
Highly Configurable And Extensible
Code Clone Detection

Benjamin Biegel and Stephan Diehl
University of Trier, Germany

Email: {biegel,diehl}@uni-trier.de

Abstract—Code clone detection is an enabling technology for
plenty of applications, each having different requirements to a
clone detector. In this paper we present a generic pipeline model
of the code clone detection process. Based on this model we
developed the JCCD code clone detection API for implementing
custom clone detectors. By combining and parameterizing pre-
defined API components as well as by adding new components,
the pipeline model does not only facilitate to build new clone
detectors, but also to parallelize the detection process.

I. INTRODUCTION

A code clone is a code fragment in source code which is
identical or similar to another code fragment—this description
is likely to be the most popular text clone in code clone
literature. Nevertheless, it is still an open issue to find a more
accurate definition for this fundamental term [8], [15]. By
now, over 40 approaches [13] have been introduced to detect
clones—without having a consistent notion of code clone.

Code clone detection is an enabling technology for plenty
of applications. It is used to find crosscutting concerns, to
help understanding and improving source code, to reduce
source code size, to expose malware, plagiarism and copyright
infringement, to assist software evolution analyses, and to sup-
port refactoring detection [9], [13]. Each of these applications
makes different demands on a clone detector.

In this paper we present a flexible and extensible approach
to the code clone detection process. Due to the ambiguity of
the term code clone, our main idea is to put the user in control.
To this end we formally introduce a generic pipeline model.
It exposes both the interplay as well as the distinction of all
required steps in a clone detection process.

Based on this model, we developed the Java Code Clone De-
tection API (JCCD). It was designed to be flexible, extensible,
accurate, and fast. We have released JCCD into open source
(see http://jccd.sourceforge.net) under the new BSD license.

II. GENERIC PIPELINE AND ITS IMPLEMENTATION

In this section we will define every processing step of the
generic pipeline which is presented in Figure 1. At the end,
we will be able to give a procedural definition of the term
similarity pair. Additionally, we will demonstrate how each
step of this pipeline is implemented in JCCD.

A. Parsing

The pipeline gets plain source code as an input. The task
in the parsing step is to make this source code suitable for

further steps of the analysis. Note that we use the term parsing
here in a more general sense. It does not necessarily require
syntactical analysis.

Definition 1. Let F be the set of all source code files,
U = F×N×N×N×N×A be the set of all source units, A be the
set of annotations, and ℘(F) is the power set of F . Then, the
parsing step is defined by a function pars ∶ ℘(F)Ð→ ℘(U).

Briefly, the parsing step transforms source code into source
units. A source unit (f, lstart, cstart, lend, cend,A) ∈ U refers
to a fragment of a source file f which starts at position cstart
of line lstart and ends at position cend of line lend. A source
unit might be a subtree of an AST, a line, a subgraph of a
program dependence graph, or the like. The representation of
a source unit depends on the used approach (e. g. text-based,
token-based, AST-based, or metric-based). Furthermore, every
approach requires different additional techniques like a line
extractor, a lexer, or a parser.

In JCCD source units are represented by subtrees of an
AST. First, such a tree reflects the syntactical structure of a
document at a certain level of detail. Hence, we are able to take
syntactical information into account, while irrelevant informa-
tion like whitespaces or comments need not be represented
in the AST. Second, it is less sensitive to code restructuring.
Thus, it is less sensitive to minor code modifications. JCCD
uses an automatically generated parser by ANTLR [11].

In Figure 1 we notice two branches which merge in the
same processing step called pooling. This suggests that two
different file sets can be included in the analysis. Only code
clones between those sets will be detected. However, it is also
possible to analyze only one file set. In other words, the lower
branch is optional.

B. Preprocessing

The goal of the preprocessing is twofold: to normalize a set
of source units and to add additional annotations. Normaliza-
tion of a set of source units turns them into a regular form
and thus makes different source units more similar.

Definition 2. The preprocessing step is defined by a function
prep ∶ ℘(U)Ð→ ℘(U).

As input the preprocessing step gets a set of source units. It
can change this set by modifying, removing or adding source
units or annotations.

17th Working Conference on Reverse Engineering, WCRE 2010




Fig. 1. Proposed Generic Code Clone Detection Pipeline.

In JCCD preprocessing is actually implemented by several
cascaded preprocessors. Every preprocessor gets an (prepro-
cessed) AST as input and returns a preprocessed AST as
output. The user is free to select which preprocessors are to
be used. Such a configuration is likely to have a significant
impact on the recall and precision of the overall results.

A preprocessor is able to annotate, remove, collapse, and
group AST-nodes. Some preprocessors normalize the AST
with the above-mentioned operations, such as removing mod-
ifiers, generalizing variable names, or simplifying fully quali-
fied identifiers.

Preprocessors can also compute new annotations based on
the annotations set by previous preprocessors. These anno-
tations can either be important for further preprocessors or
subsequent phases of the pipeline. For example, annotations
can enable to remove getter and setter methods, remove redun-
dant parentheses, mark the scope of variables, or parameterize
variable names consistent within a subtree.

C. Pooling

Next, preprocessed source units are grouped into different
sets, called pools, based on user-defined criteria. Usually, these
criteria are characteristics that can be directly read from the
source unit and its annotations without comparing it to another
one. For example, source units might be put into the same pool
if they have the same variable name, the same numeric value,
the same syntactical relations within the source code, or the
same annotations (computed in the preprocessing). Thus, the
pooling step enables a preselection of code clone candidates.

Definition 3. The pooling step is defined by a function
pool ∶ ℘(U)Ð→ ℘(℘(U)).

Thus, pooling yields a set (P1, . . . , Pn) where each Pi ⊆
℘(U) is called a pool. Source units which are not in the same
pool are not considered candidates for similarity pairs.

D. Comparing

The division of source units into pools allows the compar-
ing step to apply a divide-and-conquer strategy. All of the
given pools will be processed sequentially by comparing all
contained source units recursively.

Definition 4. The comparing step is defined by a function
comp ∶ ℘(℘(U))Ð→ ℘(℘(U)). Let ∼ be a custom equivalence
relation on U . Then, we require that if (G1, . . . ,Gn) =
comp(P1, . . . , Pk) then ∀1 ≤ i ≤ n ∶ ∃1 ≤ j ≤ k ∶ ∃u ∈ Pj ∶
Gi = {x∣u ∼ x,x ∈ Pj}.

The comparison step further subdivides the pools into
candidate sets Gi. More precisely, if u ∈ Gi then Gi = [u]∩Pj

where [u] is the equivalence class of u. Or, in other words Gi

contains all elements of Pj which are similar to u.
In JCCD the comparison is realized by using a user-defined

set of comparators. Each comparator decides if two subtrees
satisfy particular characteristics. Two subtrees are marked as
similar only if the combination of all comparators is true.
Actually, there are two different types of comparators: AND-
and OR-comparators.

Definition 5. Let S be the set of all subtrees in an AST. A
function c ∶ S × S → {true, false} is called comparator.

Let C be a set of comparators. C is completely divided into
the partitions C∧,C∨ with C = C∧ ∪̇ C∨ where C∧ contains
all and-comparators and C∨ contains all or-comparators.

To compare two subtrees s1, s2 ∈ S the comparators are
applied as follows:

⋁
c∈C∨

c(s1, s2) ∧ ⋀
c∈C∧

c(s1, s2)

Two subtrees are called similarity pair if the overall result
of the selected comparators is true.

E. Filtering
At the end, the filtering step is responsible for removing

non-relevant candidate sets out of the result set. As before,
the filter criteria are selected by the user.

Definition 6. The filtering step is defined by a function filt ∶
℘(℘(U))Ð→ ℘(℘(U)). We require that filt(G) ⊆ G.

For example, to get a more accurate result set in JCCD it
is possible to select a filter for removing all similarity groups
which are already represented by an enclosing group.

In addition, by using elementary set operations JCCD
supports to tailor the result set. For example, in a first run
the user could adjust the pipeline in the way that JCCD only
detects code clones useless for the specific application (false
positives). Next, the user could subtract these false positives of
the code clones of a second differently adjusted run in order
to get a more accurate result set.

F. Putting it all together
Figure 2 illustrates how the function gccd, i.e. the generic

pipeline, combines all intermediate steps and results.

Definition 7. Let the function gccd ∶= filt○comp○pool○prep○
pars be the concatenation of all steps in our generic pipeline.



℘(F)
pars
Ð→ ℘(U)

prep
Ð→ ℘(U)

pool
Ð→ ℘(℘(U))

comp
Ð→ ℘(℘(U))

filt
Ð→ ℘(℘(U))

files source units preprocessed pool set similarity filtered sim.
source units groups groups

Fig. 2. The function gccd.

At this point, we have a generic pipeline enabling us to give
a procedural definition of the term similarity pair:

Definition 8. Let F be a set of source files. Then each pair
(u1, u2) ∈ gccd(F ) is called a similarity pair.

We chose the term similarity pair and not the term clone
pair, because one can choose functions for each of the phases,
such that the computed pairs would not fit any common notion
of a clone, but could still be useful for a certain application.

In JCCD the user is free to control the behavior of the
pipeline by removing, replacing, or adding components. For
the current version of JCCD we have implemented more than
30 comparators, over 40 preprocessors, and three different
pooling strategies.

III. EVALUATION

In this section we evaluate the suitability and the compet-
itiveness of JCCD. To this end, we compare JCCD with the
code clone detection tool CCFinder (10.2.7.1)[7]. Obviously,
the fundamental difference of both implementations is that
JCCD is AST-based and CCFinder is token-based. We still
choose CCFinder because it is well-known, sophisticated, and
has already been successfully applied in industry. Furthermore,
the tool is designed for a fast analysis of large software
projects. Actually, it has only linear computational complexity.

For our study, we have accomplished several test runs on 4
different open source projects. All the test runs were performed
on the same workstation (2.33GHz quad-core CPU, 16GB of
memory, Ubuntu Linux 9.04 64bit). Table I gives an overview
of the used configuration.

TABLE I
CONFIGURATION OF CCFINDER AND JCCD.

Properties of a clone CCFinder JCCD

minimum 12 token sets x x
minimum 30 tokens x x
is a syntactical unit (AST-subtree) f
parameterized identifiers x x
parameterized string, char, numerical, and boolean literals x x
subsume overlapping clones f x
convert to compound block f x
concatenation of tokens f n
Remove/ ignore tokens

assertion, package, import, modifiers f x
redundant parentheses in return statements f x
array initialization tables f x
simple delegations, getter, setter methods f x
empty methods, interfaces f x
repeated code f n

x = selected f = fixed n = not supported

For the evaluation we have chosen a configuration which
is as similar to CCFinder as possible. For that, we have had
to adjust several components of JCCD. However, some details

were not considered in this first evaluation (like concatenation
of tokens, removal of repeated code, or other uncovered
functions of CCFinder).

By comparing the adjustable parameters we determine that
many parameters of CCFinder are fixed. To change these
parameters the user has to reprogram parts of the preprocessors
which are available as python scripts. In contrast, JCCD is very
flexible. Most parameters are adjustable. Beyond, whole parts
of the detection pipeline can be exchanged.

A. Evaluation of the Clone Pair Coverage

The intention of the following subsection is to determine
the coverage of the clone pair sets which were detected by
CCFinder and JCCD. For this preliminary evaluation the clone
pair sets were taken from the source code of jEdit (4.3.1)[5].
Overall CCFinder found 4489 clone pairs and JCCD 1369.
This spread is based on the different approaches. CCFinder
is able to find clone pairs which enclose any sequence in the
source code. In the current version of JCCD only subtrees of
an AST can form a clone pair. In other words, neighboring
subtrees (sequences) are not combined to clone pairs.

In Table II the coverage of the clone pairs is presented. We
selected a simple algorithm to compute the coverage of two
clone pairs.

Definition 9. Let lines(s) = {(f, l)∣s = (f, ls, cs, le, ce, a) ∧
ls ≤ l ≤ le} denote the lines contained within a source unit s.
The coverage of a similarity pair p by a set of similarity pairs
P is defined as coverage(p,P ) = max{cov(p, p′)∣p′ ∈ P}
where

cov((s1, s2), (s′1, s′2)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if s1 ⊓ s′1 = 0

∨s2 ⊓ s′2 = 0
s1⊓s′1+s2⊓s′2

2
otherwise

and s ⊓ s′ = 2∗∣lines(s)∩lines(s′)∣
∣lines(s)∣+∣lines(s′)∣ .

As can be seen in Table II, the results are divided into
four groups. The column large includes the ratio of all clone
pairs which overlap at least 80%. Not included are fully
overlapping clone pairs which can be found in the column
full. For example, if J is the set of clones found by JCCD and
C is the set of clones found by CCFinder, then

∣{p ∈ J∣0.8 ≤ coverage(p,C) < 1}∣
∣J∣ = 53,07%.

Analogously, the column small includes the ratio of all clone
pairs which overlap at most 80%. Not included are non-
overlapping clone pairs which can be found in the column
none. The first line relates to clone pairs of CCFinder which
overlap clone pairs of JCCD. Analogously, the second line
relates to clone pairs of JCCD which overlap clone pairs of
CCFinder.

As shown in previous studies CCFinder has a good relation
of recall and precision [12]. Therefore, the results of this
preliminary evaluation suggest that JCCD has a low recall
and a high precision. Despite the different approaches we
determine that nearly 20% of the CCFinder clone pairs are



TABLE II
COVERAGE OF CCFINDER AND JCCD.

full large small none

CCFinder ⊂ JCCD 3.37% 16.06% 6.59% 73.98%
JCCD ⊂ CCFinder 11.62% 53.07% 30.19% 5.12%

detected by JCCD with an overlapping of at least 80%. Fur-
thermore, nearly 65% of all JCCD clone pairs are confirmed by
CCFinder. By comparing the results of both implementations
we assume that the quality of the result set of JCCD is high.
In particular only a small part of 5.12% of the JCCD clone
pairs is not covered by CCFinder.

B. Qualitative Evaluation

In this section we take a closer look to clone pairs which
were only detected partly or exclusively by one single ap-
proach. In both sets the ratios of full coverage are relatively
small because both implementations use different marking
boundaries of the clone pairs. JCCD summarizes the exact
boundaries of syntactic units, while CCFinder uses leading
tokens (like ’;’, ’{’ or ’:’) to enclose a code fragment. For
example by marking a whole method JCCD starts by the first
token of this sequence (like the method type) and CCFinder
starts by a leading token which appears immediately before the
method (like a closing curly bracket of the previous method).
This has the consequence that some JCCD clone pairs have
a small overlap with CCFinder but describe exactly the same
code fragments. This occurs, in particular, in code fragments
with a large ratio of comments or empty lines. Since most
methods in jEdit are described by an introductory comment
block, this has a strong influence on the coverage values.

As might be expected, the main reason for the low coverage
of CCFinder clone pairs in JCCD is the use of different
approaches. CCFinder is able to detect token sequences which
might enclose a set of neighboring syntactical units. The if-
constructs are such syntactical units and JCCD is able to detect
both as a clone pair when the configuration has been adjusted
accordingly (smaller token length). In this case, the lengths
of both constructs are too small. However, CCFinder marks
also a statement (last line) which represents a further adjacent
syntactical unit. During this evaluation we have not found any
clone pair of CCFinder which had no overlap due to another
reason.

By analyzing clone pairs which are not detected by
CCFinder we determine different reasons which are listed
below:

● View of Token Length: CCFinder subsumes some token
sequences and counts a whole sequence as one single
token. This process reduces the length of a token se-
quence. Thus, a lot of clone pair candidates are ignored
in the analysis of CCFinder which are still detected by
JCCD. We checked several clone pairs of this kind and
confirmed that JCCD has detected them correctly. Some
other uncovered subsumptions of CCFinder might also
lead to a spread in the result set of both implementations.

TABLE III
RUNTIMES OF CCFINDER AND JCCD.

jEdit Tomcat Vuze Android

NLOC 107,278 167,938 477,615 1,397,114
Files 531 1,143 3,234 9,937

JCCD Runtimes
parsing 7.15s 10.07s 21.41s 65.87s
preprocessing 4.52s 6.72s 12.00s 35.62s
pooling 0.27s 0.38s 0.86s 7.64s
comparing

non-parallelized 5.53s 16.97s 127.36s 1,385.72s
parallelized 3.10s 7.24s 65.48s 536.31s
speedup factor 1.784 2,344 1.945 2.584

filtering 0.00s 0.02s 0.04s 0.10s

Total Runtimes
JCCD

non-parallelized comparing 17.48s 34.17s 161.67s 1,494.96s
parallelized comparing 15.03s 24.29s 99.79s 645.59s
speedup factor 1.163 1.407 1.620 2.284

CCFinder 22.67s 51.45s 108.16s 746.04s

● Generalizing of Identifiers: In particular identifiers will
be subsumed by CCFinder to a single token, modifiers
will be ignored and identifiers will be parameterized.

● Boolean Literals: JCCD detects identical code fragments
that differ only in boolean literals. According to the
documentation CCFinder is able to find these pairs, too.
We could not determine why this kind of clone pairs was
not detected.

Briefly, besides a few unexplained inconsistencies we deter-
mine that the length of most of the non-overlapping clone pairs
is too small (under 30 tokens) in the view of CCFinder. The
30% of the JCCD clone pairs which have only a small cover-
age (less than 80%) are in all considered cases completely en-
closed by a bigger clone pair of CCFinder. This phenomenon
occurs most frequently in nested constructs (like if. . .else
if. . . etc.). CCFinder is able to mark any sequence of such a
construct as clone pair. In the AST representation the second
if-construct is a descendant and not a sibling of the first one.
In the current version of JCCD it is only possible to select
whole subtrees as clone pairs.

C. Quantitative Evaluation

In this section we present the results of several performance
tests by running both implementations over 4 different open
source projects of varying size and application domains. We
have selected the following projects: jEdit(4.3.1)[5], Apache
Tomcat (6.0.24)[2], Vuze (4.3.1.4)[14], and Android (1.5
cupcake)[1]. The results of the performance tests with JCCD
and CCFinder are reported in Table III.

1) JCCD Runtimes: By comparing the performance results
of each processing step we determine that the comparing step
is the bottleneck of the whole analysis. This fact leads us to
improve this step by exploiting the multi-core architecture of
the workstation used for the tests.

The above version of JCCD processes all pools one after
another. By splitting this task into multiple threads a multi-
core system is able to process a set of pools simultaneously.



We have adapted the comparing step to this functionality and
repeated the test runs. Actually, only the body of a loop in the
comparing step had to be moved into a separate thread and
a data structure of type HashMap had to be turned into type
ConcurrentHashmap.

The parallelization has not only a significant impact on the
runtime of the comparing step, but also on the total runtime.
Almost all comparing runs have a speedup about the factor 2.
In particular, the complete analysis of Android takes half the
time of the single-threaded version.

2) Comparison with CCFinder: Next, by comparing the
runtimes with CCFinder we demonstrate that they are ac-
ceptable in practice. Overall, we note that the runtimes of
JCCD are competitive to the runtimes of CCFinder. Only
by analyzing the biggest project Android the single-threaded
JCCD takes twice the time of CCFinder. However, the multi-
threaded version is competitive with a speedup factor of 1.156.

D. Threats to Validity

Construct validity: We are not the first to face the problem
of comparing the performance of code clone detectors. As
these tools typically find different kinds of clones and only
to a certain extent the same clones, the pure performance
numbers can only be compared with caution — even if some
kind of coverage and quality analysis was combined with the
performance analysis as done in this paper.

Internal validity: While it seems reasonable to assume that
the speedup when using multiple cores was mainly due to
the additional processing power, other effects like caching,
changed garbage collection behavior and the like may have
influenced the results.

External validity: To allow for some generalizability of
our findings, we performed our comparison with four open
source projects of varying size and application domains, but
all written in Java. We cannot claim that our findings can be
held true for other programming languages, other code clone
detectors, or software projects with larger size.

IV. RELATED WORK

Current clone detection approaches can be roughly catego-
rized by the kinds of information they process: strings, tokens,
trees, program dependence graphs, metrics, or hybrids [13].

Baxter et al. introduce a pioneering AST-based clone de-
tection approach [3] which is representative for most tree
matching techniques. A parser transforms source code into
an AST. Optionally, its subtrees are partitioned into buckets
based on a hash function. Only subtrees within the same
bucket are compared to each other by fuzzy tree matching. In
contrast, in our generic pipeline model all phases are clearly
distinguishable. This enables to build custom clone detectors
and to substitute particular phases of the pipeline.

CloneDetective implements a pipelined approach for exten-
sible token-based clone detection [6]. In their approach the
actual detector is a single component. In contrast, JCCD is
AST-based and the detection process is further subdivided into
phases.

Our generic pipeline is similar to the one proposed by Roy
et al. [12]. While they use the pipeline to classify and compare
different clone detection techniques, we used our pipeline
model to receive a flexible architecture. Moreover, in JCCD
their ”Match Detection” phase is more refined. Nevertheless,
their pipeline-based description of various techniques supports
our claim that many of these techniques could be implemented
with JCCD.

JCCD was already presented in a tool demonstration [4]. It
was originally developed to provide a customizable code clone
detector for our refactoring identification framework [16].
Recently, JCCD has also been used to enable the detection of
more complex refactorings [10]. It computes a candidate set
based on code similarity and applies additional heuristics to
further reduce this set. The implementation consists of extend-
ing several phases of the JCCD code clone detection pipeline.
The integration enables refactoring-specific optimizations at
early stages of the pipeline.

V. CONCLUSIONS

In this paper we formally introduced a generic pipeline
model which allows a flexible and extensible approach to the
code clone detection process. Further, we presented JCCD, a
versatile API for implementing custom clone detectors based
on the generic pipeline. Despite the overhead caused by
the modularization our evaluation shows that JCCD has a
comparable performance to a well-established clone detector,
and that it has a good precision. Moreover, we exploited
parallel processing on a multi-core computer to achieve better
runtimes by simply extending one particular phase of the
pipeline.

REFERENCES

[1] Android, http://source.android.com/, Feb. 2010.
[2] Apache Tomcat, http://tomcat.apache.org/, Feb. 2010.
[3] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and L. Bier,

“Clone detection using abstract syntax trees,” in ICSM, 1998.
[4] B. Biegel and S. Diehl, “JCCD: A flexible and extensible API for

implementing custom code clone detectors,” in ASE, 2010.
[5] jEdit, http://www.jedit.org/, Feb. 2010.
[6] E. Jürgens, F. Deissenboeck, and B. Hummel, “CloneDetective - a

workbench for clone detection research,” in ICSE, 2009.
[7] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic

token-based code clone detection system for large scale source code,”
IEEE TSE, 2002.

[8] C. Kapser, P. Anderson, M. W. Godfrey, R. Koschke, M. Rieger, F. V.
Rysselberghe, and P. Weißgerber, “Subjectivity in clone judgment: Can
we ever agree?” in Duplication, Redundancy, and Similarity in Software,
ser. Dagstuhl Seminar Proceedings, 2007.

[9] R. Koschke, “Frontiers on software clone management,” in ICSM, 2008.
[10] D. Neu, “AST-basierte Erkennung von komplexen Refactorings,”

Diploma Thesis (in German), University of Trier, Germany, 2009.
[11] T. J. Parr and R. W. Quong, “ANTLR: A predicated- LL(k) parser

generator,” Software, Practice and Experience, 1995.
[12] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation

of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, 2009.

[13] C. Roy and J. Cordy, “A survey on software clone detection research,”
Queen’s University at Kingston, Canada, Tech. Rep., 2007.

[14] Vuze, http://vuze.sourceforge.net/, Feb. 2010.
[15] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems

creating task-relevant clone detection reference data,” in WCRE, 2003.
[16] P. Weißgerber and S. Diehl, “Identifying refactorings from source-code

changes,” in ASE, 2006.


