
Evaluating the Impact of Software Evolution
on Software Clustering

Fabian Beck and Stephan Diehl
University of Trier, Germany

Email: {beckf,diehl}@uni-trier.de

Abstract—The evolution of a software project is a rich data
source for analyzing and improving the software development
process. Recently, several research groups have tried to cluster
source code artifacts based on information about how the code
of a software system evolves. The results of these evolutionary
approaches seem promising, but a direct comparison to tradi-
tional software clustering approaches based on structural code
dependencies is still missing. To fill this gap, we conducted several
clustering experiments with an approved software clustering tool
comparing and combining the evolutionary and the structural
approach. These experiments show that the evolutionary ap-
proach could produce meaningful clustering results. But still
the traditional approach provides better results because of a
more reliable data density of the structural data. Finally, the
combination of both approaches is able to improve the overall
clustering quality.

I. INTRODUCTION

Software clustering is an important discipline in reverse
engineering and software maintenance. It deals with the au-
tomatic unsupervised grouping of software artifacts like func-
tions, classes, or files into high-level structures like packages,
components, or sub-systems based on the similarity of the
artifacts. Software clustering is applied, for instance, to under-
stand complex software systems [12], to restructure software
architectures [2], to identify reusable components [11], or to
detect misplaced software artifacts [20].

Software clustering algorithms rely on characteristic infor-
mation about the software artifacts to compute a pairwise
similarity measure and to finally yield a reasonable cluster-
ing. Common clustering approaches retrieve this information
directly from the static source code in form of structural depen-
dencies based on, for example, method invocations and vari-
able references among methods [1], [12], [14], or inheritance,
aggregation, and method invocations among classes [17], [24].
Some approaches try to improve the clustering by taking
dynamic code dependencies recorded during the program
execution into consideration [6], [26]. Other approaches use
the source code only indirectly by analyzing variable names
and comments [9]. Although there exists such a variety of
data sources, only few approaches integrate several of them
into their clustering technique (e.g., [1], [24]).

In the last decade, software engineers have become aware
of software evolution as an important and largely unused
data source to enhance the software development and main-
tenance process. Information from the evolution of software
projects, in particular, information on how developers change

the source code of a software system, has been leveraged
across many applications: It helps project managers to control
the development process [10], software architects to detect
design flaws [5], developers to find related files or hidden
dependencies [27], and quality controllers to identify bugs [7].
But can it also be leveraged to cluster software artifacts?

A. Evolutionary Data in Software Clustering

Recently, some research groups have started to link ideas
from both fields of research—software clustering and software
evolution. Clustering-centered approaches enrich structural
data with some evolutionary aspects. Andritsos and Tzer-
pos [1] integrated the file ownership information, a simple
evolutionary data source, and improved a clustering approach
based on structural data slightly. However, they also found
that the integration of the file timestamps, another simple
evolutionary data source, tends to decrease the clustering
quality. Wierda et al. [24] used the assumption that the
intended architecture of a software system is represented in
a purer form in the initial version than in a later one. In
their case study combining the current version with the first
version by intersecting their structural dependencies improved
the decomposition.

Other approaches are more evolution-centered and work
on fine-grained co-change data \(files that are often changed
together): In one of the first works on software evolution,
Ball et al. [3] used a specialized graph layout algorithm on
an evolutionary co-change graph. Clusters emerge as visual
groups in the graph visualization. Beyer and Noack [4] refine
this approach by revising the graph data structure and the
layout algorithm. In both cases the user, however, needs to
finally mark the clusters manually. Voinea and Telea [21] in-
tegrate a clustering algorithm based on software evolution into
their visualization tool CVSgrab. The evolutionary clustering
is used to improve the sequential order of the files in the visu-
alization. Vanya et al. [20] are able to identify design flaws in
the software architecture by comparing the software-evolution-
based clustering decomposition to the current architecture of
the software. In a case study, experts rated most of the detected
design flaws as valuable information.

B. Objectives

Methods that integrate software clustering and software
evolution, such as those discussed above, seem promising.
On the one hand, software clustering based on structural data

17th Working Conference on Reverse Engineering, WCRE 2010

might be improved by integrating evolutionary data sources
and, on the other hand, it appears to be possible to cluster
software only by using evolutionary data.

But despite these positive results, there are some aspects
that are not covered sufficiently yet. The clustering-centered
approaches only employ very basic evolutionary data: file
ownership, timestamps, or the first and latest program version.
The timestamp information even gives an example that the
integration of evolutionary information might change the clus-
tering result for the worse. The evolution-centered approaches
only show that these clustering techniques are working to
some degree, they are not contrasted to approaches based on
structural data.

Our goal is to overcome these shortcomings by compar-
ing structural and evolutionary data sources directly to each
other. We use an approved software clustering approach to
recover the architecture of six software projects based on
three different kinds of dependencies: static structural source
code dependencies, evolutionary co-change dependencies, and
combined structural and evolutionary dependencies. Different
filtering setups and combination strategies lead to a total of 152
different concrete dependency graphs per project. For each of
these graphs, we compute a clustering and assess its quality
by measuring its similarity to a reference decomposition.

The main contributions of this paper are:
• The first systematic comparison of structural and evolu-

tionary data for software clustering.
• One of the most extensive studies in software clustering

with respect to the number of analyzed projects and
project sizes.

• The first approach that consequently integrates evolution-
ary information into a traditional clustering technique.

• An assessment of the influence that filtering evolutionary
data has on the clustering quality.

The rest of this paper is organized as follows. Section II
introduces an appropriate experimental design that is able to
cluster software systems and to measure the quality of the
resulting software decompositions. Section III presents the
study, consisting of three experiments. Finally, Section IV
discusses the validity of the results and Section V concludes
the findings.

II. EXPERIMENTAL DESIGN

Our study concentrates on grouping classes into pack-
ages. Classes are the elementary units in the design process
of object-oriented software systems. Their organization into
packages reflects the architecture of a software system. Since
interfaces are similar to classes, we handle them like classes
in the experiments and therefore use the term class for classes
as well as for interfaces.

A. Sample Software Projects

We employ a set of six open source Java projects as
subjects of the study (see Table I). Although this set of
projects cannot be considered statistically representative of
the whole population of software projects, it covers a wide

range of project types—from user clients and libraries to
server applications. The numbers of classes (based on the
latest version) give an idea of the project sizes: JFtp is the
smallest project examined with only 78 classes while JEdit is
the largest one with 840 classes. Note that in the cases of the
Azureus and Tomcat project, we only considered one of their
main packages because our experimental setup is not able to
handle more than 1000 classes efficiently. We excluded all test
case packages in JUnit because they are arranged in two large
unstructured test packages—a structure that conflicts with the
idea of grouping dependent files together.

B. Data Sources

In the following experiments the dependency information
is the independent variable. A directed graph, where nodes
represent classes and edges represent dependencies, models
this asymmetric dependency information.

1) Structural Dependencies: Structural static source code
dependencies (short: structural dependencies) are the most
widely used data source for software clustering. As such, they
represent the conventional approach and constitute the control
group in our study. We incorporate all main types of struc-
tural class dependencies, namely inheritance, aggregation, and
usage (e.g., method calls, method parameters, local variables).

Definition 1. Let C(S) be the set of classes of a software
system S. We define four directed relations on classes:

(c1, c2) ∈ ECIG ⇔ c1 extends c2

(c1, c2) ∈ ECAG ⇔ c1 aggregates c2

(c1, c2) ∈ ECUG ⇔ c1 uses c2

ESCDG := ECIG ∪ ECAG ∪ ECUG

The directed graphs Gx := (C(S), Ex) are called Class
Inheritance Graph (CIG), Class Aggregation Graph (CAG),
Class Usage Graph (CUG), and Structural Class Dependency
Graph (SCDG).

To retrieve these graphs, we use DependencyFinder, a code
analysis suite that works on Java bytecode and, among other
things, is able to extract all relevant dependencies.

2) Evolutionary Dependencies: The evolution of a software
project is documented by the changes applied to its source
files in the course of development. In modern software engi-
neering a revision control system (version archive), such as
CVS or SVN, stores these changes. Transactions—changes
simultaneously submitted to the version archive by the same
developer—are the elementary units in these systems.

Class A depends on class B by evolution if class A has
often been changed together with class B. In other words,
both classes have often been part of the same transactions.
This is the basic idea behind evolutionary dependencies (also
referred to as evolutionary couplings or co-change couplings).

This approach is based on the assumption that transactions
implicitly group dependent files together. But some transac-
tions might relate files randomly, for example, if a developer

TABLE I
CHARACTERISTIC DATA OF THE SAMPLE SOFTWARE PROJECTS AND THEIR REPOSITORIES.

Project Description Archive Time frame # Classes # Transactions # Developers

Azureus BitTorrent client CVS 2003/07/10 – 2007/02/14 477 restricted to org.gudy.azureus2.core3 10665 27
JEdit text editor SVN 2001/09/02 – 2007/02/12 840 2190 20

JFreeChart (JFC) Java Swing chart library CVS 2001/10/18 – 2007/02/14 794 2413 5
JFtp FTP client CVS 2002/01/25 – 2003/03/23 78 210 5
JUnit regression testing framework CVS 2002/12/12 – 2007/02/08 103 test cases excluded 673 7

Tomcat Java Servlet implementation SVN 2006/03/27 – 2007/03/10 561 restricted to org.apache.catalina 661 13

fixed two totally unrelated bugs in a single transaction. Hence,
a mechanism that allows filtering out such noise and considers
only strong dependencies might improve the efficiency of the
evolutionary data.

Zimmermann et al. [29] introduce the concept of support
and confidence to measure the strength of evolutionary depen-
dencies. The support value of a dependency counts how often
the two software artifacts were changed together. Additionally,
the confidence value of a dependency relates the support to the
total number of changes applied to one of the artifacts.

Definition 2. Let c1, c2 ∈ C(S) be two classes and {Ti}li=1

a sequence of transactions.

Supp(c1, c2) := |{Ti : c1 ∈ Ti, c2 ∈ Ti}|

is called support of the evolutionary dependency of class c1
to class c2.

If c1 is element of at least one transaction Ti, the confidence
of the evolutionary dependency of class c1 to class c2 is defined
as

Conf(c1, c2) :=
Supp(c1, c2)

Supp(c1, c1)

Otherwise, Conf(c1, c2) := 0.

In the definition of Conf the value of Supp(c1, c1) rep-
resents the total number of transactions c1 is part of. Thus,
the value of Conf reaches its maximum 1 if c2 is changed
whenever c1 is changed. Note that Supp is a symmetric
function whereas Conf is not.

Analogously to the structural dependencies, an evolutionary
dependency graph can be defined with the help of the Conf
and the Supp functions. In contrast to the structural graphs, the
evolutionary graph depends on two parameters that filter out
weak dependencies: a confidence threshold α and a support
threshold k. As part of our experiments, we have to find a
reasonable setting for these parameters.

Definition 3. Let C(S) be the set of classes of a software
system S. We define a directed relation of classes

(c1, c2) ∈ EECDGkα
⇔ Supp(c1, c2) > k ∧ Conf(c1, c2) > α

The directed graph GECDGkα
:= (C(S), EECDGkα

) is called
Evolutionary Class Dependency Graph (ECDGkα) with pa-
rameters α ∈ [0, 1) (confidence threshold) and k ∈ N (support
threshold).

We use the approach by Weißgerber and Zimmermann [22],
[28] to extract the evolutionary class dependency graphs from
the version archives.

As common when mining software repositories, we omit
large transactions (here, transactions with more than 50 par-
ticipating classes) to reduce noise in the evolutionary depen-
dency data. The converter also ignores classes from branched
versions to avoid conflicts caused by multiple copies of the
same class.

Although it is possible to relate non-source files with the
concept of evolutionary dependencies, in the context of this
study we restrict it to source files to guarantee the compara-
bility to structural dependencies. In real world applications,
the possibility to cluster non-source files might be a crucial
advantage of evolutionary dependencies over structural depen-
dencies.

This approach is different to the two clustering approaches
based on co-change information [20], [21], which we already
discussed in the introduction. We chose a graph data model
to match the structural dependency graphs and apply a spe-
cialized software clustering algorithm that will be introduced
in the following section. In contrast, the two other approaches
use similarity matrices and a non-specialized agglomerative
clustering algorithm.

C. Clustering Algorithm

In general, a clustering algorithm divides a set of entities—
here, classes—into clusters. The result of this division is called
clustering decomposition. Depending on the algorithm, the
decomposition is either flat or hierarchical. Various software
clustering approaches have been proposed and studied (e.g.,
Maqbool and Babri [14] provide an overview). Since this work
does not aim at improving a particular clustering algorithm
directly but at assessing the quality of different data sources,
any approved software clustering algorithm would serve the
purpose.

Bunch [13], [16] is a graph-based clustering tool that
follows the concept of low coupling and high cohesion [18].
Its clustering algorithm optimizes a clustering quality metric
with a heuristic search technique and produces hierarchical
clustering decompositions. Several evaluations showed that
Bunch is among the best currently available software clus-
tering tools [1], [14], [25]. Since Bunch is customizable, we
tried to find a good parameter setting. The resulting setup is
similar to the ones used in the evaluations cited above.

Bunch works on a graph structure that is called Module
Dependency Graph. The graph represents modules as nodes
and module dependencies as directed edges. Since the terms
module and dependency are not bound to a strict definition,
we are allowed to consider the weighted dependency graphs
defined in Section II-B as Bunch Module Dependency Graphs.

Bunch provides three optimization strategies: an exhaustive
search algorithm, a hill climbing algorithm, and a genetic
algorithm. We prefer the hill climbing algorithm because it
produces stable high quality results efficiently in predictable
runtime. When using the hill climbing algorithm, further pa-
rameters need to be set. Based on some performance tests with
the JFtp project and a study by Mitchell and Mancoridis [17],
we set the initial population size to 1, chose the nearest
ascent hill climbing option, and deactivated further algorithm
extensions.

Since Bunch uses a heuristic search approach that has a
random element, the clustering process can be considered
a random experiment. Mitchell and Mancoridis showed in
their study about Bunch [17] that in most cases the resulting
decompositions differ only slightly. Nevertheless, we perform
several repetitions of our experiments to increase the reliability
of the results. Due to these repetitions and some performance
problems of Bunch, we had to restrict our experiments to less
than 1000 classes per project as mentioned earlier.

D. Evaluation Method

The quality of a software decomposition can be evaluated
either by considering internal quality criteria (internal assess-
ment), or by comparing it to a reference decomposition (exter-
nal assessment). Internal metrics do not measure the quality
independently or are only applicable to different algorithms
working on the same input graph. In contrast, an external
assessment allows an independent quality measure and does
not rely on a constant input graph.

1) Reference Decompositions: The approach of creating
a reference decomposition as a benchmark for an external
assessment assumes that a perfect clustering exists, which
is closely approximated by the reference decomposition. As
the quality of a decomposition depends on the developers’
opinions, an objective and reliable reference, however, does
not exist—the approach is only a heuristic to estimate the
quality of a software clustering method.

A good reference decomposition can be created by using
the current factual architecture of the system (e.g., the pack-
age structure of an object-oriented system) or by employing
domain experts, which perform the task manually. Since we
cannot count on domain experts for all six examined projects,
we chose the factual decompositions as the most efficient
method. It is reasonable to assume that these decompositions
have a good quality because they have also been created by
domain experts—the developers themselves.

2) Similarity of Decompositions: The clustering decompo-
sition that is most similar to the reference is considered the
best result. Though, there does not exist a natural metric that

measures the similarity between two decompositions, but some
heuristics are proposed in literature.

Tzerpos and Holt [19] developed a metric, called MoJo, that
is estimating the distance between two decompositions with
the minimal number of Move and Join operations needed to
transform one decomposition into the other. Furthermore, Wen
and Tzerpos [23] introduced MoJoFM, a revision of MoJo
normalized by the decomposition most distant to the reference
decomposition. MoJoFM ranges from 0, representing the most
distant decomposition, to 100, representing a clustering that is
completely identical to the reference. It simulates the opera-
tions a user would perform to transform one decomposition
into the other. The metric is clear and simple to understand.
For these reasons we preferred MoJo over comparable metrics
like the Precision/Recall metric [2] or the Koschke-Eisenbarth
metric [8].

Definition 4. Let mno(X,Y) be the minimum number of
Move and Join operations that is needed to transform a flat
decomposition X into a flat decomposition Y . For two flat
decompositions A,B

MoJoFM(A,B) := 100 ·
(
1− mno(A,B)

maxx(mno(x,B))

)
is called the MoJoFM similarity from A to B.

As B is the criterion for the normalization, the reference
decomposition has to be represented by B. The polarity of
the scale is reversed to get a measure of similarity instead of
distance. Despite the normalization of MoJoFM, one cannot
compare the MoJoFM values of different sample projects
directly because the normalization depends on the structure of
the reference decomposition. Only comparisons on the same
reference—i.e., on the same project—are valid.

Since MoJoFM works only on flat decompositions, we have
to transform the hierarchical decompositions retrieved from the
package structure as well as from Bunch into flat decompo-
sitions. To transform the reference decomposition, we use the
low-level package partition ignoring the package hierarchy.
To transform the hierarchical clustering result, we cut the
hierarchy on the level where the resulting flat decomposition is
most similar to the reference (based on the MoJoFM value).
This solution avoids noise or a bias caused by too fine- or
coarse-grained clustering decompositions.

III. STUDY

One of the main use cases of software clustering is archi-
tecture recovery. When the architecture of a software system
is totally undocumented or the documentation is just outdated,
software clustering helps to retrieve the current architectural
information. An automatically recovered architecture also sup-
ports the developers to redesign a badly structured system.

The following study addresses this problem of architecture
recovery. It evaluates the quality of a clustering decomposition
in terms of its similarity to the package structure as described
in Section II-D. This approach of retrieving the already docu-
mented package structure by a clustering algorithm may sound

strange, but is an approved assessment method for software
clustering algorithms [12], [2], [25]. The goal is not to use
this procedure in practical application, but to get a measure
for the quality of a clustering approach. To this end we need
examples where we already know the correct answer. Outside
our experimental environment, we would of course only apply
the clustering algorithm to projects or subsystems with no
documented structure or an assumed bad structure.

The study consists of three experiments. Experiment 1
contrasts structural and evolutionary dependency graphs in the
application of software clustering. Experiment 2 looks at the
dependency quality in these graphs to better understand the
previously gained results. Finally, Experiment 3 focuses on
combining both data sources. Each of the experiments tries
different setups of dependency graphs to find the best possible
solution.

TABLE II
DEPENDENCY GRAPH SIZES.

Azur. JEdit JFC JFtp JUnit Tomc.

Nodes 477 840 794 78 103 561

Edges CIG 279 318 484 40 55 312
CAG 434 691 223 66 49 455
CUG 2269 4020 3714 38 294 2207
SCDG 2362 4117 3937 127 306 2348

ECDG0
0.0 6218 29372 13922 1184 642 696

ECDG0
0.2 1354 8438 9512 738 487 502

ECDG0
0.4 727 4011 5427 414 310 293

ECDG0
0.6 345 2117 2478 261 146 177

ECDG0
0.8 277 1655 2063 166 105 169

ECDG1
0.0 2330 9430 2376 530 138 84

ECDG1
0.2 650 3289 1991 365 116 63

ECDG1
0.4 302 1542 1334 251 92 45

ECDG1
0.6 172 888 930 171 71 25

ECDG1
0.8 104 426 515 76 30 17

ECDG2
0.0 1258 4538 696 322 42 24

ECDG2
0.2 419 1713 588 231 33 23

ECDG2
0.4 193 814 338 164 14 18

ECDG2
0.6 99 390 172 122 9 13

ECDG2
0.8 51 247 56 50 5 11

Table II characterizes the dependency graphs of the studied
software projects in terms of their numbers of nodes and edges.
The selected sample projects are significantly varying in the
number of nodes: the smallest project, JFtp, consists of 78
nodes (i.e., classes), while the largest project, JEdit, has 840
nodes.

Comparing the simple structural dependency graphs with
respect to their edge density, the Class Usage Graph (CUG)
and the Structural Class Dependency Graph (SCDG) are far
denser than the Class Inheritance Graph (CIG) and the Class
Aggregation Graph (CAG). Thus, clustering might be harder
only using inheritance or aggregation dependencies.

The Evolutionary Class Dependency Graph (ECDG) de-
pends on two parameters, the support threshold and the
confidence threshold. These two parameters can be considered
as filters that are getting stronger (i.e., reducing the number of
dependencies) with increasing values. Table II confirms that
the number decreases block by block for increasing support

values and line by line for increasing confidence values.
Only the slightly filtered graphs contain extensive dependency
information. Since it is hard to define reasonable threshold
values in advance, the first experiments will vary support and
confidence systematically. Finding a good filtering setup is
a trade-off between dependency efficiency and dependency
density.

A. Experiment 1: Simple Data Sources

The first experiment addresses the question whether it is
possible to get meaningful clustering decompositions using
only structural or evolutionary data sources: The experiment
compares the clustering results for the CIG, CAG, CUG, and
SCDG to the ECDG in different filtering setups. Table III
presents the results of the experiment regarding the MoJoFM
metric values for each clustering setup. As mentioned in
Section II-C repeated runs were performed (n = 50) and
averaged to increase the precision of the quality information.

A precision measure of average values is the standard error
σ̂x (the standard deviation of the mean values). In Table III and
all following tables containing clustering results, less precise
MoJoFM values with a standard error of 0.5 ≤ σ̂x < 1.0 are
marked with ’ and those with a standard error of 1.0 ≤ σ̂x
with *. The upper bound of the standard error completes each
table. Moreover, we highlight the best overall quality values
in light gray and the best project specific ones in gray.

TABLE III
MOJOFM CLUSTERING QUALITY.

n = 50, σ̂x ≤ 1.7 Azur. JEdit JFC JFtp JUnit Tomc. avg

CIG 30.2 42.0 35.4 53.4 28.5 32.8 37.0
CAG 28.6 47.1’ 14.3 45.7 21.6 35.8 32.2
CUG 52.4 63.5* 40.6’ 49.4 33.5 54.5’ 49.0
SCDG 49.9’ 65.5* 44.2 54.0 35.0 54.0’ 50.4

ECDG0
0.0 31.7 40.4 40.7 41.5 18.5 11.1 30.7

ECDG0
0.2 34.7 46.2 41.3* 40.0 19.4 11.1 32.1

ECDG0
0.4 35.6 47.0 43.2 42.3 20.7 11.3 33.3

ECDG0
0.6 33.6 47.2 40.9 42.4 21.1 11.4 32.8

ECDG0
0.8 32.6 45.9 39.8 42.7 20.6 11.4 32.2

ECDG1
0.0 29.0 36.5 29.1 35.5 18.2 8.0 26.0

ECDG1
0.2 30.7 40.0 29.3 35.2 17.5 8.0 26.8

ECDG1
0.4 31.3 39.6 28.2 35.2 17.5 7.5 26.6

ECDG1
0.6 29.6 37.5 26.5 35.9 18.3 6.9 25.8

ECDG1
0.8 27.0 36.9 20.9 35.4 13.4 6.8 23.4

ECDG2
0.0 27.3 32.9 13.8 35.1 11.0 6.4 21.1

ECDG2
0.2 27.3 34.6 14.2 35.3 9.9 6.4 21.3

ECDG2
0.4 28.0 32.8 12.9 35.3 11.0 5.8 21.0

ECDG2
0.6 27.1 30.9 11.7 36.0 9.9 5.8 20.2

ECDG2
0.8 23.3 30.0 6.8 36.1 8.8 6.0 18.5

Default1 16.3 15.7 1.8 36.6 3.3 4.1 13.0
Defaultn 11.3 0.4 2.8 0.0 4.4 2.1 3.5

1) Results for Structural Graphs: Starting with the simple
structural dependencies (CIG, CAG, and CUG), the high-
est MoJoFM values, indicating a high agreement with the
reference decomposition, are mostly reached with the CUG.
This fits with the observation that the CIG and CAG usually
do not contain as much information as the CUG. There
exist, however, some exceptions: For JUnit the quality of the

CIG, CUG, and CAG results are nearly equal although the
CUG has much more dependencies than the CIG and CAG
(Table II). For JFtp the CIG (53.4) even outperforms the CUG
(49.4).

The SCDG, as an aggregation of the CIG, CAG, and CUG,
incorporates the information from the three simple structural
graphs and increases or at least steadies the clustering quality
of the simple data sources: The average clustering quality of
the SCDG (50.4) is clearly higher than the CIG and CAG
average values (37.0 and 32.2) and at least slightly higher
than the CUG value (49.0).

2) Results for Evolutionary Graphs: The ECDG0
0.4, which

has a support threshold of 0 and a confidence threshold of 0.4,
produces the best average quality for evolutionary dependen-
cies (33.3), closely followed by the other evolutionary graphs
with a support threshold of 0 (please recall that a threshold of
0 means that the support must be at least 1). This clustering
quality is in the range of the CIG (37.0) and the CAG (32.2)
but clearly lower than the CUG (49.0) and SCDG (50.4)
values.

These characteristics of the average value need not be
valid for each of the individual projects. For instance, the
evolutionary clustering quality for the Tomcat project is very
low (5.8 to 11.4) and far from being competitive to any
structural dependency information. This is probably caused
by its sparse evolutionary class dependency graph (Table II).
In contrast, for JFreeChart the relation between structural and
evolutionary data sources is nearly balanced (best structural:
44.2; best evolutionary: 43.2).

3) Default Clustering Decomposition: Additional to the
clustering results, Table III lists two default quality metric
values in the last rows: Default1 represents a decomposition
that consists of only one huge cluster; Defaultn represents
a decomposition that consists of n singleton clusters. These
values provide a reference for the MoJoFM values of a project.

The default decomposition qualities cover a wide range of
MoJoFM values, from 0.0 (JFtp, Defaultn) up to 36.6 (JFtp,
Default1). This observation underpins clearly that comparisons
of clustering results based on MoJoFM are only valid for the
same reference decomposition (i.e., the same sample software
project). The MoJoFM difference between a clustering and
the best default clustering gives a hint at the overall clustering
quality. In contrast, taking the absolute value into account
might be misleading. For instance, the structural clustering
seems to work better for JEdit (SCDG: 65.5; Default1: 15.7)
and Tomcat (CUG: 54.5; Default1: 4.1) than for JFtp (SCDG:
54.0; Default1: 36.6) although their absolute MoJoFM values
are similar. Regarding the evolutionary dependencies, only
JFtp and Tomcat do not exceed their default values clearly,
but at least slightly. Finally, we have to state that MoJoFM is
a relative, project specific quality metric and not an absolute
measure where a value of x indicates a good clustering result.

Result 1. The usage graph as well as the aggregated structural
graph significantly outperform all other data sources. The
slightly filtered evolutionary dependencies produce results

similar to the inheritance and aggregation dependencies. At
least in four of six cases these evolutionary decompositions are
meaningful as they exceed the default decompositions clearly.

B. Experiment 2: Dependency Quality

Support and confidence are established metrics to measure
the strength of evolutionary dependencies. This second experi-
ment investigates whether stronger evolutionary dependencies
are more efficient for software clustering. Furthermore, we
want to examine the interplay between efficiency and density
of evolutionary dependencies.

We call the edges of a dependency graph that connect
classes of the same package intra-edges. They enable the clus-
tering algorithm to retrieve the package structure. In contrast,
edges that connect classes from different packages influence
the clustering result negatively. Hence, the percentage of intra-
edges among all edges of the graph provides a measure of the
dependency efficiency for software clustering. This measure
is independent of the total amount of available dependencies.
Table IV lists the values of this intra-edge measure (first value)
for the previously used set of graphs. Additionally, the data
density is expressed as the percentage of nodes with at least
one in- or outgoing edge (second value), which we denote as
node coverage.

TABLE IV
PERCENTAGE OF PACKAGE INTRA-EDGES (FIRST VALUE) AND NODE

COVERAGE (SECOND VALUE).

% values Azur. JEdit JFC JFtp JUnit Tomc. avg

CIG 25;60 70;44 69;50 40;56 31;54 47;51 47;53

CAG 42;52 81;64 41;29 26;59 51;37 46;61 48;50

CUG 32;98 59;99 27;97 74;42 33;84 35;94 43;86

SCDG 31;99 59;100 29;98 39;81 33;84 35;94 38;93

ECDG0
0.0 16;54 23;65 40;66 37;68 14;48 30;15 27;53

ECDG0
0.2 32;54 36;64 47;66 39;68 16;48 31;15 34;52

ECDG0
0.4 39;51 43;64 54;64 41;65 16;48 35;14 38;51

ECDG0
0.6 45;45 51;62 67;57 43;64 19;43 37;14 44;47

ECDG0
0.8 47;39 53;60 63;56 44;64 16;40 37;14 43;46

ECDG1
0.0 19;40 29;49 78;36 41;49 26;31 48;06 40;35

ECDG1
0.2 36;39 43;49 83;36 45;49 27;30 46;06 47;35

ECDG1
0.4 45;34 54;48 89;34 40;49 27;29 49;06 51;33

ECDG1
0.6 45;30 65;45 94;32 43;49 24;28 56;04 55;31

ECDG1
0.8 51;21 83;41 99;22 46;42 20;22 71;03 62;25

ECDG2
0.0 20;32 33;39 85;16 37;42 24;13 67;03 44;24

ECDG2
0.2 36;31 47;39 87;15 40;42 24;13 65;03 50;24

ECDG2
0.4 44;27 59;38 87;14 37;42 29;13 61;02 53;23

ECDG2
0.6 45;21 76;34 98;12 39;42 33;12 69;02 60;21

ECDG2
0.8 49;13 90;31 100;05 40;35 20;09 82;02 63;16

1) Dependency Efficiency: The average values in the last
column of Table IV show similar intra-edge ratios for the
structural graphs, ranging from 38% to 48%, and more varying
ratios for evolutionary graphs, ranging from 27% to 63%. The
lower efficiency of totally unfiltered evolutionary dependencies
explains their lower clustering quality in the previous experi-
ment. With a stronger filter setup, the evolutionary dependen-
cies, however, provide better dependency efficiencies. But this
does not automatically imply better clustering results.

2) Dependency Density: Although we covered considerable
development time spans of one year up to six years, the
average node coverage rate of the evolutionary dependencies
is 53% at most. In other words, on average there is no
evolutionary information available for about half of the system.
We had to ignored the initial check-in because it does not
provide any reliable co-change information and the developers
just did not change the files in the considered time span (1 to
6.5 years, see Table I). In contrast, the CUG and SCDG nearly
cover the whole system; their average node coverage rate is
86% (CUG) and 93% (SCDG).

The low coverage rates of the evolutionary dependencies are
clearly the main problem of a clustering approach exclusively
based on this kind of data: Many parts of the system just do
not get changed over years. Since the frequently changed parts
of the system might be much more relevant in many software
clustering applications, the evolutionary dependencies at least
cover the potentially critical parts of the system. Nevertheless,
structural dependencies obviously remain the first choice when
complete coverage is important.

3) Filtering: The intra-edge percentages show that the
dependency efficiency increases significantly with higher con-
fidence values while the coverage rate only decreases slightly.
In contrast, varying the support, just the first step (incre-
menting the support threshold from 0 to 1) enhances the
efficiency. Further increments show no relevant positive effect,
but decrease the coverage rate heavily. All in all, filtering by
confidence seems to be more successful for the application of
software clustering than filtering by support.

Result 2. The dependency density, not the dependency effi-
ciency, is the main problem of the evolutionary dependencies
and explains their lower clustering quality. Nevertheless, it is
important to filter the evolutionary data to exclude inefficient
dependencies. Filtering by confidence works much better than
filtering by support.

C. Experiment 3: Combined Data Sources
Clustering exclusively based on evolutionary data was only

partly successful because the data density is often too low for
a complete clustering. Since the data quality of the filtered
evolutionary dependencies is good, yet sparse, in this exper-
iment we integrated the evolutionary dependencies into the
dense structural data to improve the overall clustering results.

For this experiment we only considered a subset of the
previously used graphs because the expected extra gain would
not justify the extra effort of combining each of the four
structural graphs with each of the 15 evolutionary graphs.
SCDG will be the representative of the structural graphs while
the following selection of evolutionary graphs represents the
evolutionary data: the raw data (ECDG0

0.0), the best setup
in the first experiment (ECDG0

0.4), two trade-offs between
efficiency and coverage (ECDG0

0.8 and ECDG1
0.4), and a setup

focusing on efficiency (ECDG1
0.8).

1) Simple Union: A straightforward method to integrate
structural and evolutionary dependencies is a union operation
on graphs.

Definition 5. Given two unweighted directed graphs, G1 =
(V1, E1) and G2 = (V2, E2), the graph union operation ∪
applied to G1 and G2 creates an unweighted directed graph

G1 ∪G2 := G3 = (V3, E3)

with V3 := V1 ∪ V2 and E3 := E1 ∪ E2 (here, ∪ denotes the
normal set union operation).

Table V presents the new clustering results for the combined
data sources and contrasts them to the results of the first
experiment. Please recall the usage of the symbols ’ and *
as precision indicators (introduced in context of Table III).

TABLE V
MOJOFM CLUSTERING QUALITY BASED ON COMBINED STRUCTURAL AND

EVOLUTIONARY DEPENDENCY GRAPHS USING THE UNION OPERATION.

n = 50, σ̂x ≤ 2.2 Azur. JEdit JFC JFtp JUnit Tomc. avg

SCDG 49.9’ 65.5* 44.2 54.0 35.0 54.0’ 50.4

ECDG0
0.0 31.7 40.4 40.7 41.5 18.5 11.1 30.7

ECDG0
0.4 35.6 47.0 43.2 42.3 20.7 11.3 33.3

ECDG0
0.8 32.6 45.9 39.8 42.7 20.6 11.4 32.2

ECDG1
0.4 31.3 39.6 28.2 35.2 17.5 7.5 26.6

ECDG1
0.8 27.0 36.9 20.9 35.4 13.4 6.8 23.4

SCDG∪ECDG0
0.0 48.4’ 54.8* 53.1 47.7 28.2 51.7’ 47.3

SCDG∪ECDG0
0.4 50.6’ 63.7* 55.9 52.4 31.9 56.1 51.8

SCDG∪ECDG0
0.8 52.7 68.7’ 53.3* 55.1 34.4 55.9 53.3

SCDG∪ECDG1
0.4 52.3 64.6* 56.0 54.0 32.7 57.0 52.8

SCDG∪ECDG1
0.8 52.6 64.1* 50.5’ 61.0 35.1 56.6 53.3

Combining the graphs with the simple union operation
improves the average clustering quality from 50.4 (SCDG)
to 53.3 (SCDG∪ECDG0

0.8 or SCDG∪ECDG1
0.8). Since we

compare only six projects, a Friedman Test that compares the
results of the SCDG to the four combined graphs integrating
filtered evolutionary data does not rate the distributions as
statistically significant.

In contrast to Experiment 1, a stronger filtering of evo-
lutionary dependencies provides the best results (Experi-
ment 1: ECDG0

0.4; current experiment: SCDG∪ECDG0
0.8 or

SCDG∪ECDG1
0.8). Thus, when combining data sources, effi-

ciency seems to be more important than coverage. Integrating
unfiltered evolutionary dependencies even decreases the clus-
tering quality from 50.4 to 47.3.

Result 3. It is possible to increase the quality of a cluster-
ing based on structural dependencies by integrating filtered
evolutionary dependencies. A stronger filtering is beneficial;
unfiltered dependencies might even decrease the overall qual-
ity.

2) Weighted Union: Both structural as well as evolutionary
dependency information may be flawed: A particular structural
dependency may exist because a developer has misplaced a
method. Similarly, a particular evolutionary dependency may
exist because two classes were changed coincidentally at the
same time. But if both dependencies link the same two classes,
it is unlikely that this happens just by chance. An analysis of
the dependency quality in terms of intra-edge ratios (compare
to Experiment 2) shows the importance of this effect.

Table VI presents the intra-edge and node coverage results
for duplicate dependencies—i.e., dependencies included in
the intersection of both original graphs, which we define
analogously to the union operation: (V1, E1) ∩ (V2, E2) :=
(V1 ∩ V2, E1 ∩ E2). The intra-edge ratio of the duplicate
dependencies (48% to 66%) is clearly higher than the intra-
edge ratio of the original dependencies (structural: 38%; evolu-
tionary: 27% to 62%). Moreover, the intersection still includes
a considerable number of dependencies (node coverage: 9% to
42%). Thus, we try to use this increased efficiency to improve
the clustering results.

TABLE VI
PERCENTAGE OF PACKAGE INTRA-EDGES (FIRST VALUE) AND NODE

COVERAGE (SECOND VALUE) FOR DUPLICATE DEPENDENCIES.

% values Azur. JEdit JFC JFtp JUnit Tomc. avg

SCDG 31;99 59;100 29;98 39;81 33;84 35;94 38;93

ECDG0
0.0 16;54 23;65 40;66 37;68 14;48 30;15 27;53

ECDG0
0.4 39;51 43;64 54;64 41;65 16;48 35;14 38;51

ECDG0
0.8 47;39 53;60 63;56 44;64 16;40 37;14 43;46

ECDG1
0.4 45;34 54;48 89;34 40;49 27;29 49;06 51;33

ECDG1
0.8 51;21 83;41 99;22 46;42 20;22 71;03 62;25

SCDG∩ECDG0
0.0 37;50 55;63 59;45 49;36 42;44 45;11 48;42

SCDG∩ECDG0
0.4 60;29 72;49 58;27 75;13 38;33 42;08 57;27

SCDG∩ECDG0
0.8 63;15 87;40 56;11 50;08 46;17 40;05 57;16

SCDG∩ECDG1
0.4 61;21 74;37 70;13 75;13 37;19 58;03 63;18

SCDG∩ECDG1
0.8 58;09 93;28 75;03 50;08 20;06 100;01 66;09

After integrating both data sources with the union operation,
the relevance of all dependencies is identical. To be able to
exploit the more efficient duplicate dependencies, we introduce
a dependency importance implemented as an edge weight. An
extended union operation on graphs allows to assign a higher
edge weight to duplicate dependencies.

Definition 6. Given two unweighted directed graphs, G1 =
(V1, E1) and G2 = (V2, E2), the weighted graph union
operation ∪[ωa,ωb,ωc] with ωa, ωb, ωc ∈ R applied to G1 and
G2 creates a weighted directed graph

G1 ∪[ωa,ωb,ωc] G2 := (V3, E3, µ)

where (V3, E3) = G1 ∪ G2 and µ : E3 → R is a weight
function defined as

µ(e) :=

ωa if e ∈ E1 ∧ e 6∈ E2

ωb if e ∈ E1 ∧ e ∈ E2

ωc if e 6∈ E1 ∧ e ∈ E2

Note that this definition allows weights of 0, which will
result in ignoring the according dependencies in the clustering
process. A weighted union with weights of 1 for all three
groups is equivalent to the simple union.

These weights influence the Bunch clustering tool, or more
exactly, its internal quality metric. To emphasize the impor-
tance of the duplicate dependencies, their weight is set to
4 while the other edge weights stay 1. Table VII compares
the clustering results based on the weighted union operation
∪[1,4,1] to the previous results.

TABLE VII
MOJOFM CLUSTERING QUALITY BASED ON COMBINED STRUCTURAL

AND EVOLUTIONARY DEPENDENCY GRAPHS USING THE WEIGHTED UNION
OPERATION ∪[1,4,1] .

n = 50, σ̂x ≤ 1.6 Azur. JEdit JFC JFtp JUnit Tomc. avg

SCDG 49.9’ 65.5* 44.2 54.0 35.0 54.0’ 50.4

SCDG∪ECDG0
0.0 48.4’ 54.8* 53.1 47.7 28.2 51.7’ 47.3

SCDG∪ECDG0
0.4 50.6’ 63.7* 55.9 52.4 31.9 56.1 51.8

SCDG∪ECDG0
0.8 52.7 68.7’ 53.3* 55.1 34.4 55.9 53.3

SCDG∪ECDG1
0.4 52.3 64.6* 56.0 54.0 32.7 57.0 52.8

SCDG∪ECDG1
0.8 52.6 64.1* 50.5’ 61.0 35.1 56.6 53.3

SCDG∪[1,4,1]ECDG0
0.0 53.6’ 64.7* 52.1* 48.8 35.1 52.6’ 51.2

SCDG∪[1,4,1]ECDG0
0.4 52.8’ 67.9* 54.8’ 55.4 33.2 55.1’ 53.2

SCDG∪[1,4,1]ECDG0
0.8 52.7’ 71.1’ 54.4’ 57.8’ 37.1 55.4 54.8

SCDG∪[1,4,1]ECDG1
0.4 53.1’ 69.0* 54.8’ 62.1 34.8 55.3’ 54.8

SCDG∪[1,4,1]ECDG1
0.8 52.8 70.4’ 50.0’ 57.4’ 34.9 56.2 53.6

The clustering qualities of the weighted combinations en-
hance slightly in comparison to the non-weighted combina-
tions. This effect is highly significant (p = 0.006, Wilcoxon
Test that compares all non-weighted union clustering results
to the equivalent weighted union results). The best clustering
result increases from 53.3 to 54.8. This extends the dif-
ference between the best combined strategy and the exclu-
sively structural clustering (SCDG: 50.4; SCDG∪ECDG0

0.8

or SCDG∪ECDG1
0.8: 54.8). In contrast to the previous sub-

experiment with simple graph union, in this case a Friedman
Test between the clustering results of the SCDG and of the four
graphs integrating filtered evolutionary dependency graphs
rates the improvement as statistically significant (p = 0.048).

Result 4. The efficiency of duplicate dependencies is better
than the efficiency of general structural or evolutionary depen-
dencies. The clustering results show that emphasizing these
duplicate dependencies in the integration of structural and
evolutionary data is able to improve the clustering further.

3) Parameter Optimization: The weights in the previous
experiment were derived from theoretical considerations. Nev-
ertheless, better weighting setups may exist, which should
be found by systematically varying the weights in a reason-
able range. The following sub-experiment implements such a
weight optimization by comparing the clustering qualities of
differently weighted combined graphs.

To get results in due time, we decided to vary the weights
in five steps, resulting in 53 = 125 different weight setups.
While the SCDG stands for the structural data, the ECDG0

0.8,
which has produced the best results in combination with the
SCDG up to now, represents the evolutionary data. The search
space is covered by the set of weights {0, 1, 2, 4, 8} for each
weight parameter.

Table VIII documents the parameter optimization experi-
ment by a selection of the 14 best clustering results with
respect to the average MoJoFM similarity.

The first and most important conclusion from the results is
that the clustering quality cannot be improved in comparison
to the weighted union ∪[1,4,1] (∪[2,8,2] is equivalent and pro-

TABLE VIII
BEST MOJOFM CLUSTERING QUALITIES BASED ON THE COMBINED
SCDG AND ECDG1

0.4 USING THE WEIGHTED UNION OPERATION IN
DIFFERENT SETUPS.

n = 50, σ̂x ≤ 1.8 Azur. JEdit JFC JFtp JUnit Tomc. avg

SCDG∪[2,8,2]ECDG0
0.8 53.2 71.4’ 54.0’ 57.4’ 37.3 55.9 54.9

SCDG∪[1,4,1]ECDG0
0.8 52.7’ 71.1’ 54.4’ 57.8’ 37.1 55.4 54.8

SCDG∪[2,8,1]ECDG0
0.8 53.4 69.2* 51.1’ 60.3 35.9 55.4 54.2

SCDG∪[2,4,2]ECDG0
0.8 52.3’ 70.0’ 54.9 56.3’ 35.2 55.6 54.1

SCDG∪[2,2,1]ECDG0
0.8 52.6 69.7’ 52.4 58.1 36.2 55.2 54.0

SCDG∪[4,4,2]ECDG0
0.8 53.0 69.7’ 52.1 58.0 36.3 54.9 54.0

SCDG∪[8,8,4]ECDG0
0.8 53.1 69.5’ 52.5 58.5 36.0 54.6 54.0

SCDG∪[4,8,2]ECDG0
0.8 52.6’ 70.8’ 51.1’ 58.8 34.7 55.4 53.9

SCDG∪[4,8,4]ECDG0
0.8 53.1 70.7 53.8’ 55.9 34.9 54.8’ 53.9

SCDG∪[1,2,1]ECDG0
0.8 52.6 69.3* 53.1* 56.4 35.3 56.1 53.8

SCDG∪[1,8,1]ECDG0
0.8 51.2* 70.7* 53.4* 54.3’ 36.4 56.4 53.7

SCDG∪[2,1,1]ECDG0
0.8 52.6 68.8’ 52.5 57.9 35.6 54.8 53.7

SCDG∪[2,4,1]ECDG0
0.8 51.3’ 69.9* 50.6’ 59.4 35.4 55.4 53.7

SCDG∪[4,2,2]ECDG0
0.8 52.4 67.8’ 52.0’ 58.1 36.6 54.8 53.6

. . .

duces nearly the same result). This confirms our preliminary
considerations about emphasizing the duplicate dependencies.
Nevertheless, one should not exaggerate their importance:
∪[1,8,1] is already rated lower.

Additionally, we analyzed the entire list of 125 setups and
observed some further trends:
• Ignoring one of the dependency groups does not produce

good clustering results. Setups that consider all groups
(no weight is 0) reach an average quality of 52.7. Leaving
out exclusively structural dependencies (only the first
weight is 0) produces the worst results of 32.0. Since the
other two groups are much smaller, omitting exclusively
evolutionary or duplicate dependencies is not as dramatic
(exclusively evolutionary: 51.2; duplicate: 52.2).

• Comparing all combinations that consider all dependency
groups, setups where the weight of the duplicate de-
pendencies is among the highest perform slightly better
(53.2) than setups where it is among the lowest weights
(52.6).

• The importance of the structural-only dependencies is
slightly higher than the importance of the evolutionary-
only dependencies. An average over all setups shows that
setups with a higher structural than evolutionary weight
produce a average quality of 53.1 while setups with a
higher evolutionary than structural weight only produce
a quality of 51.4. But as we observed in further experi-
ments, stronger evolutionary filtering setups outweigh this
effect.

Result 5. Each of the dependency groups is valuable. The
parameter optimization underlines again that duplicate depen-
dencies are most important. The bests weight distribution of
exclusively structural and evolutionary dependencies depends
on the strength of the evolutionary filtering.

IV. THREATS TO VALIDITY

By default, the results of a study are only valid for the
examined subjects—here, for the sample software projects in

a certain version. The current study is based on six different
software projects that cover a wide range of application types,
however restricted to Java projects and to less than 1000
classes. Nevertheless, the study is one of the most extensive
studies in software clustering—only a few studies examine
more software projects [15], [17] or larger projects [4], [25].
Due to the wide range of studied software projects, the
findings are generalizable to some extent and might be a good
indication for other Java projects and at least a weak indication
for general software projects.

Improving the clustering results of Bunch does not imply by
default that this is also possible for other clustering approach in
the same way. But the example of Bunch indirectly shows the
increased data quality for software clustering integrating struc-
tural and evolutionary data sources. Probably, other approaches
are also able to use this data quality improvement to produce
better clustering results. Similarly, the use case of architecture
recovery limits the validity of the results. Nevertheless, it is
plausible that other use cases of software clustering would
also profit from the applied approach of integrating structural
and evolutionary dependencies. Especially, applications where
completeness is not a prime requirement are predestined for
the usage of evolutionary dependencies.

Although, our goal was to design a completely fair study
that does not bias the result in any direction, we cannot guar-
antee perfect fairness. Possibly, each step in the experimental
design could bias the result. For instance, MoJoFM might
favor the decomposition structure clustered from one of the
data sources. Or Bunch may prefer certain dependency graphs.
We tried to detect and eliminate such biases as far as possible.

Moreover, the study only showed that it is possible to
improve the clustering results by a certain setup, but it cannot
make any statements about to what degree the potential of
the data sources is already used. Although we aimed to use a
high quality clustering setup, it may be possible to get much
better results in a different setup (e.g., with a different data
integration method or other clustering parameters).

V. CONCLUSION

The study shows a positive impact of evolutionary data on
software clustering. A clustering exclusively based on evolu-
tionary dependencies, however, is only successful if substantial
evolutionary data is available. Evolutionary dependencies often
do not cover the set of classes sufficiently. This seems to be
the main reason for the better performance of the aggregated
structural dependencies.

Thus, when clustering a system by only taking evolutionary
dependencies into account, it is most important to rely on
extensive historical data that covers the essential parts of the
system. The main advantages over a purely structural based
clustering are that also non-source files can be considered
and that the approach works independent of the programming
language (in our study a light-weight parser was just used to
identify classes).

An integration of the two data sources unites the advan-
tages of the approaches at the cost of a more complex data

acquisition: In addition to a parsed system core, the clustering
approach is still able to handle non-source files and non-parsed
source files. The clustering quality increases in our experi-
ments, especially when stressing duplicate dependencies. This
confirms the assumption by Andritsos and Tzerpos [1] that
integrating evolutionary may have a positive impact on the
clustering result.

We filtered evolutionary dependencies successfully by con-
fidence and support to increase efficiency of the dependencies.
Thereby, filtering by confidence works better than filtering by
support. A slight filtering turns out to be the best strategy when
the clustering relies on evolutionary dependencies exclusively.
A stronger filtering provides better results if evolutionary data
is only an addition to structural data. Integrating unfiltered
evolutionary dependencies bears the risk of decreasing the
clustering quality.

These data-centered experiments demonstrate how impor-
tant the choice and preprocessing of data sources in the domain
of software clustering is. We believe that studying more
data sources (e.g., dynamic dependencies, documentation, bug
reports, software metrics), other preprocessing techniques, as
well as different data combination strategies is essential for
software clustering. Finally, the gained insights will help
to tailor and customize software clustering techniques for
particular applications like program comprehension, software
(re)modularization, or software reuse.

REFERENCES

[1] P. Andritsos and V. Tzerpos, “Information-theoretic software clustering,”
IEEE Transactions on Software Engineering, vol. 31, no. 2, pp. 150–165,
2005.

[2] N. Anquetil, C. Fourrier, and T. C. Lethbridge, “Experiments with
clustering as a software remodularization method,” in WCRE ’99:
Proceedings of the 6th Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 235–255.

[3] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy, “If your version control
system could talk ...” in ICSE ’97 Workshop on Process Modeling and
Empirical Studies of Software Engineering. ACM Press, 1997.

[4] D. Beyer and A. Noack, “Clustering software artifacts based on frequent
common changes,” in IWPC ’05: Proceedings of the 13th International
Workshop on Program Comprehension. IEEE Computer Society, 2005,
pp. 259–268.

[5] H. Gall, M. Jazayeri, and J. Krajewski, “CVS release history data for
detecting logical couplings,” in IWPSE ’03: Proceedings of the 6th In-
ternational Workshop on Principles of Software Evolution. Washington,
DC, USA: IEEE Computer Society, 2003.

[6] J. Gargiulo and S. Mancoridis, “Gadget: A tool for extracting the
dynamic structure of Java programs,” in SEKE ’01: Proceedings of the
13th International Conference on Software Engineering and Knowledge
Engineering, 2001, pp. 244–251.

[7] S. Kim, T. Zimmermann, J. E. Whitehead, and A. Zeller, “Predicting
faults from cached history,” in ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 489–498.

[8] R. Koschke and T. Eisenbarth, “A framework for experimental eval-
uation of clustering techniques,” in IWPC ’00: Proceedings of the 8th
International Workshop on Program Comprehension. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 201–210.

[9] A. Kuhn, S. Ducasse, and T. Girba, “Enriching reverse engineering with
semantic clustering,” in WCRE ’05: Proceedings of the 12th Working
Conference on Reverse Engineering. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 133–142.

[10] K.-L. Ma, “Stargate: A unified, interactive visualization of software
projects,” in PacificVis ’08: Proceedings of the IEEE VGTC Pacific
Visualization Symposium 2008. IEEE Computer Society, 2008, pp.
191–198.

[11] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval
approach for automatically constructing software libraries,” IEEE Trans-
actions on Software Engineering, vol. 17, no. 8, pp. 800–813, 1991.

[12] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software sys-
tem structures,” in ICSM ’99: Proceedings of the IEEE International
Conference on Software Maintenance. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 50–59.

[13] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code,” in IWPC ’98: Proceedings of the 6th International
Workshop on Program Comprehension. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 45–52.

[14] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 759–780, 2007.

[15] B. S. Mitchell and S. Mancoridis, “Comparing the decompositions pro-
duced by software clustering algorithms using similarity measurements,”
in ICSM ’01: Proceedings of the 17th IEEE International Conference
on Software Maintenance, 2001, pp. 744–753.

[16] B. S. Mitchell, “A heuristic approach to solving the software clustering
problem,” Ph.D. dissertation, Drexel University, 2002.

[17] B. S. Mitchell and S. Mancoridis, “On the evaluation of the Bunch
search-based software modularization algorithm,” Soft Computing,
vol. 12, no. 1, pp. 77–93, 2007.

[18] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”
IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[19] V. Tzerpos and R. C. Holt, “MoJo: A distance metric for software
clusterings,” in WCRE ’99: Proceedings of the 6th Working Conference
on Reverse Engineering. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 187–193.

[20] A. Vanya, L. Hofland, S. Klusener, P. van de Laar, and H. van Vliet,
“Assessing software archives with evolutionary clusters,” in ICPC ’08:
Proceedings of the 16th IEEE International Conference on Program
Comprehension. Los Alamitos, CA, USA: IEEE Computer Society,
2008, pp. 192–201.

[21] L. Voinea and A. Telea, “CVSgrab: Mining the history of large software
projects,” in EuroVis ’06: Joint Eurographics - IEEE VGTC Symposium
on Visualization. Eurographics Association, 2006, pp. 187–194.

[22] P. Weißgerber, “Automatic refactoring detection in version archives,”
Ph.D. dissertation, Univerisity of Trier, 2009.

[23] Z. Wen and V. Tzerpos, “An effectiveness measure for software clus-
tering algorithms,” in IWPC ’04: Proceedings of the 12th International
Workshop on Program Comprehension. IEEE Computer Society, 2004,
pp. 194–203.

[24] A. Wierda, E. Dortmans, and L. L. Somers, “Using version information
in architectural clustering - a case study,” in CSMR ’06: Proceedings of
the Conference on Software Maintenance and Reengineering. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 214–228.

[25] J. Wu, A. E. Hassan, and R. C. Holt, “Comparison of clustering algo-
rithms in the context of software evolution,” in ICSM ’05: Proceedings
of the 21st IEEE International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 525–535.

[26] C. Xiao and V. Tzerpos, “Software clustering based on dynamic depen-
dencies,” in CSMR ’05: Proceedings of the 9th European Conference
on Software Maintenance and Reengineering. Washington, DC, USA:
IEEE Computer Society, 2005, pp. 124–133.

[27] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in ICSE ’04: Proceedings of
the 26th International Conference on Software Engineering. IEEE
Computer Society, 2004, pp. 563–572.

[28] T. Zimmermann and P. Weißgerber, “Preprocessing CVS data for fine-
grained analysis,” in MSR ’04: Proceedings of the 1st International
Workshop on Mining Software Repositories. IEEE Computer Society,
2004, pp. 2–6.

[29] T. Zimmermann, S. Diehl, and A. Zeller, “How history justifies system
architecture (or not),” in IWPSE ’03: Proceedings of the 6th Interna-
tional Workshop on Principles of Software Evolution. Washington, DC,
USA: IEEE Computer Society, 2003.

