
Computer-Aided Extraction of
Software Components
Andreas Marx, Fabian Beck, and Stephan Diehl

University of Trier, Germany
Email: {beckf,diehl}@uni-trier.de

Abstract—In a software project, outsourcing the development
of a particular functionality, reusing a part in another software,
or handing-over a part of the code to a new team member
requires the extraction of an independent subset of the software—
a component. This paper describes and analyzes the process of ex-
tracting such a component. We introduce an automated approach
based on optimizing the cut between the new component and the
remaining system. A visual development tool implements our
approach and interactively supports the extraction. Finally, we
look at the results of a thinking aloud user study and discuss the
lessons learned about the extraction tool as well as the extraction
process.

I. INTRODUCTION

Assume you are involved in the development of a software
project. Your project grows and grows. And it finally reaches a
point where driving the development forward overburdens you
and your team. You are thinking about outsourcing a part of
the project to another development team. If you have invested
much effort in a highly modularized design or if you are just
lucky, you will find an independent, well-defined component
in your software, which you can simply hand over to the
other team. If not, you will have to manually restructure your
system in a time-consuming process until you have established
such a component. Since we believe the latter case to be very
common, we investigate in this paper how a tool might support
you in the extraction of components.

Identify Key Entities This process starts with an existing
project of a development team and the idea of extracting a part
of the system that, for instance, another team is able to develop
independently. The original development team knows the
software in detail. The team probably has a clear idea which
functionality could be candidate for this extraction. But this
idea is more part of a semantic level than directly expressible
in source code entities. Furthermore, this functionality might
partly cross-cut over the dominating software architecture.
Nevertheless, the developers would be able to name a few
key source code entities to be extracted.

Shape the Component The main challenge is to shape
the exact contour of the extracted part in the source code.
The key source code entities could be the seeds for the
final component. They are connected to other entities by
dependencies like method calls, variable usage, inheritance,
or aggregation. These links help to identify strongly coupled
entities. A goal in the extraction process would be to avoid
cutting such strong couplings.

Generate a Contract Once the contour is identified, the
project can be split. Despite the optimization, some depen-
dencies between the two parts will remain. To promote an
independent development of both parts, a kind of contract
is necessary. This contract should regulate the programming
interface but not its implementation.

We already used the term component to denote the extracted
part of the software. In the application at hand, such a
component is not necessarily equivalent to a component in
terms of component-based software engineering, but could be.
In this paper we use the term according to an early definition of
software components (1st ECOOP Workshop on Component-
Oriented Programming, Summary [20]):

“A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties.”

But we consider the second part of the definition—the
independent deployment and composition—as an optional cri-
terion. We want to focus on an independent development and
hence do not insist on an independent deployment. Moreover,
we do not impose strict constraints on the structure of the
components, like conforming to a particular component model
or targeting a particular component platform [19].

As the main contributions of this paper, we formally analyze
and propose a solution to the problem of automatically choos-
ing an appropriate component starting from a set of predefined
key entities (Section II). Extracting this component requires a
set of source code changes, mostly refactorings; the interface
of the component becomes manifest in a contract (Section III).
We implemented the process in a tool that enables developers
to interactively extract a component using an intuitive visual
model of the software project (Section IV). To evaluate our
novel approach and the proposed tool, we conducted a thinking
aloud study on three real-world systems (Section V).

II. EXTRACTION OF COMPONENTS

We intend to analyze the problem of extracting a component
in general way, but without neglecting practical implications.
We thus concentrate on object-oriented systems. Although
we use Java terminology in the following to be clear and
specific, similar concepts may also apply to other object-
oriented languages.

17th Working Conference on Reverse Engineering, WCRE 2010

A. Code Dependencies

A class consists of a declaration, fields, constructors, and
methods; an interface only of a declaration and methods. In-
heritance relationships, method calls or field accesses represent
different forms of dependencies among those source code en-
tities. Such structural relationships will provide the underlying
code dependencies that we have to consider when extracting
a component. In particular, we regard the dependency types
listed in Table I.

TABLE I
DIFFERENT DEPENDENCY TYPES AMONG SOURCE CODE ENTITIES.

Dependency Type Code entity e depends . . . Allowed type of e

Class/
Interf.

Field Constr./
Method

Inheritance . . . on class/interface A if e in-
herits from A or implements A.

×

Type . . . on class/interface A if A is
used to specify a type in e.

× × ×

Constructor Call . . . on constructor c if e calls c. ×
Method Call . . . on method m if e calls m. ×
Field Access . . . on field x if e accesses x. ×

We allow multiple dependencies between two entities. For
instance, three field accesses to the same field in one method
lead to three dependencies. Later, these multiple dependencies
may help to define the strength of an edge. Furthermore,
please note that enumerations and reflections—two advanced
concepts in Java—are ignored.

The code dependencies imply a graph structure on the code
entities, which we formally define as follows.

Definition 1 (Code Dependency Graph). Let V be the set of
source code entities consisting of all classes, interfaces, fields,
constructors and methods of a program, let ED ⊂ V × V
represent all source code dependencies as introduced above,
and let EI ⊂ V ×V be the set of inclusion relations according
to the program structure, then the compound directed multi-
graph G = (V,ED, EI) represents the code dependency
graph of the program.

A compound graph denotes a graph with an additional
hierarchy on the nodes [18]. This additional hierarchy is
provided by the inclusion relations between the code entities:
High-level code entities include low-level code entities. For
instance, a class may include a set of fields and methods. Since
the dependencies are directed, the graph at hand is directed,
too. And since multiple edges between two nodes might exist,
the graph is a multi-graph.

We consider classes and interfaces as elementary units for
extracting a component. They are distinct units that can be
moved independently—only minor adjustments are necessary.
In contrast, moving methods would be much more complex.
Furthermore, classes and interfaces represent a intermediate
level of abstractions: They are fine-grained enough to cover the
most important design decisions and they are granular enough
to preserve an overview on the system.

For the component extraction, we define a simplified graph
structure based on classes and interfaces.

Definition 2 (Class Dependency Graph). Let G =
(V,ED, EI) be a code dependency graph, let C be the set
of classes and interfaces in V , and let c →∗ c′ denote that
there is a path from c to c′ in the inclusion relation EI . Then,
the directed graph GC = (C,EC) with

EC = {(c1, c2)|∃v1, v2 ∈ V : c1 →∗ v1, c2 →∗ v2,
and (v1, v2) ∈ ED}

is called class dependency graph.

Classes and interfaces form the nodes of this aggregated
graph. An edge between two classes (or interfaces) is formed
by aggregating all dependencies that connected the one class
or one of its descendants with the other class or one of its
descendants in the original graph.

B. General Component Extraction Problem

The user identifies key source code entities—a set of classes
and interfaces—as the heart of the new component. The
remaining nodes are free to be moved into the extracted
component or to stay in the remaining part (also called original
component). Nevertheless, some classes and interfaces might
definitely belong to the core of the application and must not
be extracted. We denote these classes and interfaces by key
entities of the original component. Together, these three sets
form the input for the component extraction process, the initial
component partition.

Definition 3 (Initial Component Partition). Let C be the set of
classes and interfaces, then a partition s = (Co, Ce, Cf) of C
where Co represents the key entities of the original component,
Ce the key entities of the extracted component, and Cf the free
nodes is called an initial component partition of C. The set
of all possible initial component partitions is denoted by S.

Based on such an initial component partition, the extracted
component is to be formed by assigning the free nodes to
the extracted or the original component. But the key entities
are not allowed to be moved. A partition consisting of an
extracted component and a remaining component created like
this is called valid.

Definition 4 (Valid Component Partition). Let s =
(Co, Ce, Cf) be an initial component partition of C, then each
partition (C ′o, C

′
e) of C with Co ⊂ C ′o and Ce ⊂ C ′e is called a

valid component partition of s. The set of all valid component
partitions is denoted by V(s).

Extracting a component from a given software project
consists of transforming an initial component partition into a
valid component partition. Thus, finding an optimal extracted
component is equivalent to finding an optimal valid component
partition with respect to an objective function.

Problem 1 (General Component Extraction). Given an initial
component partition s and an objective function m : V(s)→

R, then a valid component partition s∗ ∈ V(s) solves the
general component extraction problem if it is optimal in terms
of ∀s′ ∈ V(s) : m(s∗) ≤ m(s′).

The core of this optimization problem is the objective
function. It defines the quality of a valid component partition.

As long as there are no further restrictions on the objective
function, the general component extraction problem is difficult
to solve. We have to exhaustively evaluate all possible 2|Cf |

valid partitions to find the best one.

C. Simple Component Extraction Problem

An approach based on the dependencies between classes and
interfaces, however, simplifies the complexity significantly.
Assume a user-defined function µ states the dependency
strength between two such code entities (e.g., by assigning
weights to each edge type in the code dependency graph).
Then a reasonable objective is to minimize the aggregated
strengths of the dependencies that cross component borders
(interdependencies).

Problem 2 (Simple Component Extraction). Given an initial
component partition s and an objective function

m : V(s)→ N0, (C ′o, C
′
e) 7→

∑
c′o∈C′

o

∑
c′e∈C′

e

µ(c′o, c
′
e)

where µ : C × C → N0. The simple component extraction
problem is a specialization of the general component extrac-
tion problem using objective function m instead of m.

This specialized problem is equivalent to the min-cut prob-
lem in graphs [3] as we will show in the following. A cut in a
graph splits the nodes of the graph into two sets. The min-cut
problem is to find a minimal cut that separates a predefined
source node from a predefined sink node. This problem is
equivalent to find the maximal flow between source and sink
(max-flow problem).

We start at an initial component partition on a class
dependency graph (Definition 2). In contrast to the code
dependency graph (Definition 1), information about the edge
types and multiplicity is lost. We could derive edge strengths
(∈ N0) from the code dependency graph and assign them as
edge weights in the aggregated code dependency graph. For
instance, we may sum up edges according to their multiplicity
and type. But it is not necessary to define a particular strategy
to compute the edge weights—an arbitrary metric is applica-
ble. The result of this first step is a graph like sketched in
Figure 1 (a).

(a) (b)

Fig. 1. Example for transforming the class dependency graph to apply the
min-cut problem.

But we cannot directly apply the min-cut problem to the
retrieved graph. Min-cut needs exactly one source node and
exactly one sink node. But, in the terminology of network
flows, we have a set of source nodes as well as a set of sink
nodes—the sets of key entities. We thus aggregate the key
entities Co to a single node co, and Ce to ce analogously.
This aggregation of nodes also requires to join edges and to
sum up their weights like sketched in Figure 1 (b). Minimizing
the cut between co and ce in the resulting graph Ĝ = (Ĉ, ÊC)
with edge weights µ solves the simple component extraction
problem because m is equal to the capacity of the cut, which
sums up the weights of all cut edges.

The Ford-Fulkerson algorithm solves the min-cut problem
in polynomial time, more precisely, in O(|ÊC |f∗) where f∗

is the capacity of the minimal cut [3].

III. A CONTRACT ON DEPENDENCIES

The component extraction process generates two sets: the
set of extracted classes and the set of classes that remain in
the original part. There are still dependencies between these
two sets, though minimized. As a result, developing either of
the parts might still interfere with the other part.

A first step to tackle the problem of the interdependencies
is to state them. When these interdependencies are explicit,
the developers know which parts they are allowed change
independently and when they have to coordinate changes with
the other development team. The recorded interdependencies
form a kind of contract between both teams, a document that
can only be changed in agreement and that guarantees certain
services.

A second step is, not only to state the dependencies in a
document, but to adapt the source code with respect to them. In
particular, the goal is to generate a set of interfaces that defines
and handles all interdependencies. Changes of the contract
would be explicitly related to changing such an interface.

A. Type, Method Call, and Field Access

The Dependency Inversion Principle, as introduced by Mar-
tin [15], postulates that “details should depend on abstrac-
tions”. In other words, concrete classes should not reference
concrete classes but abstractions of these classes. To this end,
an additional interface of the called class is introduced and
calls are redirected through this interface.

Following the idea and technique of the Dependency Inver-
sion Principle, we redirect the interdependencies between the
extracted component and the remaining software through in-
terfaces. For a class affected by interdependencies, an interface
is automatically generated as follows (Figure 2):
• A blank interface is generated, the class implements this

interface.
• Each interdependently called method is added to the

interface, the call is redirected over the interface.
• For an interdependently accessed field, getter and setter

methods are generated and also added to the interface and
redirected.

Fig. 2. Delegating interdependencies through a new interface in the contract.

Since two-way communication between the components is
possible, we generate interfaces for the classes of the extracted
component as well as of the original component.

Applying this approach to interfaces is straightforward: For
interdependent method calls targeting an interface, another
interface redirecting these calls is generated as part of the
contract. At first, it may sound strange to add another layer
of abstraction for interfaces. However, in many cases, only a
part of the interface is intertwined with the other component
via interdependencies. Adding the whole interface would un-
necessarily swell the contract. In contrast, creating additional
tailored interfaces keeps the contract reduced to the minimum.

These new interfaces cover interdependent type depen-
dencies, method calls and field accesses—three of the five
dependencies presented in Table I. All necessary code changes
are simple because they can be implemented by refactorings—
automatable code change patterns that preserve the semantics
of the source code. Encapsulate Field and Extract Interface
refactorings [5] are sufficient.

The Interface Segregation Principle, also put forward by
Martin [15], suggests that “clients should not be forced to
depend on methods that they do not use”. It thus propagates
using a tailored interface for every client. If each class repre-
sents a client, this leads to a large set of interfaces with mul-
tiple redundancies—especially if applied automatically like
necessary for our approach. But when extending the definition
of client from classes to components, our approach already
fulfills this principle: It generates tailored interfaces for each
client (i.e., component).

B. Constructor Call

Constructor calls are a special form of method calls. In
contrast to method calls, they cannot be redirected over
interfaces—interfaces do not allow constructors. We thus need

a different mechanism to add constructor specifications to the
contract.

Factory methods are a simple solution for this problem. For
each interdependently called constructor, we create a static
factory method that just redirects the constructor call. We
gather all these factory methods in a single factory class called
ContractFactory and add this class to the contract.

This approach is, however, not as clean as the redirection
by interfaces: The implementing class has to be defined in
the factory method. Replacing the implementation of the
class always requires mutual agreement. A further indirection,
however, would only shift this problem—some constructor
must be explicitly called in the contract.

C. Inheritance

Inheritance dependencies crossing component borders are
much more difficult to indirect than method calls. While a
calling class only has very limited access to the callee, an
extending class could be heavily intertwined with the extended
class: Dependencies may exist to fields, to methods, or to
constructors of the superclass, or the class may overwrite
methods and fields.

Nevertheless, with some effort, we are able to indirect an
inheritance dependency over an interface. For instance, class
B extends class A as depicted in Figure 3. The first step
would be to extract an interface IA from class A that class
B also implements. Additionally, as the second step, class B is
aggregating class A through the interface IA. The aggregation
allows to redirect calls of the superclass to class A.

Fig. 3. Replacing inheritance by delegation.

This approach might work for some examples, but cannot
be applied as a general method. We have to guarantee, for
example, that an object of class B really aggregates an object
of class A because otherwise it might aggregate another
object of class B which would lead to infinite redirection
(IA a = new B();). Other problems are the initial instan-
tiation of A in class B or necessary extensions of visibility.

In conclusion, resolving an inheritance dependency should
not be a default operation. The user has to be aware that
inheritance is a strong kind of coupling between classes.
If possible, such a dependency should not be parted by
component extraction—superclasses that are supposed to be

very stable might form an exception, for instance, members
of a software library.

D. Contract Contents

With the help of the presented refactoring steps, we en-
capsulate interdependencies between the components in a
contract. All dependency types but inheritance can be managed
automatically in this way. Finally, the contract includes
• a set of interfaces that encapsulates classes and interface

and
• a factory class that redirects constructor calls.
All newly built interfaces are part of the contract. The

extracted component communicates with the remaining system
only through these interfaces—as discussed, inheritance may
form an exception. Since interfaces and factory methods are
only generated as far as necessary to cover all interdependen-
cies, this contract is minimal. It exactly represents the parts
that are necessary to coordinate the development.

E. Reconsidering Component Extraction

Some interdependencies might only slightly affect an in-
dependent development of the components, while others con-
stitute a significant hurdle. As we have seen, for example,
inheritance relationships between components are difficult to
handle. The simplified component extraction problem allows
to take such differences into account by assigning different
edge weights to different dependency types.

But as the following example shows, this approach cannot
directly take the necessary refactorings into account. Assume
a method is called by a method from the other component. If
we now add another method calling from the other component,
in terms of edge weights, this would be twice as bad than just
one method calling. But we do not need to add anything to the
contract. Thus, the quality of a partition might depend more
on the size of contract and the complexity of the necessary
refactorings than on the capacity of the cut.

Just changing the edge weight metric does not solve the
problem because the structure of the contract depends on the
structure of the whole partition. We would need adaptive edge
weights that change with the layout of the partition. This,
however, violates the preconditions of the min-cut problem.

But it is possible to implement a more elaborate approach
based on the general component extraction problem. An ob-
jective function may take the complexity of the contract into
account. To this end, we propose to assign fixed costs γ(r) to
each refactoring r. This approach already looks ahead at the
later on necessary refactorings.

Finally, we suggest the following objective function for the
general component extraction problem:

m(s) = λ1 ·
∑

c′o∈C′
o

∑
c′e∈C′

e

µ(c′o, c
′
e) + λ2 ·

∑
r∈R

γ(r)

where s = (C ′o, C
′
e) is a valid component partition, µ an

edge weight, R the set of all necessary refactorings for the
particular partition, and λ1, λ2 ∈ R+

0 weight parameters. This

function includes the complexity of the refactorings as well as
the capacity of the cut. The weight parameters λ1, λ2 allow to
balance these concepts individually.

IV. INTERACTIVE TOOL AND VISUALIZATION

We developed a tool called ComponentExtractor as a proto-
type implementation of the component extraction approach in-
troduced in Section II and Section III. The tool is a stand-alone
Java application that processes Java software projects based on
their byte code. It visualizes the source code entities and their
dependencies in a high-level visual representation. The core
of the tool is an implementation of the component extraction
process in different variants. The visualization provides a user
interface to interactively control the extraction process as well
as to present the results of the automatic extraction. Finally, an
export of the proposed source code refactorings to the Eclipse
IDE integrates our tool into the development environment.

A. Dependency Extraction

The first step toward a tool support for component extraction
is the data acquisition—extracting the different kinds of source
code dependencies as listed in Table I. We use the BCEL
library (Byte Code Engineering Language) [4], which works
on Java byte code, to extract all necessary information. Please
note that, due to late binding in Java, the results are an
overestimation of the actual dependencies. Nevertheless, since
we are only interested in transitions of the static source code,
they are sufficiently exact for our purposes. The result of
this data acquisition phase is a code dependency graph as
introduced in Definition 1.

B. Component Extraction Algorithms

Our specification of the component extraction problem
(Problem 1 and 2) does not exactly lay down the implementa-
tion of the component extraction algorithm. First of all, some
parameters need to be defined.

To apply the simple component extraction problem (Prob-
lem 2), we have to specify edge weights µ. We use the fol-
lowing algorithm to compute these weights: Each dependency
type has a specific weight, which is defined by the user. For
two entities c1, c2, the edge weight µ(c1, c2) is the sum of
these type weights over all edges between c1 and c2 in the
class dependency graph.

We implemented an instance of the general component
extraction problem (Problem 1) according to the propositions
in Section III-E. Additional to the edge weights, which also
play a certain role in this variant, the user is able to set up the
refactoring costs for each elementary refactoring. The balance
between the different aspects of optimization, defined by the
parameters λ1, λ2, is also customizable.

Furthermore, the specification allows to select an opti-
mization algorithm. Our tool ComponentExtractor includes
different implementations that solve the component extraction
problem.

Min-Cut Algorithm The algorithm addresses the simple
component extraction problem (Problem 2) by solving the

Fig. 4. Visualization of the code dependency graph in ComponentExtractor.

min-cut problem with the Ford-Fulkerson algorithm as de-
scribed in Section II-C.

Exhaustive Algorithm The algorithm performs an exhaus-
tive search to find a global optimum for the general component
extraction problem (Problem 1). This naive implementation
does only work for very small datasets.

Hill Climbing Algorithm This hill climbing optimization
algorithm provides a more efficient approach to the general
component extraction problem (Problem 1). The starting point
is given by the current component partition as visualized in
the tool. The algorithm, however, only yields approximations
of the optimal solution.

Library Extraction This algorithm addresses the extraction
of a library, a specialization of component extraction that
we did not cover in Section II. The algorithm just computes
the transitive hull on the class dependency graph starting
from the selected key entities (i.e., the set of all reachable
entities) and extracts this hull. This approach could be useful
for extracting passive components—components that do not
access the original component.

These algorithms are also applicable in combination. An ef-
ficient strategy might be to first run the fast min-cut algorithm
and then use the result as the starting point of the hill climbing
algorithm, which additionally takes the refactoring costs into
account. The hill climbing algorithm might not yield as good
results when starting from default.

C. Visualization
The user interface of ComponentExtractor mainly consists

of a visual representation of the code dependency graph. We
use a node-link diagram for this visualization. In particular, it
is a simplified variant of UML class diagrams. Figure 4 gives
a first impression of the visualization.

The view is split into three main parts: the original compo-
nent (A), the contract (B), and the extracted component (C).
While in the initial state, all classes and interfaces belong to
the original component, using the tool some of these entities
will move to the extracted component or the contract—either
by user’s activity or by the automatic component extraction.

Like in UML, boxes represent the classes and interfaces.
Since it is very important to use the screen space efficiently,
these boxes are collapsed by default (D). Clicking on a
node enlarges the box and provides attribute and method
information (E). Tooltips show additional details on demand
(F).

Links between the boxes depict the dependencies among the
entities. But unlike UML, we use colors to discern dependency
types instead of more space consuming markers and stroke
types. Displaying all dependencies of the graph at once pro-
duces cluttered diagrams with many overlapping edges. Hence,
the initial view just shows inheritance relationships—probably
the most important dependency type. The dependencies of
other types appear when they become the center of focus, for
example, when they form interdependencies between extracted
and original component (G).

D. Component Extraction Process

In the following we describe how our tool implements com-
ponent extraction as an interactive process. Figure 5 provides
an overview.

First of all, the users are able to choose an initial compo-
nent partition (Definition 3): They firmly assign classes and
interfaces either to the original or the extracted component.
The border color of the boxes indicates these assignments.
All remaining entities are free to be moved by the algorithm.

Fig. 5. Overview on the interactive component extraction process.

Before starting the component extraction, at least one entity
has to be assigned as a key entity of the extracted component.
Then, component extraction can be applied. The algorithm
might move free entities from the original component to the
extracted component, or vice versa. Moreover, if activated,
it probably creates some new interface and factory methods,
which form the contract.

The visualization presents these results to the user as
illustrated in Figure 6. In this example, the user se-
lected Grafik to be extracted while the RPPClient,
RPPServer, Server class had to remain in the original
component. The component extraction algorithm proposes to
extract six further classes. The contract redirects all interde-
pendencies. It consists of five interfaces and one factory class.

The user is able to interactively modify the components. For
example, it might turn out, in contrast to the initial choice,
that some entities should not be moved. Or the identified key
entities of the extracted component were not enough to extract
a meaningful component. After refining the preconditions,
reapplying the algorithm probably provides more suitable
results. This process of changing inputs and checking results
would typically be repeated several times until the identified
components are satisfying.

Finally, the users might adapt some details. For instance,
they want to undo some of the automatically proposed refac-
torings, to manually add another interface to the contract,
or to move a class from one component to the other. Our
tool ComponentExtractor provides the necessary features to
customize the partition proposed by the algorithm.

These interactions are very important for the practical appli-
cability of our approach. We do not claim that our component
extraction approach provides optimal results in one step. But
it proposes component structures that help the users to design
suitable components with respect to their individual needs. We
think component extraction should be more an interactive and
iterative process than a fully automatic method.

E. Export Refactorings

Finally, we need to reintegrate our results into the develop-
ment process: The source code has to be changed according

to the proposed refactorings. A simple way to implement this
task is to use the refactoring capabilities of an Integrated
Development Environment (IDE). Eclipse1, a popular IDE
in the Java community, provides a refactoring description
language based on the XML data format of the ‘CatchUp!’
refactoring recording tool [8]. We use this format to import
the refactorings into Eclipse and to apply the refactorings to
the code.

At present, still some code changes have to be performed
manually because, for instance, introducing new classes as
required for the factory class cannot be directly described as
an Eclipse refactoring.

V. USER STUDY

We conducted a small user study to test the general appli-
cability and usefulness of the proposed component extraction
process. In particular, we evaluated the presented approach
in a thinking aloud user study [12] with three experienced
developers. We prefer such an experimental design, where the
users are asked to speak out their thoughts while interacting
with the tool under examination, for several reasons: It is
a light-weight design that provides a broad picture of the
examined approach. Furthermore, the explorative character of
such a study allows to work on real-world examples.

We are aware that a thinking aloud study is only a first step
toward an exhaustive evaluation of our approach. Such a study
does not provide any statistical evidence, but only subjective
ratings. Nonetheless, due to its explorative character, it could
be better suited for a first evaluation than a more narrow
quantitative study.

A. Experimental Design

We invited three postgraduate computer scientists to partic-
ipate in the study. They were experienced software developers
with programming experience of 9 to 12 years (4 to 8 years
in Java). We introduced the task of component extraction and
asked them to think about a software project where they want
to apply this task. Each participant chose a project, resulting
in the following list of three systems:

P1 web-based visualization of large bibliographic networks,
research project, 139 classes.

P2 poker game, student project, 72 classes.
P3 code clone detection tool, research project, 123 classes.
In each case the participant was the exclusive developer

of the software system. While P1 wanted to extract the
database connection and P2 the GUI and AI component,
P3 preferred to check whether our tool confirms the already
existing components.

The experiment started with a brief oral tutorial on com-
ponent extraction. We varied the intensity of this tutorial:
The experimenter explained the task and introduced the user
interface of ComponentExtractor for participants P1 and P2.
To test how intuitive our tool works, P3 only got an oral
description of the task.

1http://www.eclipse.org

Fig. 6. An example of the visualization in ComponentExtractor after component extraction.

The thinking aloud test itself took 50 to 60 minutes. Only
the participant and the experimenter were in the room. The
experimenter briefly explained the thinking aloud method and,
if necessary, again encouraged the participants to speak out
their thoughts loudly during the test. The test was taped on
video for later analysis.

In each case, the test began with a small introductory
example, a student project consisting of 23 classes. The
participants were asked to explore the software project and to
try to initially extract a component they consider useful. This
first stage intended to assess intuitiveness and usability of the
visualization. Here, they were asked to extract the component
they had chosen beforehand. This second stage aimed for
checking the applicability of the proposed component extrac-
tion approach.

B. Usability Results

A thinking aloud study often yields a great deal of detailed
ideas on how to enhance usability. From our study, we
retrieved concrete usability problems like particular ambiguous
labels, missing help texts, mistakable and cumbersome inter-
actions. But the study also indicated some general usability
aspects of component extraction:

Intuitiveness largely depends on familiarity. As we used
UML-like symbols, the participants immediately understood
the rough outlines of the visualization. Even P3, who did not
get any description of the tool, was able to use most of its
features. Problems occurred when the visualization deviated
from UML notation. For instance, we color coded visibility
modifiers instead of using the symbols +, #, -, and ˜.

The representation of dependencies significantly influ-
ences usability. We invested some effort to create a readable
layout, for instance, by only showing focused dependencies
or by summarizing dependencies. Nevertheless, participants
complain about missing overview, difficulties in following
dependencies, or hard to perceive directions of dependencies.

C. Component Extraction Results

The experiments also provided some insights into the pro-
cess of component extraction. In general, the first run of

extracting a component was not satisfying. All participants no-
ticed dependencies that they had not expected. They expressed
the wish to change their source code and to eliminate those
dependencies. Since this was not possible in the study, they
had to react otherwise. For example, they tried to adapt the
parameters of the objective function to find another solution.

In detail, P1 was able to identify a component but was not
completely satisfied because two obsolete classes interfered
with the extraction. P2 realized that the classes of his program
were too strongly connected to extract a meaningful compo-
nent. Finally, P3 could mainly confirm the already existing
components with the algorithm and furthermore noticed some
unintended dependencies.

Our observations lead to the following conclusions:
Component extraction is an iterative process. The result

of the component extraction process might reveal design
weaknesses in the examined code. Iteratively revising the code
and reapplying component extraction would be necessary.

Component extraction supports program comprehen-
sion. Every participant of the study gained new and unexpected
insights into the source code of their system. The interplay
between component extraction and the visual representation
of the system could identify design problems like unintended
dependencies or badly structured classes.

VI. RELATED WORK

Automatic identification and extraction of components in
terms of component-based software engineering is closely
related to our approach. Washizaki and Fukazawa [22] start at
a key class and trace all dependencies to find the boundary of
the new component—similar to our library extraction variant
based on computing the transitive hull (Section IV-B).

A different application, however employing similar algo-
rithms, is tailoring libraries for mobile systems (also called
application extraction): The application should be reduced
in size—which is crucial for the mobile devices—without
changing its behavior. Tip et al. [21] present an approach that,
among other things, looks at the call graph of the application
and cuts all parts that will not be needed. This again is
equivalent to computing the transitive hull.

On program statement level, extracting parts of reusable
software like functions could be done by program slicing [11].
A program slice describes the set of program statements that
affects a set of variables at a particular point of interest. Slicing
was also applied on architecture description languages [23].
This allows extracting parts of the software architecture for
reuse, but needs a formal description of the software architec-
ture. Usually, much of the intelligence of a slicing approach is
in constructing an appropriate graph structure, not in a graph
algorithm. Our approach focuses, in contrast, more on the
graph algorithm that cuts the graph into two parts. Program
slicing might add to our approach when changes below class
level would be necessary.

Some approaches focus more on the identification of com-
ponents than on the extraction. Mockus and Weiss [16] try to
find parts of the software as component candidates that were
frequently changed together, but were developed at different
sites. Extracting those parts may reduce the communication
overhead. Baniassad and Murphy [1] present an approach
where the user selects a set of lines of code that will be
virtually transformed into a new component. Querying the
changed structure provides a preview on the new component.
Switching between selecting and querying might support the
user to find appropriate candidates for component extraction.

In contrast to the previously described works, approaches
based on clustering [14] address a more holistic perspective:
They intend to classify every part of the system, not only a
smaller part of particular interest. A recent study by Glorie
et al. [7], however, raises the question how far these holistic
approaches are really applicable in practice. They tried dif-
ferent software clustering and concept analysis techniques on
splitting large software systems and came to the conclusion
that the algorithm should support initial partitions and should
not be allowed to tear these partitions apart. Our component
extraction approach fulfills these two requirements—not on
clustering the whole software, but on a local level. Other works
also stress the importance of interactivity in similar scenarios:
Koschke [10] presents an incremental and interactive approach
to software clustering. Müller et al. [17] argue that subsystem
identification should never be fully automatic.

From the algorithmic point of view, our approach is related
to min-cut clustering [9]. This approach clusters the nodes
of a graph into K sets by minimizing the cut between these
sets. As in our work, the sum of the weights on edges that
go between the sets forms the cut. The difference is, first, that
we only consider two clusters (i.e., components), and second,
that we start with key entities for both clusters.

A similar graph clustering algorithm has already been ap-
plied to code dependency graphs [13]. The objective function
applied there does not only consider the capacity of the cut
but also the cohesion among the entities in the components.
Chiricota et al. [2] present an elaborate edge weight metric
for software dependencies that indicates whether an edge is in
the center of a component. They used this metric to fade out
less important dependencies. Perhaps this edge weight metric
can be profitably applied in our approach.

Visualizing code dependencies of software projects is part
of software visualization and related to graph drawing. UML
diagrams are the industry standard to visualize code entities
and their dependencies. But there exist lots of alternatives with
different focuses [6].

All in all, we are not aware of any approach that is tackling
exactly the same problem as we discuss in this paper. Other
component extraction and slicing approaches focus on other
applications and use less sophisticated or extensible extraction
processes. Existing holistic software clustering approaches do
not allow to incrementally and interactively improve a software
decomposition and shape a customized component.

VII. DISCUSSION

Applicability We expect component extraction to be useful
for various software development tasks:
• A part of a software system is to be outsourced to another

development team.
• A new team member starts working in a development

team; a part of the source code is to be assigned to his
responsibility.

• A part of an old software project is to be reused in another
project.

• An existing modularization of a project is to be checked
against design shortcomings.

• A software project is to be re-modularized.
A well-organized software project already consists of

component-like structures—parts of the software that have a
high internal cohesion and a low external coupling. But like
code refactorings are necessary to react to evolving code,
component extraction—as a kind of high-level architectural
refactoring—is necessary to react to evolving architectures.
Moreover, considering all possible extensions of a software
system in the initial design is known as the ‘bad smell’ of
speculative generality [5].

Nevertheless, there are limiting factors for our approach.
Concerns intertwined in the class structure are a major prob-
lem. Extracting these would require changes below class level.
As we learned from the user study, this problem occurs, for in-
stance, when there exist too many interdependencies between
the classes. Similarly, the component extraction approach is
not suitable for the application of aspect mining, where the
concerns are distributed across classes per definition.

Different applications of component extraction might re-
quire different strategies. Since we described the component
extraction problem as a general optimization problem, it is
open for adaptations. The particular definition of the objective
function expresses these adaptations. For instance, we take
refactoring costs into account in our implementation. The
simplified component extraction problem somewhat narrows
the scope. But still the graph structure and edge weights may
model different types of code dependencies.

Scalability The user study shows that our prototype tool is
working for projects up to 139 classes—small projects.

On the one hand, the scalability of component extraction
is defined by the scalability of the tool and its visualization.

We observed that the visualization nearly reached its capacity.
We believe our visual representation could be enhanced by
focusing, zooming, and filtering techniques to handle at least
mid-size projects.

On the other hand, we have to discuss the scalability of
the extraction approach itself. The Ford-Fulkerson algorithm
solves the simple component extraction problem in O(|Ê|f∗)
where f∗ is the capacity of the minimal cut. This algorithm
is able to also handle large projects: We applied the algorithm
to the Azureus project (now called Vuze) including over 3000
classes and got the results within a few seconds computation
time. In contrast, the general component extraction problem is
more difficult. We already had to employ a heuristic to solve
the problem for smaller projects in feasible computation time.
The current implementation of the hill climbing optimization
is too slow for large projects like Azureus. But we assume
that a more elaborate implementation or optimization approach
could solve the problem much faster.

Future Work As we learned from the user study, it is
very important to seamlessly integrate a component extraction
tool into the development environment. With exporting the
refactorings to Eclipse we have already done a first step toward
this goal. But further steps would be necessary, like integrating
a smooth and easy switch from source code to component
extraction and vice versa.

From the viewpoint of the component extraction approach,
we proposed two explicit optimization criteria, namely, min-
cut and refactoring costs. These criteria were derived from
theoretical considerations, but not directly assessed by an
evaluation. The next major step would be to evaluate these
and maybe further criteria in a thorough quantitative study.

VIII. CONCLUSION

We introduced component extraction as an important prob-
lem in software maintenance. It applies when existing code
needs to be partitioned, for instance, to integrate new team
members, to facilitate software reuse, or to enable outsourcing.
We formally described the extraction process as a general
optimization problem. In a simplified version, the problem
is equivalent to the min-cut problem in graphs. The Ford-
Fulkerson algorithm thus solves this simplified problem ef-
ficiently.

After the extraction process, a set of interfaces and fac-
tory methods encapsulates the still existing interdependencies
among the extracted component and the remaining part of
the software. This set forms a kind of contract between the
developers of the two parts. We derive the content of the
contract automatically by applying code refactorings.

Our tool ComponentExtractor implements the component
extraction approach and provides a visualization of the code
dependencies. The tool facilitates to interactively control the
component extraction process and visually represents its re-
sults. We evaluated the tool in a small thinking aloud user
study. The study showed the applicability of the approach and
its additional capabilities concerning program comprehension.
Lessons learned were that component extraction should be an

interactive and iterative process that needs to be seamlessly
integrated into the development process.

REFERENCES

[1] E. L. A. Baniassad and G. C. Murphy, “Conceptual module querying
for software reengineering,” in ICSE ’98: Proceedings of the 20th
international conference on Software engineering. IEEE Computer
Society, 1998, pp. 64–73.

[2] Y. Chiricota, F. Jourdan, and G. Melançon, “Software components
capture using graph clustering,” in IWPC ’03: Proceedings of the 11th
IEEE International Workshop on Program Comprehension. IEEE
Computer Society, 2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. The MIT Press, 2001.

[4] M. Dahm, “Byte code engineering,” in Java-Informations-Tage, 1999,
pp. 267–277.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code (Addison-Wesley Object Tech-
nology Series). Addison-Wesley Professional, 1999.

[6] Y. Ghanam and S. Carpendale, “A survey paper on software architecture
visualization,” University of Calgary, Tech. Rep., 2008.

[7] M. Glorie, A. Zaidman, A. van Deursen, and L. Hofland, “Splitting
a large software repository for easing future software evolution - an
industrial experience report,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, no. 2, pp. 113–141, 2009.

[8] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying refactor-
ings to support API evolution,” in ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering. ACM, 2005, pp.
274–283.

[9] E. L. Johnson, A. Mehrotra, and G. L. Nemhauser, “Min-cut clustering,”
Mathematical Programming, vol. 62, no. 1, pp. 133–151, 1993.

[10] R. Koschke, “An incremental semi-automatic method for component
recovery,” in WCRE ’99: Proceedings Sixth Working Conference on
Reverse Engineering, 1999, pp. 256–267.

[11] F. Lanubile and G. Visaggio, “Extracting reusable functions by flow
graph-based program slicing,” IEEE Transactions on Software Engineer-
ing, vol. 23, no. 4, pp. 246–259, 1997.

[12] C. Lewis and J. Rieman, Task-Centered User Interface Design: A
Practical Introduction. University of Colorado, Boulder, 1993.

[13] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner,
“Using automatic clustering to produce high-level system organizations
of source code,” in IWPC ’98: Proceedings of the 6th International
Workshop on Program Comprehension. IEEE Computer Society, 1998,
pp. 45–52.

[14] O. Maqbool and H. A. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Trans. on Software Engineering, vol. 33,
no. 11, pp. 759–780, 2007.

[15] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices, 1st ed. Prentice Hall, 2002.

[16] A. Mockus and D. M. Weiss, “Globalization by chunking: A quantitative
approach,” IEEE Software, vol. 18, no. 2, pp. 30–37, 2001.

[17] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl, “A reverse
engineering approach to subsystem structure identification,” Journal of
Software Maintenance: Research and Practice, vol. 5(4), pp. 181–204,
1993.

[18] K. Sugiyama and K. Misue, “Visualization of Structural Information:
Automatic Drawing of Compound Digraphs,” IEEE Trans. on Systems,
Man and Cybernetics, vol. 21, no. 4, pp. 876–892, 1991.

[19] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Addison-Wesley Professional, 2002.

[20] C. Szyperski and C. Pfister, “Workshop on component-oriented program-
ming, summary,” in Special Issues in Object-Oriented Programming -
ECOOP ’96 Workshop Reader, M. Mühlhäuser, Ed. dpunkt Verlag,
1997.

[21] F. Tip, P. F. Sweeney, and C. Laffra, “Extracting library-based Java
applications,” Commun. ACM, vol. 46, no. 8, pp. 35–40, 2003.

[22] H. Washizaki and Y. Fukazawa, “Automated extract component refac-
toring,” in Extreme Programming and Agile Processes in Software
Engineering, 2003, p. 1016.

[23] J. Zhao, “A slicing-based approach to extracting reusable software
architectures,” in CSMR ’00: Proceedings of the Conference on Software
Maintenance and Reengineering. IEEE Computer Society, 2000.

