
VRML with Constraints

Stephan Diehl J̈org Keller

University of Saarland∗

to appear in Proceedings of ACM Web3D/VRML 2000 Symposium, Monterey, CA

Abstract

In this paper we discuss the benefits of extending VRML by con-
straints and present a new way based on prototypes and scripting to
implement this extension. Our approach is easy-to-use, extensible
and it considerably increases the expressivity of VRML. Our im-
plementation supports one-way equational and finite domain con-
straints. We demonstrate the use of these constraints by means of
several examples. Finally we argue that in the long run constraints
should become an integral part of VRML.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Constraints

Keywords: VRML, Animation, Programming

1 Introduction

Many problems can be viewed as problems of constraint satisfac-
tion in which the goal is to discover some problem state that satisfies
a given set of constraints. Constraints are equality and inequality
relations which contain variables of the problem state. This ap-
proach has been heavily investigated in artificial intelligence, but
it is also applicable to many problems in computer graphics, hu-
man computer interaction and virtual reality. A constraint denotes
a relationship among two or more objects. Constraints are declar-
ative, i.e., they state a relationship but not the way to maintain it.
Thus constraint-based systems consist of a set of constraints and
one or more constraint-solvers. The task of a constraint-solver is to
determine how and in what order to satisfy constraints.

From a programming language designer’s point of view VRML
lacks many features which have proven useful for specifying al-
gorithms. As VRML was primarily designed with the intention to
specify 3D objects and their behavior, we have to be careful when
we try to transfer programming language concepts to VRML. Pre-
viously we have designed a language called VRML++ [2, 3] which
extends VRML by classes, inheritance, an improved type system
and dynamic routing. The current paper addresses the design and

∗FB Informatik, University of Saarland, Postfach 15 11 50, 66041
Saarbr̈ucken, GERMANY, diehl@cs.uni-sb.de

implementation issues of extending VRML by constraints. Con-
straints make VRML more expressive. They ease specification of
animations and of layout and interaction in user-interfaces.

Our implementation works well with CosmoPlayer 2.1. As of
this writing, Superscape’s Viscape, ParallelGraphics’ Cortona, Mi-
crosoft’s Worldview and Blaxxun’s Contact Pro have not yet imple-
mented the JS API completely.

2 Constraints in Computer Graphics

Since 35 years constraints have been used for user-interfaces, e.g.
in the Sketchpad system [9]. Constraints enforce hidden relations
between objects as they are common in layouts or animations. For
example several kinds of 2D animations can be expressed as con-
straints in Amulet [6], and there exists a constraint-based sytem to
visually construct 3D animations [4]. In fact many animation tech-
niques in the literature, e.g., inverse kinematics, morphing, flock-
ing, particle systems, are specified by sets of constraints, where one
or more variables are manipulated over time. The animation is pro-
duced as the constraint solver tries to satisfy the constraints and thus
changes the properties of the graphic objects involved.

3 VRML with Constraints

Our final goal is that constraints become an integral part of the
VRML language. The first step to achieve this is to provide an ex-
tension of VRML97 such that we and others can experiment with
different flavors of constraints. For this purpose we implemented
a prototypeConstraint . It encapsulates constraint solvers in a
Script node. The solvers are programmed in Java.

EXTERNPROTO Constraint [
field MFString inames
field MFString innodes
field MFString protoField
field MFString protoType
field MFString domains
field MFString domainDefs
field MFString userFunctions
field SFBool startEval
field SF-

Bool eventFirstPriority
field MFString constraints

]
"ProtoConstraint.wrl#Constraint"

Some of the fields of theConstraint prototype are only
needed as work arounds for missing functionality of the Java Script-
ing API. We need theinames and inodes to bind nodes to
names because there is no functiongetNode(DefName) in the
JS API as we know it from the EAI.

Furthermore the fieldsprotoField andprotoType map
fields of a node, which is an instance of a user defined prototype, to

their types. This is necessary because we can not get the type of a
field via the JS API.

The fieldsdomains anddomainDefs are only used for fi-
nite domain constraints. In thedomains -field the user assigns
one of the domains defined in thedomainDefs -field to the vari-
ables used in the constraints.

The fielduserFunctions offers the possibility to add any
needed function to the constraint solver and use these functions in
the constraints. The syntax needed to support this feature is very
easy: First, the user has to define the signature of the function and
then the function can be defined in JavaScript syntax. The signature
consists of the return type, the function name and the parameter
types.

The value ofstartEval determines whether the constraints
will be solved at initalization of theConstraint or not.
Furthermore, the value ofeventFirstPriority controls
whether values set by an event can be changed by the constraint
solver or not.eventFirstPriority is TRUE by default. In
this case, the events from VRML scene graph have highest priority
and will not be changed by the solver. As an example consider, that
you want to move an object in a room using aPlaneSensor . If
eventFirstPriority is TRUE , no collision-handling pos-
sible. By collision-handling we mean detection of a collision and
automatically moving the object to a non-colliding position. With-
out collision-handling the object can move through walls or things
standing in the room. Therefore, it is necessary to setevent-
FirstPriority FALSE . Now, if the objects approaches the
wall, the constraint solver is able to prevent the collison.

Finally, the fieldconstraints contains a list of strings (MF-
String), each string represents a constraint. The constraints are
interpreted as one-way equational constraints ifdomains and
domainDefs are empty and as finite domain constraints, oth-
erwise.

Constraints are of the formpath relop expressionwherepath
identifies a field in the scene graph,relop is an relational operator
andexpressionis either a constant of primitive type likeMFInt32 ,
a value of a field or a function, see grammar below:

constraint → path relop expression
relop → = | != | <= | >= | < | >
expression → path| functionname(path∗) | constant
path → nodename.tail
tail → fieldname| fieldname[int] | tail.tail

For example,CAR.children[2].radius=Add(BOX.size[2], 10)

is a constraint, which might relate the value of a fieldradius
of type SFFloat to the second value in a fieldsize of type
SFVec3f .

3.1 One-Way Equational Constraints

One-way equational constraints are a weak form of constraints,
which have been widely used to implement user-interfaces:

lights.on=or(switch1.on,switch2.on)

In the above example the value oflights.on is up-
dated whenever the value ofswitch1.on or switch2.on
changes. In general, the value of the field on the left side of the
equality constraint is changed whenever one of the values on the
right side changes.

One-way constraints have been used for many purposes includ-
ing layout, animations and user-interfaces. They can express rela-
tions like attachment or noncollision of objects or enforce physical
laws. Their success is mainly due to three factors: they are efficient,
intelligible and domain-independant.

Different algorithms for solving such constraints, even for dy-
namically changing sets of objects and constraints are described in

Figure 1: Navigation on a chessboard

[10]. In this case constraints have to be activated or deactivated
when objects are created or deleted.

Now, we want to show how to use one-way constraints in VRML
by means of examples.

Navigation with one-way constraints

The first example in Figure 1 uses constraints to navigate a set of
pieces on a chessboard.

With the help of constraints we want to enforce 3 restrictions:
The pieces cannot be moved from the board, the pieces are always
centered in a square on the chessboard and when moving a piece it
cannot pass through another piece. The first 2 restrictions are real-
ized with the user-functionCenterField . The third restriction
is achieved by lifting a piece before it is moved.

Constraint {
startEval TRUE
eventFirstPriority FALSE
userFunctions [

"SFFloat CenterField(SFFloat)"
"function CenterField(val) {

var help=Math.round(val);
if (help>7) help=7;
if (help<0) help=0;
return help; }"]

inames ["PS1" "piece1"
"PS2" "piece2"]

inodes [USE PS1, USE piece1,
USE PS2, USE piece2]

constraints [
"piece1.translation[0]

=CenterField (PS1.translation_changed[0])"
"piece1.translation[1]=If(PS1.isActive, 2, 0.5)"
"piece1.translation[2]

=CenterField (*(-1, Ps1.translation_changed[1]))"
"piece2.translation[0]

=CenterField (PS2.translation_changed[0])"
"piece2.translation[1]=If(PS2.isActive,2 , 0.5)"
"piece2.translation[2]

=CenterField (*(-1, PS2.translation_changed[1]))"
]

}

Note, that the Y-coordinate of thePlaneSensor , that controls
the piece is assigned to its Z-coordinate because the chessboard lies
in the X-Z-plane.

Collision Detection

The next example in Figure 2 shows how user-defined functions
can be used to implement collision detection. In our 3D computer
configuration the user can choose some of the cards offered and put

Figure 2: Interactive computer configuration

Figure 3: Collision detection and handling

them into a free slot. If he chooses a card and moves it to the board,
the constraints automatically detect the collison with the board and
put the card into a free slot. Therefore, two things must be changed
by the constraint solver: The card must be rotated into a vertical
rotation to the board and the translation must be set to the slot’s
position. In the example, we have 5 cards but only 4 slots. The user
can either put Card1 or Card1a into slot1. Therefore, in the case of
collision with the board it must be checked if the slot is occupied or
free. For each of the cards Card2, Card 3 and Card4 a separate slot
is reserved, so only collision with board must be considerd in these
constraints.

Constraint {
eventFirstPriority FALSE
inames ["Card1" "Card1a" "Card2" "Card3" "Card4"]
inodes [USE Card1, USE Card1a, USE Card2,

USE Card3, USE Card4]
userFunctions [

"SFBool Collision(SFVec3f, SFVec3f, SFFloat)"
"function Collision (x1, x2, v) {

a=x1[0]-x2[0];
b=x1[1]-x2[1];
dst=a*a+b*b;
if (Math.sqrt(dst)< v) return true;
return false; }"

"SFBool Equal(SFVec3f, SFVec3f)"
"function Equal (x1, x2) {

if (x1[0]==x2[0] && x1[1]==x2[1]

Figure 4: Flocking

&& x1[2]==x2[2]) return true;
return false; }"

]
constraints [

"Card1.translation
=If(Collision(-3 -0.6 0, Card1.translation, 3),

If (Equal(Card1a.translation, -2.7 -0.6 0.4),
3 3 0,

-2.7 -0.6 0.4),
Card1.translation)"

"Card1.rotation
=If(Collision(-3 -0.6 0, Card1.translation, 3),

1 0 0 1.5707,
0 0 0 0)"

"Card1a.translation
=If(Collision(-3 -0.6 0, Card1a.translation, 3),

If (Equal (Card1.translation, -2.7 -0.6 0.4),
6 3 0,
-2.7 -0.6 0.4),

Card1a.translation)"

...

"Card4.rotation
=If(Collision(-3 -1.55 0, Card4.translation, 3),

1 0 0 1.5707,
0 0 0 0)"

]
}

The example in Figure 3 shows how a piece in a scene avoids col-
lision with an obstacle represented by a tree. The constraint solver
will change the position of the piece relative to its position. If the
piece is moved in X-direction and it approaches the tree, the Z-
position of the piece will be changed. After passing the tree, the
old Z-position is restored and the piece moves along its original
path.

Flocking

The motion of a flock of birds is one of nature’s delights [7]. We
implemented an event-based kind of flocking, see Figure 4. Con-
sider a flock of n birds. Every bird gets a constraint encoding its
dependency on itself and the remaining n-1 birds:

birdx.translation =
Follow(birdx.translation,

bird1.translation, . . . , birdx−1.tranlsation,
birdx+1.translation, . . . , birdn.tranlsation)

If an event occurs, e.g. the user clicks at a bird and drags it, the
functionFollow computes the distances from the bird itself (first

Figure 5: Multi-way constraints

argument) to all other birds. Then, the bird follows that bird with
the smallest distance.

Simulation of Multi-Way Constraints

In the following example, shown in Figure 5, we express a multi-
way constraint by a set of one-way constraints. Assumeyes and
no are cylinders representing the number of consenting and re-
jecting votes andsum a cylinder representing the total number of
votes.

sum.height=yes.height + no.height
yes.height=sum.height - no.height
no.height=sum.height - yes.height

With the help of our prototype this can be written as:

Constraint {
inames ["SUM", "YES", "NO"]
inodes [USE SUM, USE YES, USE NO]
constraints [

"NO.translation[1]=Sub(SUM.translation[1],
YES.translation[1])"

"YES.translation[1]=Sub(SUM.translation[1],
NO.translation[1])"

"SUM.translation[1]=Add(YES.translation[1],
NO.translation[1])"

]
}

Note, that these constraints are cyclic. As we use local propaga-
tion which is unable to solve cyclic constraints, we have to open the
cycle to guarantee termination of evaluation. The result of the above
constraints is, that whenever the size of one cylinder is changed, e.g.
by user interaction, the size of the other two cylinders is adapted ac-
cordingly.

3.2 Finite Domain Constraints

In many problems the possible values of variable can take are re-
stricted to a finite set. Such problems include the configuration of
systems, schecduling or timetabling. They all have in common that
one has to choose amongst a finite number of possibilities. There
are a variety of constraint solving algorithms for this case. Cur-
rently we have implemented a simple backtracking solver, but we
plan to replace it by a more efficient one as soon as possible.

As an example of a finite domain problem consider the problem
of coloring a map of australia in Figure 6.

Constraint {
startEval TRUE
inames ["WS" "NT" "Q" "SA" "NSW" "V" "T"]
inodes [USE WS_C USE NT_C USE Q_C USE SA_C

USE NSW_C USE V_C USE T_C]

Figure 6: Number of Population in Australia

First we specify that adjacent states are not assigned the same color:

constraints [
"WS.emissiveColor!=NT.emissiveColor"
"WS.emissiveColor!=SA.emissiveColor"
"NT.emissiveColor!=SA.emissiveColor"
"NT.emissiveColor!=Q.emissiveColor"
"SA.emissiveColor!=Q.emissiveColor"
"SA.emissiveColor!=NSW.emissiveColor"
"SA.emissiveColor!=V.emissiveColor"
"Q.emissiveColor!=NSW.emissiveColor"
"NSW.emissiveColor!=V.emissiveColor"
"V.emissiveColor!=T.emissiveColor"
]

Now we define three domainsM6, M4andM2as finite sets of colors

domainDefs [
"MFColor M6 { 0 0 1, 1 0 0, 0 1 0, 1 0 1,

1 1 0, 0 1 1 }"
"MFColor M4 { 0 0 1, 1 0 0, 0 1 0, 1 0 1 }"
"MFColor M2 { 1 1 0, 0 1 1 }"
]

and for earch field we restrict its possible value to be in one of these
sets.

domains [
"WS.emissiveColor=M6"
"NT.emissiveColor=M6"
"Q.emissiveColor=M4"
"SA.emissiveColor=M4"
"NSW.emissiveColor=M4"
"V.emissiveColor=M2"
"T.emissiveColor=M2"

]
}

Figure 6 shows a map of australia, the height of each column
indicates the number of inhabitants in that part of the country.

Another problem that is often discussed as an example for finite
domain constraints is the N-Queens problem. We have also used it
as a test case for our extension, see Figure 7.

4 Implementation

Most of the information in the fields of theConstraint proto-
type are provided as strings. The Java program parses these strings

Figure 7: N-Queens problem

Figure 8: Dependency graph

and constructs a constraint graph. This graph makes explicit on
which variables and constraints a variable depends.

The algorithm used to solve the constraints is described in [10].
This algorithm works in two phases: The nullification phase and the
re-evaluation phase. If a value of a variable changes, e.g. as result
of an evente , all variables that directly or indirectly depend on
this changed variable are marked out-of-date (nullification phase).
Then, recursively the values of all variables are computed, that de-
pend on the changed variables (reevaluation phase). If a variable
has no successor or all successors are up-to-date, the recursion will
stop. Notice, that the value of the evente will also be re-evaluated
in case ofeventFirstPriority FALSE .

Consider the following Example:

Constraint {
inames ["object1" "object2" "color1" "color2]
inodes [USE object1 USE ob-

ject2 USE color1 USE color2]
constraints [

"object1.translation=Sub(object2.translation,
object3.translation)"

"color1.emissiveColor[1]=Div(object1.translation[1],
10)"

"color2.emissiveColor=color1.emissiveColor[1] "
]

}

Figure 8 shows the dependency-graph of this example.

Figure 9: A cyclic dependency graph

Now consider the previously discussed example with the simu-
lation of the multi-way constraints:

sum.height=yes.height+no.height
yes.height=sum.height-no.height
no.height=sum.height-yes.height

Figure 9 shows the cyclic dependency-graph of this example.
If now for example the value ofyes.height changes,

sum.height andno.height will be set out-of-date (nullifi-
cation phase). But consider, thatsum.height andno.height
depend both onyes.height but also on each other. It is
not important, which variable will be computed first. Assume
that sum.height will be computed first. It will be marked
up-to-date and by computing its constraint,yes.height and
no.height will be requested.Yes.height is up-to-date,
but no.height is still marked out-of-date. So,no.height
will be computed first and after this, the solver computes the con-
straint ofsum.height (re-evaluation phase). Note, that the con-
straints should be consistent. Otherwise, one or more constraints
will not be satisfied.

By allowing the user to define own functions the constraints be-
come more expressive and flexible. To implement this feature the
constraint solver creates a new Script-node by the JS API-function
createVRMLFromString() . For each function parameter an
EventIn-Field will be created. To return the result, we simply use
an EventOut. We also allow to use such a function several times
in the constraints. Solving a constraint with a user function will be
done in 3 steps: First, all EventIn’s are updated bysetValue() .
Then, the JavaScript-Function will compute the return-Value. Last,
the constraintSolver gets the result bygetValue() . These 3
steps efficiently allow the solver to use only one Script-node for a
function but to use the function several times in the constraints.

5 Related Work

A first effort to implement constraints on top of VRML with the
help of a preprocessor turned out to be too restrictive and was heav-
ily depending on the routing mechanism of a certain browser [1].
At a workshop at VRML98 Nadine Richard presented a first Java-
based implementation of constraints [8]. The constraints had been
hard coded in the constraint solver in Java. In this paper we have
shown, how constraints and solver can be separated and thus, how
constraints become part of the VRML file.

6 Future Work

Our current implementation is working, but it is relatively slow.
There are two directions which we will investigate to make it more
efficient. First the number of Java Scripting API calls has to be re-
duced, second more efficient finite domain solving techniques must
be included.

In programming languages constraints turned out to be quite ex-
pressive when it comes to communication and synchronization in
distributed virtual worlds [5]. It will be interesting to investigate

how this approach could be combined with the LivingWorlds pro-
posal or similar multi-user extensions.

7 Conclusions

We have presented constraints as an extension of VRML and de-
scribed our experimental implementation. We feel that constraints
provide a powerful, expressive and natural way to specify depen-
dencies between fields of different nodes and that they should re-
place routes in a future VRML standard.

References

[1] Stephan Diehl. Extending VRML by One-Way Equational
Constraints. InWorkshop on Constraint Reasoning on the
Internet, Schloss Hagenberg, Austria, 1997.

[2] Stephan Diehl. VRML++: A Language for Object-Oriented
Virtual Reality Models. InProceedings of the 24th Inter-
national Conference on Technology of Object-Oriented Lan-
guages and Systems TOOLS Asia’97, Beijing, China, 1997.
IEEE Computer Society Press.

[3] Stephan Diehl. Object-Oriented Animations with VRML++.
In in Proceedings of Virtual Environment 98 Conference and
4th Eurographics Workshop, Stuttgart, Germany, 1998.

[4] Enrico Gobbetti and Jean-Francis Balaguer. An Integrated
Environment to Visually Construct 3D Animations. InPro-
ceedings of SIGGRAPH’95, 1995.

[5] Seif Haridi, Peter van Roy, and Christian Schulte. Program-
ming languages for distributed applications.New Generation
Computing, 3(16), 1998.

[6] Brad A. Myers, Robert C. Miller, Rich McDaniel, and Alan
Ferrency. Easily Adding Animations to Interfaces Using Con-
straints. InProceedings of the ACM Symposium on User In-
terface Software and Technology UIST’96, Seattle,WA, 1996.

[7] Craig W. Rainolds. Flocks, Herds and Schools: A dis-
tributed Behaviour Model.Computer Graphics (Proc. of SIG-
GRAPH’87), 21(4), 1987.

[8] Nadine Richard and Philippe Codognet. Multi-way Con-
straints for Describing High-Level Object Behaviours in
VRML. In Proceedings of the Workshop on VRML and Object
Orientation, Monterey, 1997.

[9] I. Sutherland. Sketchpad: A man-machine graphical com-
munication system. InProceedings of the IFIP Spring Joint
Computer Conference, 1963.

[10] Brad Vander Zanden, Brad A. Myers, Dario Guise, and Pe-
dro Szekely. Integrating Pointer Variables into One-Way Con-
straint Models.ACM Transactions on Computer Human In-
teraction, 1:161–213, 1994.

