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Abstract—Rapid Serial Visual Presentation is an effective
approach for browsing and searching large amounts of data. By
presenting subsequent images at high frequency, we utilize the
perceptual abilities of the human visual system to rapidly process
certain visual features. While this concept is successfully used in
video and image browsing, we demonstrate how it can be applied
to dynamic graph visualization. In this paper, we introduce a
visualization technique for time-varying graphs that is scalable
with respect to the number of time steps. The graph visualization
is based on the Parallel Edge Splatting technique, which employs
a space-efficient display of a sequence of dynamically changing
graphs. To illustrate the usefulness of our approach we analyzed
method call graphs recorded during the execution of the open
source software system JHotDraw. Furthermore, we studied a
time-varying social network representing researchers and their
dynamic communication structure while attending the ACM
Hypertext 2009 conference.

I. INTRODUCTION

Many application domains deal with graph data that evolves
over time, i.e., either the structure itself changes by adding
or removing vertices and edges, or the attributes such as the
weights of the edges change. An explorative analysis promises
interesting insights into the evolution of such data. Software
developers, for instance, might be interested in the execution
behavior of their software manifested in the dynamically
recorded method calls. They could use this information to find
possible performance weaknesses or bugs. A social network
may also change dynamically: people meet unknown people,
people lose track of each other, or cliques expand slowly.
Social network analysts can use this information to predict
future changes or to investigate the spreading of information.

In general, it is challenging to visualize large static graph
datasets using node-link diagrams. Therefore, layout algo-
rithms try to optimize a variety of aesthetic criteria describing
a good graph layout, aiming at the minimization of link
crossings or the maximization of symmetries [2], [33].

When a graph structure changes over time, the problem of
generating a readable node-link diagram becomes even harder.
Many approaches use animated diagrams to show the changes
(e.g., [10], [13]). In these approaches, the single layouts of the
graph need to be optimized to preserve the viewer’s mental
image of the graph, the so-called mental map [32], during
animation [10]. Although those animated node-link diagrams
are quite accessible, they mainly suffer from scalability issues.
Depending on the size of the graph and number of changes,

it might not be possible to find a good graph layout for each
time step when trying to preserve the mental map. Moreover,
the viewer may only keep track of the most recent changes
and cannot readily analyze longer sequences.

In this paper, we introduce a dynamic graph visualization
technique that is able to display time-varying graph datasets
in a scalable way, in the vertex and edge dimension, and
as the major contribution of this work, also in the time
dimension. To this end, we combine the concepts of Paral-
lel Edge Splatting [7] and Rapid Serial Visual Presentation
(RSVP) [3], [37]. The representation of a set of graphs
based on Parallel Edge Splatting already creates scalable
and space-efficient graph diagrams in a static layout [7].
This work adds the following new contributions: Animating
the sequence of graphs by rapidly scrolling through a long
list of diagrams increases the scalability with respect to the
time dimension. Moreover, an adaptive slow-down mechanism
automatically controls the serial presentation, different modes
aggregate long sequences of evolving graphs, and clustering
of nodes improves the node layout. Finally, two case studies
showing the scalability and practical usefulness of the ap-
proach. A video illustrating the approach can be found online:
http://www.st.uni-trier.de/vlhcc12/.

II. RELATED WORK

Beck et al. [1] generalize and extend aesthetic criteria for
drawing static graphs—those that do not change over time—to
dynamic graphs. Among other things, they point out that three
dimensions of scalability have to be considered: the number
of vertices, the number of edges, as well as the number of
graphs (a dynamic graph is usually modeled as a sequence
of static graphs). Various approaches for visualizing dynamic
graph data have been proposed, but suffer from scalability
issues in at least one of these dimensions:

Animated node-link diagrams exploit a natural time-to-
time mapping to display the sequence of graphs. The graphs
are presented one after the other while animating the transition
steps (e.g. [13], [10]). Those diagrams are limited in their
abilities to support the analysis of dynamic changes [1]:
Remembering states of previous graphs and following the
movement of nodes require high cognitive loads. Moreover,
the scalability for the single static graphs is as restricted as



for usual node-link diagrams (see [16] for a discussion of the
scalability of node-link diagrams).

Reitz et al. [34] proposed an approach that automatically
focuses on the changing parts of a dynamic graph by collaps-
ing the stable parts of the graph. This increases certain aspects
of the scalability but requires slowly evolving datasets.

Timeline-based diagrams map the time dimension to a
space dimension in a non-animated diagram. The TimeArc-
Trees technique, e.g., uses a sequence of linearized node-link
diagrams [17] where many parallel and crossing edges, how-
ever, limit the readability. The TimeRadarTrees approach [5]
and its enhancement, called Layered TimeRadarTrees [6],
are based on matrix representations using radial graphical
elements—the circle circumference constrains the number of
vertices. Recently, Parallel Edge Splatting was introduced by
Burch et al. [7]. Similar to TimeArcTrees, a sequence of graphs
is shown in a linearized layout side-by-side, but the readability
is improved by splitting the vertices and drawing the edges
from left to right. Moreover, based on an edge splatting
technique edges are represented as density fields to reduce
the clutter in dense diagrams (see [30], [38]). Parallel Edge
Splatting is also related to (continuous) parallel coordinates
plots [21], [18], [19]. Due to a restricted number of graphs
that fit onto the screen side-by-side, Parallel Edge Splatting is
still limited with respect to the time dimension.

Rapid Serial Visual Presentation (RSVP) [3], [37], the
technique that we apply to tackle the scalability limitation
of Parallel Edge Splatting, describes the process of quickly
flipping through a set of images, diagrams, or other visual
representations. This approach is often applied to video or
image browsing [11], [39], [41]. Two subconcepts of RSVP
can be distinguished [4]. In static RSVP, the displayed entities
are stacked exactly on top of each other such that only
one entity is visible at a time. Animated node-link diagrams
can be considered instances of this approach. In contrast to
that, dynamic RSVP shows more than a single entity, but
subsequences of entities at the same time.

Related but interpreted differently, RSVP is also known as a
technique for displaying text word by word [31]. For details on
the cognitive processes behind RSVP we refer to Coltheart [8].

III. VISUALIZATION TECHNIQUE

Our approach is built on Parallel Edge Splatting [7] and
integrates RSVP. It is thus a combined animated and timeline-
based diagram for visualizing dynamic graphs, trying to incor-
porate the advantages of both paradigms. After specifying the
graph data model for the visualization precisely, we explain the
graph layout and edge splatting in detail. Then, we show how
RSVP is leveraged in the visualization technique and describe
interactive features that help exploring the data.

A. Graph Data Model

Adding and removing edges is a relevant aspect of dynamic
graphs. On a continuous time axis, edges can be added or
removed at any time step. Furthermore, edge weights might
change in weighted graphs. When edges point from a source to

a target, we talk about directed graphs. The presented visual-
ization approach takes directed and weighted dynamic graphs
as input and generates a sequence of images to visualize them.

Formally, such graphs can be defined as follows. Let

G = (VA, EA, µ)

be a directed weighted graph, where VA denotes the set of n
vertices and EA ⊆ VA×VA the set of directed adjacency edges
between the vertices. A weight is assigned to each adjacency
edge e ∈ EA by a function

µG : EA → R+.

A sequence of such graphs

G := (G1, G2, . . . , Gk)

with k ≥ 2 is called dynamic graph. Moreover, each graph

Gi = (VAi
, EAi

), 1 ≤ i ≤ k

of the sequence G has a timestamp defined by a function

t : G→ R+

where G is the set of all possible directed graphs and

t(Gi) < t(Gi+1) ∀i, 1 ≤ i < k.

Modeling a dynamic graph as a sequence of static graphs
as introduced above requires the use of a discrete instead
of a continuous time dimension. Nevertheless, the flexible
definition of the timestamp function t allows arbitrary temporal
differences between two subsequent static graphs, formally,
t(Gi+1)− t(Gi) is not necessarily constant for all 1 ≤ i < k.
Hence, continuous temporal information can be sampled with a
fixed or flexible sampling rate to match the data model. In case
of non-weighted graphs or discrete changes of edge weights,
sampling can be implemented without loss of information
because all changes are discrete.

B. Graph Layout

A single graph G = (VA, EA) is typically laid out in the
two-dimensional plane with the goal to meet certain aesthetic
graph drawing criteria. Since our approach aims at showing
many graphs side-by-side, a graph layout is needed that is
space-efficient and that clearly reflects the graph and link
structures at the same time. For this reason, the traditional 2D
layout is transformed to a 1D layout, i.e., graph vertices are
mapped to one-dimensional vertical lines and edge splatting
is also applied.

To achieve the aforementioned goal, the directed graph G =
(VA, EA) has to be transformed to a bipartite directed graph
G′ = (VA ∪ V ′A, E′A) where for each v ∈ VA a corresponding
v′ ∈ V ′A is introduced. Each directed adjacency edge e :=
(v, u) ∈ EA is transformed to a directed edge (v, u′) = e′ ∈
E′A where v ∈ VA and u′ ∈ V ′A.

Figure 1 demonstrates how a graph can be displayed in
a space-efficient 1D layout by making it bipartite and then
mapping the directed edges as straight links from left to right
following the reading direction in Western countries.
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Fig. 1. A graph is transformed to a bipartite graph by copying the vertex
set VA to V ′

A and only allow edges between VA and V ′
A. Each vertex group

is mapped equidistantly on one axis of two parallel vertical axes and edges
as straight links between the axes.

Fig. 2. A dynamic graph is mapped on a sequence of parallel vertical lines
with fixed vertical vertex positions in all of the graphs.

A visual representation of edges as straight links between
parallel vertical lines has the great benefit that we obtain a
space-efficient layout for a directed weighted graph, though
visual clutter will be increased initially by the restriction
of using 1D instead of 2D. The advantage of this space-
efficiency can be exploited for representing several graphs
side-by-side—a visual metaphor that is very similar to parallel
coordinates. Since the representatives of each vertex are all
located on the same horizontal line, there are no layout
changes throughout the graph sequence and hence, the mental
map of a viewer is easily preserved. Furthermore, viewers can
easily explore a graph sequence for dynamic patterns such as
trends, countertrends, periodicities, temporal shifts, stabilities,
or anomalies because they have the flexibility of looking at a
region of interest within the static picture. The single elements
of the dynamic data are presented next to each other and can
thus be analyzed by visual comparison of components placed
side-by-side. In contrast, when using graph animation a viewer
has to remember the single elements and the comparison has
to be done in his mind relying on short term memory skills.
Figure 2 shows a dynamic graph consisting of a sequence of
seven static graphs with 15 vertices and 34 edges in a side-
by-side static representation.

Another benefit of a static diagram for dynamic graphs is the
fact that an additional hierarchical organization of the graph
vertices can easily be attached to the diagram. This hierarchical
structure is visualized as a layered icicle representation [28]
and can be used to orientate and to explore the relational

RSVP 
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Fig. 3. The concept of RSVP is applied by showing a subsequence of a
dynamic graph at a time, using the idea of a sliding time window.

data on different levels of granularity by allowing interactive
expanding and collapsing of subhierarchies. Details on the
hierarchical structure follow in Section IV-B.

To benefit from the layout restrictions and to perceive
the graph and link structure, the concept of Parallel Edge
Splatting [7] is applied. In particular, density fields of the link
information are computed and the quantitative data points are
shown by color coding in a heatmap representation, which
makes the graph and link structures more apparent. This also
addresses the issue of increased clutter caused by the 1D
layout.

C. Rapid Serial Visual Presentation (RSVP)

Though the exploration task for dynamic graph data benefits
from static diagrams, the static visualization approach only
scales to a very limited number of subsequent graphs. The
main contribution of this work is to significantly improve
scalability with respect to the time dimension. To this end,
we apply the concept of RSVP traditionally used for video
browsing. Following this idea, we use the concept of a
sliding time window and always represent a subsequence of a
longer dynamic graph dataset. In our approach, the concept of
dynamic RSVP is applied, i.e., the single graphs of a sequence
are not represented at the same location on the display and
replaced by the next one after a given delay. Instead, many
graphs are shown side-by-side, all contained in the same time
window, which can be moved by a given delay, see Figure 3
for an illustration of this concept.

D. Interactive Features

Our visualization approach supports different modes of
RSVP, i.e., ways to move the visible part of the static visualiza-
tion as illustrated in Figure 3. It is possible to navigate through
the static view manually using a slider. Furthermore, the RSVP
can be performed automatically by clicking a play button or
by quickly nudging the slider. For the former, a default speed
is used to move the view, whereas for the latter the speed is
determined by the strength of the push, i.e., depending on how
much and how far the slider was moved. Buttons can be used
to regulate, i.e., to slow down or speed up the RSVP.

The speed can also be regulated automatically if the respec-
tive feature is enabled. In this case, the animation automati-
cally slows down as soon as two consecutive graphs come into
view that differ strongly. As soon as these graphs have reached
the center of the view, the animation is accelerated again. The



similarity of two graphs is determined referring to the number
and overlay of edges. First, the number of edges within both
graphs is evaluated: if the number increases or decreases at
a minimal rate defined by a threshold, the difference between
these graphs is considered to be strong. But even if the number
of edges is similar, the graphs might differ. Hence, the overlap
of edges of the two graphs is determined and compared to
the union of edges. If this overlap is smaller than a given
percentage of the union, the difference between these graphs
is also considered to be strong.

Another interactive feature targets the adaption of granu-
larity of displayed information. Therefore, it is possible to
collapse internal nodes of the hierarchy, thereby aggregating
the edges for all leaves under this internal node, to increase the
available space along the vertical lines for the subhierarchies of
interest. Furthermore, consecutive graphs can be aggregated,
thereby summarizing graphs for certain time intervals and
decreasing the number of graphs to be displayed.

IV. DATA TRANSFORMATIONS

We distinguish between the weighted adjacency edges that
may change over time and the static inclusion edges given
by a hierarchical organization of the graph vertices. First, we
discuss ways to aggregate graph edges. Second, we formalize
the hierarchical organization and present a clustering approach
to automatically create such a hierarchy.

A. Graph Aggregation

The discrete sequence of static graphs may possibly consist
of many graphs. Applying RSVP allows us to show the full
sequence, but aggregating the sequence might be still useful
for interactively hiding unnecessary details. For instance, in a
graph where each edge is added separately at different points
in time, aggregating certain frames of time may simplify the
analysis. We propose a set of aggregation modes, which reduce
the number of graphs or transform the graphs in the sequence.
This aggregation can be used as a preprocessing step for
visualization.

In our formal model, we transform the sequence of graphs
G = (G1, G2, . . . , Gk) to a sequence G = (G1, G2, . . . , Gl),
where l ≤ k. For the purpose of aggregation, we define a
union operation on graphs by

G1 ∪G2 := (VA1
∪ VA2

, EA1
∪ EA2

, µ′) = G′

µ′(e) =

 µ1(e) + µ2(e) if e ∈ EA1
∩ EA2

µ1(e) if e ∈ EA1
− EA2

µ2(e) if e ∈ EA2
− EA1

• Semantic Aggregation: A simple, yet often very useful
form of simplification is a semantic-based aggregation.
An external source provides the information about what
graphs should be merged. For instance, using a calendar,
aggregating the graphs on a monthly basis is possible.
The necessary information can be described as an ordered
list of unique indices I = (i1, i2, . . . il+1) where i1 = 1
and il+1 = k. These indices mark the points where the

sequence of graphs is to be split and aggregated. Hence,
the aggregation can be defined as follows:

Gj =
⋃

i ∈ [ij ,ij+1−1]

Gi

• Aggregation Frame: An alternative to the semantic-
based aggregation is to divide the time axis into frames
of fixed length and to merge the graphs according to
these frames. This simplifies the dynamic information
independent of some semantic information that might be
available.
For a step size c ≤ t(Gk)−t(G1)

k−1 we get l ≤ k transformed
graphs by aggregation defined as follows:

Gj =
⋃

tj ≤ t(Gi) < tj+c

Gi

where tj := t(G1) + (j − 1) · c is the start of the jth

frame. Please note that some graphs Gj could be empty
because there were no original graphs in the respective
time frame.

• Moving Aggregation Frame: Instead of dividing the
time axis into frames of time, a frame of time with a
fixed length can also be moved stepwise along the time
axis. The graphs in the time frame are aggregated in each
step. This aggregation strategy will lead to overlapping
frames and could be helpful if, for instance, each of the
original graphs only consists of a few edges.
We reuse parameter c (see above) for representing the
step size guaranteeing l ≤ k. The size of the time frame
is denoted as c′, where c′ ≥ c. The aggregation strategy
then is defined as follows:

Gj =
⋃

tj ≤ t(Gi) < tj+c′

Gi

In case c = c′, the moving aggregation frame mode is
equivalent to the normal aggregation frame mode.

In case no explicit time information is provided or only the
order of events is of interest, we set t(Gi) = i. This transforms
the two aggregation modes based on time frames into event-
based modes—one with a disjoint event frame and one with
a moving frame.

B. Hierarchy Model

Hierarchically ordering the vertices of a large graph could
provide a better overview of the graph because similar ver-
tices can be grouped together or aggregated. When linearly
arranging the vertices as in our visualization, a hierarchy helps
finding a meaningful linear order. In the following, we extend
our data model towards representing such a hierarchy and
discuss an approach to automatically generate the hierarchical
structure if necessary.

The hierarchy is defined as a tree structure H = (VI , EI).
The set VI ⊃ VA denotes a set of vertices and EI ⊂ VI × VI
a set of directed edges. These edges describe the inclusion



relation between vertices of the tree structure and should not
be confused with the adjacency edges EA. One vertex is
designated the root vertex, which has no outgoing edges. In
the context of this work, we use a constant hierarchy, although
the dynamic graph may change frequently over time. In other
words, the inclusion edges stay the same while the adjacency
edges may change over time.

If the vertices of a dynamic graph are not ordered, it
could be difficult to derive any dynamic pattern from the
visualization: Due to the chaotic vertex order, many link
crossings clutter the visualization. A hierarchy that groups
frequently linked vertices together would automatically reduce
the length of the links and the number of edge crossings.

To generate some kind of meaningful one-dimensional ver-
tex ordering we first apply the concept of agglomerative hier-
archical clustering proposed by Kaufman and Rousseeuw [27].
To achieve a runtime complexity of O(n2), where n denotes
the number of all vertices to be clustered, we apply the
complete linkage approach of Defays [9]. Complete linkage
benefits from the fact that compact clusters of equal diameters
can be found as shown by Everitt et al. [12].

The clustering algorithm starts by aggregating the weights
µi of all adjacency edges of all k graphs into a correlation
matrix C = (cij), 1 ≤ i, j,≤ n where

cij :=

k∑
l=1

∑
(vi,vj)=:e∈EAl

µl(e) .

This correlation matrix serves as the distance metric of our
hierarchical complete linkage clustering algorithm, i.e., we
use global distance information to generate a clustering. The
algorithm terminates after generating a hierarchical structure
Hclust = (Vclust, Eclust) containing all vertices of the dy-
namic adjacency graphs as leaf vertices besides newly intro-
duced inner vertices, i.e.,⋃

1≤l≤k

VAl
⊂ Vclust

and an additional inclusion relation Eclust.

V. CASE STUDIES

The goal of these case studies is to demonstrate the
scalability of the introduced visualization technique in two
application scenarios from different domains. We argued that
the technique is well-suited for datasets with a fine-grained
temporal resolution and long evolution. Hence, the scenarios
were selected with respect to this idea. In particular, the first
scenario investigates dynamic method calls observed during
the execution of a software system. The second one analyzes a
dynamic social network encoding interpersonal contacts during
a conference.

A. Dynamic Call Graph Analysis

Software systems are executed at a speed of billions of
instructions per second. As one of the basic building blocks,
those instructions are grouped into methods. Invoking each

other, methods reflect the main flow of information during
execution. Analyzing those dynamic method calls instead of
static calls retrieved from the source code of the system bears
the advantage of observing the real program behavior and not
an over-estimated set of theoretic dependencies.

As an example, we study the dynamic method calls of an
open source Java system called JHotDraw, a graphics frame-
work that is also intended to serve as a benchmark system for
studying software design [25]. To get an executable system,
we chose the JavaDrawApp sample, a simple graphics editor,
which is distributed together with JHotDraw. In particular, our
test scenario was to start the program, create a new file, draw
a rectangle, draw a circle, and write a text into the circle.
For recording the dynamic method calls during execution, we
employed the Java Interactive Profiler (JIP) [26]. It stores the
calls in an XML file, which we converted and imported in
our visualization tool. The weights of the edges encode the
execution times of the called methods.

The actual dataset is large with respect to all three dimen-
sions: It contains 982 vertices (methods and hierarchy vertices)
and 32 259 weighted edges (method calls). The Java system
divided into two threads, a main thread and a supporting
thread, which ran in parallel during execution. These two
threads are themselves subdivided into interactions, connected
sequences of executed method calls—1 077 in total. The
methods are organized hierarchically by the class and package
structure of the system. In the following we first aggregate all
calls at interaction level and study the difference between those
interactions. The next analysis addresses the main thread of the
program and investigates its method calls on a finer level of
granularity.

1) Overview: To get an overview of the dataset, we want to
browse through the call graphs at a high level of abstraction.
Here, the semantic aggregation (Section IV-A) provides the
possibility to reduce the length of the sequence to a man-
ageable number of graphs. We analyze the dynamic graph
at the level of interactions (1 077 graphs) and propose the
following approach: First, use the animation at high speed
to get a first impression on the dataset in seconds. Next,
repeat the animation activating the adaptive slow down feature
and make (mental) notes of interesting phenomena. Third and
last, study the interesting parts by scrolling to particular time
steps manually and comparing the consecutive graphs to the
sequence using the scrollbar.

a) Outliers: Among the sequence of graphs on thread
level, the first graph representing the main thread is the densest
(Figure 4 a). The main thread only consists of one interaction
because it is never interrupted or stopped. Analyzing this
thread at the level of interaction aggregates all dynamic
information and hence is only of limited interest. We study the
dynamic behavior of the main thread in detail in Section V-A2.

The other 1 076 graphs of the sequence are interactions
belonging to the supporting thread. Many of those interactions
are instances of only a few graph patterns. But among those
recurring graphs, we also find some other outliers (e.g.,
Figure 4 b-d). Two of those (Figure 4 b and c) are quite dense



(a) (b) (c) (d) (e) (f) (g) (h)
Fig. 4. Outliers (a-d) and recurring patterns (e-h) on the level of interactions
in the dynamic method call graph of JHotDraw.

and, as they are outliers, also differ from the previous graphs.
Hence, the adaptive animation automatically slows down at
these points, which makes these outliers easy to detect, even
when browsing through the sequence rapidly.

Figure 4 d, in contrast, shows an outlier that is sparse and
only consists of seven method calls. It is the last graph of
the sequence where the program shuts down as a reaction to
the closing event. Sparse outliers like this graph are harder to
detect in the call graph example because most of the recurring
patterns are also sparse. But assuming that a particular sparse
graph is an outlier, this assumption can be quickly checked by
repeating another fast inspection of the whole sequence in a
few seconds.

b) Recurring Patterns: While following the animation
and scrolling through the graphs, the user can observe recur-
ring visual patterns: For patterns presented side-by-side, the
similarity of the graph is obvious and the adaptive animation
can move quite fast across these diagrams. If they are gaped,
however, by other diagrams in between, recurring patterns are
harder to detect, but they are automatically presented at a
slower animation speed. We discern patterns that only consist
of a single graph and those that are short sequences of graphs.
As already mentioned, most of the interaction graphs in the
analyzed sequence are repetitions of a few such patterns.

For instance, at the beginning of the whole sequence, there
is a single graph pattern that occurs more than a hundred times
in subsequent graphs only with few interruptions (Figure 4 e).
This sparse pattern consisting only of four method calls
reappears again for a longer sequence in the remainder of the
dynamic graph. As the recorded raw data tells, this pattern
represents the reaction to a mouse movement on the toolbar
and a subsequent update of the status bar.

There are similar sparse, but frequently recurring patterns
based on single graphs, for example, the two patterns in
Figure 4 f and g. Both patterns look similar because some
of the edges depicted in Figure 4 f can also be found in
Figure 4 g. While the the pattern of Figure 4 f is occurring all
over the execution of the program, the pattern of Figure 4 g

(a) (b)
Fig. 5. Method calls in the main thread of JHotDraw; (a) single calls;
(b) aggregated calls.

only occurs in the second half of execution. The explanation is
that both patterns show the reaction to a mouse movement on
the drawing area: while the first pattern has no consequences
for the drawn objects (the mouse is probably over a whitespace
area), the second pattern interacts with those objects (a hov-
ering effect; the objects are added during program execution).

Finally, Figure 4 h shows a recurring pattern consisting
of more than one graph. It is repeated over 140 times in
two subsequences. Comparing this pattern to the patterns of
Figure 4 f and g, we see some similarities that might indicate
that Figure 4 h is also related to the drawing area. The raw data
confirms this assumption: In particular, the pattern reflects a
drag operation. At the end of the subsequences repeating the
patterns, we find a dense outlier (Figure 4 c), which can be
identified as the respective drop operation.

2) Details: In our recorded dataset the main thread included
1 757 method calls in a single interaction. This is the dataset
that we want to analyze in more detail. We look at the raw data
in form of the separate method calls as well as an aggregated
dataset created by applying a moving aggregation frame.

a) Single Method Calls: To preserve the complete in-
formation on the execution order of the methods, each of the
subsequent method calls has to be included into a single graph.
The result is a sequence of 1 757 graphs, each consisting
of only one weighted edge. The first nine of such graphs
are shown in Figure 5 a. While linear sequences of calls are
represented by connected lines over several graphs, gaps in the
line indicate returning calls. The color of the edges points to
expensive method executions. Browsing through the sequence,
the user may search for the most expensive calls or observe the
activity in different parts of the program. Moreover, recurring
patterns can be retrieved as already demonstrated for the call
graphs on interaction level. In the sequence of method calls
in the main thread, we, however, note only few such patterns.

b) Aggregated Calls: For aggregating the method calls,
we chose a moving frame of size 100 with a step size
of 10. The resulting dynamic graph consists of 167 static
graphs each consisting of 100 edges and overlapping 90% of
the previous/next graph. Figure 5 b depicts the first nine of
those graphs. The overall activity in the different parts of the
program can be better observed using this aggregated graph: In
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Fig. 6. Face-to-face contacts of the ACM Hypertext 2009 conference attendees (green bars: sessions).

Figure 5 b, for instance, we register high activity for a group
of methods near the top border of the diagram as well as for a
group in the middle. The moving aggregation, in contrast to a
non-moving aggregation, prevents misinterpretations because a
non-moving aggregation leads to artificial cuts in the sequence.
As Figure 5 b shows, the sequence for the moving aggregation
frame is slowly evolving instead.

B. Social Network Analysis

As a second application example for our visualization tool,
we analyze a dynamic social network collected during the
ACM Hypertext 2009 conference, a dataset that is freely
available as a part of the SocioPatterns project [22], [23]. Face-
to-face proximity of volunteering conference attendees was
monitored by RFID badges. A contact between two attendees
was only recorded if they really faced each other in close
range over an interval of 20 s. The acquired dataset contains
the dynamic network of 20 818 face-to-face proximities of 113
conference participants over a time period of three conference
days. The dataset was anonymized, i.e., neither personal data
nor other metadata is available.

To retrieve a linear order for the unstructured vertices in
this dataset, we applied a hierarchical clustering algorithm as
described in Section IV-B. We analyze the dataset in intervals
of 15 minutes (frame aggregation mode), which results in a
sequence of 236 graphs. Figure 6 provides an overview of
this sequence showing 148 graphs (excluding those at night).
The interpretation of the figure is supported by a timeline and

green bars indicating the sessions of the conference (plenum
sessions only; retrieved from the conference program [24]).
The compressed image, however, can only give a first impres-
sion; the interactive visualization tool is needed to retrieve
details at full-screen size.

Social Activity: The visualization reveals simple insights
on the general social activity during the conference. For
instance, the sessions clearly relate to a significantly lower
number of face-to-face contacts. This effect is weaker on
the first day, a preconference day with workshop sessions.
Temporally shifted gaps in the graph density hint at delayed
sessions (e.g., the third session on the third day). The most
active intervals seem to be coffee breaks in the morning
(second and third day) as well as after the closing session
of the conference.

Temporal Patterns: Our visualization could be of par-
ticular use when analyzing more complex phenomena like
graph patterns that are stable across several intervals. We
observe such stable patterns around 1pm at each day, probably
during lunch: It shows a quite dense graph only slightly
changing across 3–4 intervals (45–60 min). In other intervals,
for instance at the end of the first day, some parts of the graph
are stable while other parts change. These could be situations
where some of the conference attendees are sitting and dis-
cussing while other attendees move around and communicate
with many different people.

Clusters: Conference attendees who communicate fre-
quently are grouped into clusters and positioned near to each



other in the visualization. In Figure 6, we observe small clus-
ters of attendees that are stable across several hours especially
on the third day of the conference (long sequences of edge
clusters)—contacts seem to become less volatile towards the
end of the conference. A group of four attendees, represented
as a cluster near the bottom of the diagram, is quite actively
communicating also on the other days of the conference,
in particular around noon at the second day. Less active
cluster, but more cross-cluster contacts can be observed at the
beginning of the conference (before the first session starts) as
well as in the morning coffee breaks (second and third day).
This might be the premier points to meet new people.

VI. CONCLUSION

In this paper we demonstrated how the concept of RSVP
can be applied to dynamic graph visualization. Parallel Edge
Splatting provides a compact side-by-side representation of a
sequence of graphs. The presented visualization approach is a
hybrid between animated and timeline-based graph diagrams.
The major contribution of our work is the improved scalability
in the dimension of time. In two application scenarios, we
illustrate this benefit by analyzing large graphs consisting
of more than thousand time steps. The different aggregation
modes particularly helped analyzing the execution behavior of
JHotDraw. In a dynamic social network showing face-to-face
contacts during a conference, clustering provided a meaningful
order of the conference attendees and revealed clusters of
edges in the dynamic graph.
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