code couplings. Beyond that, we see
other scenarios where the introduced visualization technique
might be profitably applied. For instance, different types of
relationships between the individuals of a large social network
might be compared.

ACKNOWLEDGMENT

The authors would like to thank Michael Burch for the
fruitful discussions in early phases of this work.

REFERENCES

[1] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, The (2nd Edition) (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2005.

[2] Y. Ghanam and S. Carpendale, “A survey paper on software architecture
visualization,” University of Calgary, Tech. Rep., 2008.

[3] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J. D. Fekete, and D. W. Fellner, “Visual analysis of large graphs,”
in 12th Joint Eurographics/IEEE-VGTC Symposium on Visualization,
2010.

[4] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, 2006.

[5] A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers, “Extraction and
Visualization of Call Dependencies for Large C/C++ Code Bases: A
Comparative Study,” in VISSOFT ’09: Proceedings of the 5th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis. IEEE, 2009, pp. 81–88.

[6] M. Baur, U. Brandes, M. Gaertler, and D. Wagner, “Drawing the AS
graph in 2.5 dimensions,” in Graph Drawing, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2005, vol. 3383,
pp. 43–48.

[7] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing live software
systems in 3D,” in SOFTVIS ’06: Proceedings of the 2006 ACM
symposium on Software visualization. New York, NY, USA: ACM,
2006, pp. 47–56.

[8] A. J. Pretorius and J. J. van Wijk, “Visual inspection of multivariate
graphs,” Computer Graphics Forum, vol. 27, no. 3, pp. 967–974, 2008.

[9] M. Ghoniem, J. D. Fekete, and P. Castagliola, “A Comparison of the
Readability of Graphs Using Node-Link and Matrix-Based Representa-
tions,” in INFOVIS ’04: IEEE Symposium on Information Visualization,
2004, pp. 17–24.

[10] F. Beck and S. Diehl, “Visual comparison of software architectures,” in
SOFTVIS ’10: Proceedings of the ACM 2010 Symposium on Software
Visualization, Salt Lake City, Utah, USA, 2010, pp. 183–192.

[11] D. Zeckzer, “Visualizing software entities using a matrix layout,” in
SOFTVIS ’10: Proceedings of the 5th international symposium on
Software visualization. New York, NY, USA: ACM, 2010, pp. 207–208.

[12] M. Burch and S. Diehl, “TimeRadarTrees: Visualizing dynamic com-
pound digraphs,” Computer Graphics Forum, vol. 27, no. 3, pp. 823–
830, 2008.

[13] M. Greilich, M. Burch, and S. Diehl, “Visualizing the Evolution of
Compound Digraphs with TimeArcTrees,” Computer Graphics Forum,
vol. 28, no. 3, pp. 975–982, 2009.

[14] F. Beck, M. Burch, and S. Diehl, “Towards an Aesthetic Dimensions
Framework for Dynamic Graph Visualisations,” in IV ’09: 13th Inter-
national Conference on Information Visualisation. Los Alamitos, CA,
USA: IEEE Computer Society, 2009, pp. 592–597.

[15] H. Zhou, X. Yuan, H. Qu, W. Cui, and B. Chen, “Visual clustering
in parallel coordinates,” Computer Graphics Forum, vol. 27, no. 3, pp.
1047–1054, 2008.

[16] A. Telea and D. Auber, “Code flows: Visualizing structural evolution of
source code,” Computer Graphics Forum, vol. 27, no. 3, pp. 831–838,
2008.

[17] W. Huang, S.-H. Hong, and P. Eades, “Effects of crossing angles,” in
Proceedings of the IEEE VGTC Pacific Visualization Symposium 2008,
2008, pp. 41–46.

[18] D. Holten and J. J. van Wijk, “Visual Comparison of Hierarchically
Organized Data,” Computer Graphics Forum, vol. 27, no. 3, pp. 759–
766, 2008.

[19] J. B. Kruskal and J. M. Landwehr, “Icicle Plots: Better Displays for
Hierarchical Clustering,” The American Statistician, vol. 37, no. 2, pp.
162–168, 1983.

[20] R. Rao and S. K. Card, “The table lens: merging graphical and symbolic
representations in an interactive focus + context visualization for tabular
information,” in CHI ’94: Proceedings of the SIGCHI conference on
Human factors in computing systems. New York, NY, USA: ACM,
1994, pp. 318–322.

[21] F. Beck, S. Diehl, T. Dwyer, M. Gleicher, C. Hansen, I. Jusufi,
K.-L. Ma, A. Perer, J. C. Roberts, J. Yang, and D. Zeckzer,
“Dagstuhl Seminar on Information Visualization (10241), Results of the
Working Group on Comparison in Infovis,” 2010. [Online]. Available:
http://www.dagstuhl.de/Materials/index.en.phtml?10241

[22] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.




